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Abstract: A computer graphics package, exploit-
ing dual energy bounds for calculation of circuit
parameters (R, L, C), has been recently developed
in Southampton and implemented on a small
desk-top computer. Simple pre- and postprocess-
ing and considerable savings of computer time in
comparison with other techniques are the most
distinctive features of the method. The paper gives
a brief description of this new software.

List of symbols

A = magnetic vector potential
B = magnetic flux density
C = capacitance
D = electric flux density
E = electric field strength
H = magnetic field strength
= surface current (line density)
= volume current (area density)
= inductance
= resistance
energy
permittivity
u = permeability
p = volume charge density
o = area charge density
¢ = electric scalar potential

1 introduction

TAS (tubes and slices) is a suite of programs solving
certain classes of problems which can be described by
two-dimensional equations of the Laplacian or Pois-
sonian types. A discretisation process involves splitting
the system into a set of slices bounded by equipotential
surfaces and into a set of tubes bounded by flux barriers.
These two systems are then used to provide upper and
lower bounds for the system energy. The technique is
known as the method of tubes and slices, and this term
will be used throughout the paper.

Owing to the relatively small amount of data needed
for tubes and slices analysis and the method of solution,
which avoids cumbersome matrix inversion, pre- and
postprocessing is simple and solution times are extremely
short. Dual bounds for values of circuit parameters are
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provided giving confidence limits for the solution and
forming a criterion for interactive mesh adaptation.

The mathematical basis of the method, thorough dis-
cussion of its mathematical and physical implications and
the state of the art in the development of the tubes and
slices techniques may be found in the works by
Hammond [1-3]. The emphasis of this paper is on com-
putational aspects and computer-aided 1mp1ementat10n
of the method.

2 Mathematical background

In magnetostatic fields the equilibrium conditions of the
system can be described by two variational principles
applied within the volume [1]:

AVxH=D),04)=0 1)
and /
{(VxA4—B),éH)=0 )]

where the brackets () indicate integration through the
region of interest, and J is the assigned current density.

The field energy can be expressed, either in terms of
the field vectors H and B:

= 3B, H) G)

or in terms of the interaction of the current sources with
the vector potential A4:

= KT, A> + 3L 4] Q)

where I is the assigned line density of current on the
surface, and the brackets [] represent integration over
the closed boundary surface.

The two variational principles can be applied to the
whole system as [3]

SUA) = 6{—4CH,BY + (J, 4> + [[A]} =0 3
where H and B are functions of 4, and
SU(H) = 6{3<B,H)} =0 : 6

where B is a function of H through the constitutive field
equation:

B=yuH | 0

For simplicity u is assumed to be constant.
The second variations derived from egns. 5 and 6 have
different signs

3*UMA) <0 Nt

and
S*UH) =0 O
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so that the equilibrium energy is either a maximum (eqns.
5 and 8) or a minimum (eqns. 6 and 9).

The electrostatic field can be treated in an analogous
manner [2]:

SU(P) = 8{<p, ¢) + [3, 91 — eI VoID} =0 (10)

SU(D) = 5{-1-<—1— ID|2>} =0 (11)
2\¢

52U(¢) <0 ‘ (12)
s2UD) = 0 (13)

giving concave (eqns. 10 and 12) or convex (egns. 11 and
13) energy functionals, respectively. Some other pos-
sibilities are also explored in Reference 2.

It will have been noticed that both variational prin-
ciples of egns. 1 and 2 lead to energy functionals,
although one uses a variation in 4 and the other a varia-
tion in H. The use of the vector potential in eqn. 1 gives
the magnetic field as

B=VxA (14

which implies that the variation maintains the condition
of zero volume divergence by enforcing V - B = 0. Eqn. 2,
on the other hand, uses the relationship

VxH=J 1s)

and, as J is fixed, this variation keeps the curl sources
constant in the volume.

The two mechanisms are equivalent to introducing
additional “fictitious’ sources inside the volume and on its
boundary. Eqn. 5 introduces a fictitious volume current
and surface current density, as well as a surface pole dis-
tribution. When both types of sources (curl and
divergence) are varied, the system energy is decreased.
Eqn. 6, on the other hand, introduces only divergence
sources (fictitious pole density) and the energy is
increased. All fictitious sources are zero at equilibrium
and the whole process is controlled by the uniqueness of
the field within the system [3].

Most of the popular methods like finite elements,
boundary elements and finite differences ensure only that
the total fictitious-source distribution of the whole system
is zero. The use of free topology in such methods means
also that information contained in boundary conditions
is lost locally and a solution of simultaneous equations is
required, which may be a very costly process. The accu-
racy that a particular discretisation will yield depends on
the number of elements used, but is also a function of the
experience of the user. Much benefit may be gained by
applying dual and complementary methods to finite-
element techniques to provide an absolute assessment of
error in a given solution, and aid the generation of
meshes. Some computer implementations of such
schemes already exist (see, for example, References 4 or
5). An interesting dual finite-element formulation may be
found in Reference 6. As expected, the computational
effort can be considerably reduced in comparison with a
standard finite-clement method, but the solution of
simultaneous equations still remains the crux of the
approach. In seeking economies in the computation, the
method of ‘tubes and slices’ goes one step further.

_Introduction of tubes (bounded by flux barriers) and
slices (bounded by equipotential surfaces) has many
advantages. It treats the system as a whole and does not
separate local conditions from the overall boundary con-
ditions. On the contrary, it is now the boundary which
governs the process of the solution. Secondly, the dis-
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tribution of fictitious sources is under more strict control.
The tubes introduce curl sources and the slices generate
divergence sources, but the condition of zero total ficti-
tious source distribution applies to individual slice or
tube boundaries, not only to the whole system. Thirdly,
and from the practical point of view, most importantly,
the combined effect of this approach leads to very simple
calculations completely avoiding the time-consuming
matrix inversion.

3 Iimplementation of the method

In Laplacian fields, each slice carries the total flux and
each tube has the same potential difference applied to its
ends; therefore, calculations are reduced to summation of
circuit parameters of all tubes or slices. For example, the
resistance of a conductor of any shape, after a proper
discretisation has been achieved, will be found as the
series/parallel connection of a set of subconductors
formed by the tube and slice subdivisions. All sub-
conductors have a simple shape and the final explicit for-
mulas for the resistance may be easily found. The slice
system will produce the lower bound of the resistance,
while the tube system gives the upper bound.

It will be noted that the division of the system into
slices and tubes is physically well based, because it uses
the potential and flux properties of the field.

In Poissonian fields we have to work in terms of the
energy, instead of the circuit parameters of tubes and
slices, to take account of the interaction due to distri-
buted assigned volume sources. The lower and upper
bounds of energy are then used to define the bounds of
an overall circuit parameter, such as an inductance.

Implementation of the method of tubes and slices is
very straightforward in principle. The troublesome solu-
tion stage has been eliminated and replaced by simple
and fast calculation of the relevant circuit parameter.
Emphasis is then directed to convenient and efficient
ways of generating and improving the distribution of
tubes and slices. Like any other numerical method the
first solution does not guarantee a good answer. Unlike
most other methods, however, dual bounds of the tubes
and slices solution provide both confidence limits and a
criterion for any further improvements. Another impor-
tant difference is that it is the shape of both tubes and
slices, not their number, which determines the accuracy
of the method. The usual process of global or local mesh
refinement is replaced by a procedure of reshaping the
distribution of the two systems.

Special techniques must be used to handle material
changes and interfaces or to deal with nonlinear systems.
Some suggestions have been put forward in the Refer-
ences and such schemes will be incorporated into the
TAS software, but are beyond the scope of this paper.

4 Discretisation

It is important to note that the two systems of tubes and
slices may be treated completely independently of each
other. It is only under equilibrium conditions that they
become orthogonal, but such a perfect solution is rarely
required. It is convenient, however, for the purpose of
preprocessing to use the same mesh, or construction
points, so as to generate both systems at the same time.
After subsequent changes to the mesh and several calcu-
lations, a global minimum of all upper bound answers
and a global maximum of all lower bound values are
sought. These minimum and maximum values may and,

IEE PROCEEDINGS, Val, 135, Pt. A, No. 3, MARCH 1988



for most cases, will be different for different mesh configu-

rations. At this point, the tubes and slices solutions are

therefore separated.

It is also useful to notice that the method can use the
same discretisation process for various fields under con-
sideration. Hence, preprocessing can be a common step
after ‘which the appropriate formula will be' chosen,
depending on which circuit parameter is required.

A quadrilateral of general shape is chosen as a build-
ing block for constructing a mesh. This is a natural
choice to match the inherent property of fields having
two flux and two equipotential boundaries. The triangu-
lar element, so successful in finite elements, unfortunately
completely destroys this -symmetry. An interesting tech-
nique of a quadrilateral with an additional internal con-
struction point is described in Reference 2. Although
useful for hand calculations, this technique puts severe
constraints on the freedom of defining other quadrilat-
erals to complete the system and would make any further
movement of construction points very difficult.

The TAS program uses a quadrilateral with one diago-
nal, the direction of which may be chosen as illustrated in
Fig. 1. A set of such quadrilaterals is used to match a

b

Fig. 1
system (c)

Subtubes (a) and subslices (b) in a quadrilateral, alternative

particular shape of system boundaries. The distribution
of both systems of tubes and slices is formed at the same
time. Each tube and each slice may be further subdivided
into subtubes and subslices to improve the accuracy of
computation. :

Once the two distributions have been set up, upper
and lower bounds of a required system parameter (R, C
or L) may be calculated. For R and C this process
involves finding the total resistance (capacitance) of a
system of series/parallel connections of resistances
(capacitances) of all subtubes and subslices. Consider a
system divided into t tubes and s slices. Each tube is split
into m; subtubes (i = 1, ..., t) and each slice has n; sub-
slices (j =1, ..., 5). In the TAS program these subdivi-
sions are carried out automatically, but the process is
controlled through specification of the number of sub-
divisions (values of m; and n;). As a simple illustration, let
us consider the resistance of a conductor of Fig. 2a, for
which we shall assume t =2, s=3 and m; =m, =6,
ny =n3 =4, n, =35 The resultant distributions of all
subtubes and subslices are shown in Fig. 2b and Fig. 2c,
respectively. Each subtube consist of 2 x s pieces of con-
ductor connected in series and there are M = Y, m; sub-
tubes in parallel. Similarly, each subslice is formed by
2 x t pieces connected in parallel and N = Y ; n; subslices

I1EE PROCEEDINGS, Vol. 135, Pt. A, No. 3, MARCH 1988

are then connected in series. The formulas for the upper
bound (tubes) and lower bound (slices) of the resistance
are -

1
R, =— > (16)
x ()
i=1 =1
LA |
R =% 57 (17)
i=1 =
k=1 Txj

where r,; and r,; denote the resistances of subconductors
(per unit depth in 2-dimensional problems). Each sub-
conductor has a simple shape and its resistance may be

1

Fig. 2  Calculation of resistance between a pair of vertical electrodes
(a) System of construction lines defining a set of quadrilaterals giving two tubes
and three slices «

{b) Distribution of subtubes

{¢) Distribution of subslices
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approximated as

mean length

Py = o= X resistivity (18)
or
length o
Tej = m X resistivity (19)

An analogous argument holds for the capacitance of a
system. Here the subdivision into tubes produces the
lower bound, whereas slices give the upper bound of the
capacitance. We have, therefore,

C.=— L (20)
£ /(<)
Moo
C. =:;1 eTa 21)
l=1—C;

where C,; and C; denote the capacitances of component
pieces.

Calculation of an internal inductance involves working
in terms of the energy instead of the circuit parameters,
as already mentioned in Section 3. A possible approx-
imation leads to the following formulas:

for tubes:
AS)?
Z S 31 (22)
z; by;
for'slices:
ud lﬂc ]
Z Zx bl =+ BHyj + L Hiye (23)
=1k

where S is the total area of the system, AS; is the area
below the centre line of the ith subtube, ;; and b; are the
length and width of an element of a subtube, [; and by
are the length and width of an element of a slice, H, is
the value of the field at the bottom of the kth piece of
subslice j, and approximately

Ht.j,k—lbj,k—l =Hb,j.kbj,k (24)

where H, j,-, is the magnetic field at the top of the
(k — 1)th section, while

Hy o= lp + Hpp (25)

and the current density is assumed as constant through-
out the region.

Details about the derivation of eqns. 22 and 23 may be
found in Reference 3.

The simplicity of the final expressions (eqns. 16 to 25)
is very striking and should be contrasted with the com-
plexity of the normal finite-element formulation.
Although the TAS method, like indeed most other
methods, usually calls for more than one calculation to
achieve the desired accuracy, this should hardly matter in
view of this simplicity of computation.

5 The TAS software

The TAS program uses interactive graphics and full
colour displays. It works in menu-driven mode and most
operations are performed using a mouse. As the solution
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step involves only simple calculations, there are no
special memory requirements and the only limitation is
due to the graphic capabilities of a particular machine.
The structure of the TAS program is shown in Fig. 3.
Extensive ‘Help’ facilities are provided throughout the

[ introduction H main menu |-—-—| examples |
] ] transition -
help main || data el inPUL help
screen I screen . screen screen
files
U ——

o] o]

Fig.3 TAS prog}am flowchart

program. These include an introduction to the method
and examples (called from the ‘Main Menw’) as well as a
built-in manual in the form of two ‘Help’ programmes.
Particular solutions may be stored on a disc using ‘save’
and ‘load’ options.

Two programs handle most of the important oper-
ations. The ‘Input Screen’ provides an interactive data
input and mesh reshaping; the ‘Main Screen’ is used for
obtaining a solution and for postviewing.

Setting up a problem for solution involves three steps.
First, the geometric shape of the device to be analysed
(the external boundary of the problem) must be described
to the computer. Corner point locations are defined by
entering their co-ordinates through the keyboard and the
program responds by drawing the picture on the screen
(see the example in Fig. 4). Next, the decision is made

[ RO

o = 12 3§ 4 3 A2 18
L S e T RiS: Both:

Fig. 4  External boundary of the problem

about the number of tubes t and slices s to be used for
the solution, together with the information about addi-
tional subdivisions into subtubes and subslices (refer to
the example in Section 4). Finally, (t + 1) x (s + 1) con-
struction points are entered using a mouse. These con-
struction points define corners of all fundamental
quadrilaterals (as shown in Figs. 1 and 2a) and must be
specified in a particular sequence along tube boundaries
(see Figs. 5 and 6). To adjust the shape of tubes and slices
two options are available: ‘Move point” and ‘Construc-
tion line’. Repositioning construction points is the main
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tool for improving accuracy. Choosing a different direc-
tion of a diagonal construction line will also produce
minor adjustments to the field shape, as shown in Fig. 1.

AR

= = o W oo

. i
NI
Mo =t 0 e 1S

Mo =t 8 s 1AS: RHS: Both:

Fig. 6  Distribution of construction lines

The ‘Main Screen’ (Fig. 7) carries out calculations of
dual bounds of circuit parameters (R, C or L), controls
peripheral devices (disc drive, printer) and offers some
simple postviewing facilities. :

.57
=

 Mouse

LHS

Fig. 7  Calculation of internal inductance for the system of Fig. 6

The dialogue between the ‘Input Screen’ and the ‘Main
Screen’ may continue until a satisfactory solution has
been obtained. It can be stressed again, however, that any
change to the tube/slice distribution and the subsequent
solution require very little computational effort.
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6 Computing times and accuracy

As mentioned before, thanks to the simplicity of the com-
putational scheme, the solution times are remarkably
short: of the order of seconds on a personal computer.
Implications of this fact cannot be overestimated. Com-
bined with very modest requirements in terms of com-
puter capabilities it furnishes a truly low-cost CAD
facility. As an additional bonus, the provision of dual
bounds on solutions gives stricter control over a CAD
process.

No particular attention has to be paid initially to the
shape of both systems of tubes and slices, as the average
of the two bounds is likely to be within a few per cent of
the correct answer, even if the values themselves are
diverse. Both bounds can be improved at later-stages to
increase confidence in the solution, but insistence on
having a perfect solution at the outset of the process
would create an unnecessary burden.

7 Numerical example

Let us consider the capacitance per unit length for the
coaxial system of electrodes, as illustrated in Fig. 8.
4a

2a 2a

Fig. 8 Coaxial system of electrodes

Owing to symmetry only a quarter of the system needs to
be investigated. Three different levels of discretisation
with decreasing numbers of tubes and slices have been
used. The three resultant distributions of subtubes and
subslices are shown in Figs. 9, 10 and 11.

Fig. 9

Solution for 7 tubes and 6 slices

It may be instructive to notice that the upper bound of -
the capacitance, as given by ‘rectangular’ slices of Fig. 11,
can also be found in a simple analytical form:

L_1f° dx

C e Jo (a+2x)
giving C, =4C =729¢,. In general, however, such
simple explicit formulas will be difficult to derive, and
thus summations described in Section 4 are employed.

Table 1 summarises the results. The capacitance calcu-
lated using a finite-element program is also included as a
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Mouse | LHS:

Solution for 3 tubes and 2 slices

Solution for 2 tubes and 1 slice

Table 1: Capacitance per unit length

Program All values x g, Error Difference
inC,,, inbounds
Upper Lower C,, =
bound bound C,+C_
C, C_ 2
TAS 6.05 5.69 5.87 <05% 6%
7 tubes x 6 slices
TAS 6.73 5.01 5.87 <05% 29%
3 tubes x 2 slices
TAS 729 411 5.70 29% 54%
2 tubes x 1 slice
Finite elements (1600 elements) 5.87

benchmark value. In particular, the Table shows the
effect of decreasing the number of tubes and slices. As
might have been expected, the confidence limits given by
the two energy bounds deteriorate. What is very encour-
aging, however, is the fact that the average value remains
remarkably stable. Thus, if the global parameter is our
ultimate goal, we can safely compromise the local accu-
racy and still obtain a very accurate final answer.

8 TAS as a teaching aid

Undergraduate courses in electromagnetism typically
involve the learning of analytical and numerical methods
for attacking electric and magnetic boundary value prob-
lems. Very often, the relevance of the modelling concepts
to real physical systems and devices is only poorly appre-
ciated. The computational and graphics capabilities of
modern personal computers, when supported by appro-
priate software, provide relatively new opportunities to
help students to visualise the behaviour of fields, and
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therefore to understand difficult concepts. The tubes and
slices approach, in general, and the TAS program, in par-
ticular, seem to have much to commend them as an edu-
cational tool.

Most illustrative examples used in teaching contain a
very high degree of symmetry. The use of TAS for this
purpose immediately removes such constraints. What is
even more important, however, is that this is done under
very strict control of the user. For example, a student
could easily inquire into how a small departure from a
symmetrical system affects the solution.

Secondly, the effects of geometry on field structures
have traditionally been expressed in terms of relatively
advanced mathematical tools. Too often, the advanced
mathematics has tended to obscure rather than promote
physical insights. The TAS approach, on the other hand,
is physically well based because it uses the inherent
properties of the field. Indeed, the whole concept of
duality can be based entirely on physical description with
little reference to mathematics, although the two formula-
tions are, of course, consistent.

And last but not least, there is an element of active
involvement of the user in the TAS computational
process, more than supplying the data and looking at the
results. The student has to use his knowledge and engin-
eering judgment to initiate the process, and the program
responds by providing dual bounds as a feedback signal
for further improvements of the solution. This type of
truly interactive session puts the student in the role of a
designer rather than a passive observer.

9 Conclusions

TAS is the first computer graphics program, for calcu-
lating circuit parameters (R, L, C) of distributed systems,
based on the dual energy bounds approach known as the
method of tubes and slices. The range of applications is
still rather restricted, but the program has proved an effi-
cient and low-cost CAD tool.

The method of tubes and slices may be seen as an
alternative or complement to other well established
methods like finite elements, boundary elements, etc., and
is thought to be particularly suitable for teaching pur-
poses.
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