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Dual field modelling using tubes and slices
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TAS (Tubes And Slices) is the first computer inter-active graphics program, for
calculation of electric circuit parameters (R, L, C) of distributed systems, based
on the dual energy bounds approach known as the method of tubes and slices.
Pre- and post-processing are simple and computing times extremely short as the
method does not require a solution of a set of simultaneous equations. A useful
combination of tubes and slices with finite elements is also reported. The method
has been shown to be particularly suitable for teaching purposes.
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THE METHOD OF TUBES AND SLICES

The method of tubes and slices is based on a dual energy
formulation. Foundations of this approach may be
traced back to Maxwell, who in his famous treatise on
electricity and magnetism,! describes a variational
method applied to the calculation of the resistance of
conductors of varying cross-section. The method relies
on subdivision of the conductor into slices of equi-
potential surfaces and tubes separated by very thin
insulating sheets. The two calculations yield lower and
upper bounds of the resistance, respectively. The
approach is applicable to other types of vector fields
as demonstrated by Hammond.>™* In electrostatics
Mazxwell’s method of ‘slices’ is identical to the applica-
tion of the variational principle

((p— divD),6¢) = ((p + diveV),6¢) =0 (1)

where the brackets () indicate integration through the
region of interest, and his method of ‘tubes’ is identical
to the application of

((E + Vg),6D) = <(1D+ V¢),6D> =0
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The two functionals are equivalent to introducing
additional fictitious sources, divergence or curl respec-
tively. In capacitance problems where the energy can be
written as 1¢*C or $0%/C, upper bounds of the
capacitance are produced by the variational statement
of eqn (1) (slices) and lower bounds result from the use
of eqn (2) (tubes). Thus any potential map produces an
upper bound of capacitance and any flux map produces
a lower bound.

In magnetostatics the equilibrium conditions can be
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described by two variational principles

(VxH=J"),6A)=0 (3)
and
(VxA-B),H)=0 (4)

where J’ is the assigned current density. The first
variational principle assumes that B = curl A, so that
divB = 0 and thus there are no divergence sources for
the magnetic field. However, the expression V x H — J’
allows a small variation in V x H from its correct value,
so that the variation allows a small additional distribu-
tion of curl sources. The product of this small fictitious
current multiplied by the small variation of A gives an
energy variation of the second order of small quantities
which can be put to zero. '

The second variational principle assumes that
curlH =1J’, so that the curl sources of the magnetic
field are correct. However, the expression V x A — B
allows a small variation in the divergence sources. The
product of this small polarity distribution multiplied by
the small variation of H gives an energy variation of the
second order of small quantities which can be put to
zero. The field energy can be expressed either in terms of

the field vectors H and B by
U=3(B,H) (5)

or in terms of the interaction of the current sources with
the vector potential A by
U=1(J'"A)+i[l',A] (6)

where I’ is the assigned line density of current on the
surface, and the brackets [] represent integration over
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the closed boundary surface; I is related to J’ so as to
make the total current in the system zero. This isolates
the system and gives it a unique energy.

The first variational principle is applied to the energy
in terms of A and B = curl A by writing

U(A) = 6((J’,A) N —%<B,%>) 0

The second variation is therefore negative
§2U(A) <0 (8)

The second variational principle is applied to the energy
in terms of H by writing

SUMH) = 6(% (H, uH)) =0 9)
Hence
§*UH) >0 (10)

For simplicity p has been assumed constant and this
gives the factor 1. However, the method is applicable to
permeabilities which are single-valued functions of the
field-strength. The second variations show the possi-
bility of obtaining both upper and lower bounds for the
energy. The first variational principle treats the field as a
collection of tubes and the second one as a collection of
slices.

Similar arguments may be presented for a steady
current flow and calculation of resistance, where the
analogue of permittivity e or magnetic permeability y is
electric conductivity o. Extension of the method to
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Fig. 1. Circuit representation of tubes and slices in electro-
statics.

time-varying problems is possible and some interesting
suggestions may be found in Refs 5-7.

DUAL BOUND CALCULATIONS

In electrostatic problems, for a given field solution, the
flux map and the potential map may be represented
using connections of simple parallel-plate capacitors, as
demonstrated in Fig. 1. These component capacitors are
connected in parallel and in series, as shown in Fig. 2, to
form an equivalent circuit. Neither of the two
representations is exact due to the approximations
introduced. First, a number of subdivisions will
necessarily be finite. Secondly, the flux or potential
lines may not be in the correct position so that the
orthogonality of the two field maps is violated. This
second consideration is very important and leads to the
following equation for tubes

n
1
C™ = — 11
;Xm: I (11)
=1 GSij
whereas for slices:
Cr = — (12)

S5

j=
Thus dual bounds for the capacitance are established.
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Fig. 2. Series/parallel connections of component capacitors.
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For the steady current flow problems the resistance
may be calculated in an analogous way. Physically,
subdivision into tubes can be achieved by inserting thin
insulating sleeves between the tubes, which must always
increase the resistance unless the flow of current is
undisturbed. Very thin sleeves in the correct direction
everywhere will have negligible effect, but if such sleeves
are not strictly in the direction of current flow they will
increase the resistance. The undisturbed resistance is
therefore a minimum. Equally, the insertion of infinitely
conducting sheets for slices will reduce the resistance if
they disturb the flow. The undisturbed resistance is
therefore a maximum. Thus a division into tubes and
slices enables one to calculate the upper and lower
bounds for the unknown resistance. The appropriate
formulae are

Rt=—w—— ! (13)
e
=V
oS;

=1

\

for the tubes, and

R" = zn: : S, (14)

N
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Q

N
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—
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for the slices. For two-dimensional flow the area S
becomes a line.

Finally, in many electrical devices the magnetic circuit
is designed in such a way that very little mmf is absorbed
in the iron core and attention is focused on the shape
and dimensions of the air-gap. An unsaturated iron
surface may be assumed to have a constant magnetic
potential and thus becomes a slice. At the same time the
flux distribution may be described in terms of tubes.
Those tubes terminate on iron surfaces. One can work in
terms of permeance which is the analogue of conduc-
tance in the electric circuit. However, for problems
outside a current region the calculation of inductance is
reduced to a calculation of permeance. Thus for
calculating inductance, equations analogous to (11)
and (12) may be used-with u substituted for e. There is
now a system of equations for calculating circuit
parameters R, C or L for many practical problems
under static conditions.

Calculation of an internal inductance, on the other
hand, involves working in terms of energy instead of the
circuit parameters. A possible approximation technique
is suggested in Ref. 8.

The simplicity of the final expressions (eqns (11)—(14))
is very striking and should be contrasted with the
complexity of other numerical formulations, such as
finite elements. Although the TAS method, indeed
like many other methods, usually calls for more than
one calculation to achieve the desired accuracy, this
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Fig. 3. TAS program flowchart.
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should hardly matter in view of the simplicity of this
computation.

THE TAS PROGRAM

The tubes and slices method is essentially a geometrical
approach based not on solving equations but using
sketching of fields as a means of finding the solution.
Full advantage can be taken of inter-active graphics
capabilities of modern computers. An appropriate
computer package is described in Ref. 8.

In the TAS program the user is in constant interaction
with the field solution provided in the form of
approximate distributions of tubes and slices. These
distributions may be easily modified by moving
appropriate construction points and lines on the screen
and the system responds almost instantaneously with a
pair of bounded solutions given by simple calculations
of eqns (11)—(14). The bounded values give confidence
limits to the solution, whereas the orthogonality of the
two field patterns, or lack of it, sets a criterion for
further modifications.

The program works in a menu-driven mode and most
operations are performed using a mouse, although the
keyboard input is also available. The structure of the
TAS program is illustrated in Fig. 3. Two menu screens
handle most of the important operations. The input
screen provides inter-active data input and mesh
reshaping; the main screen is used for obtaining the
solution and for post-viewing. Extensive help facilities
are provided throughout the program. These include an
introduction to the method and animated examples, as
well as a built-in manual in the form -of help and hint
screens. Due to the simplicity of the computational
scheme, the solution times are remarkably short: of the
order of seconds on a personal computer.

NUMERICAL EXAMPLE

A tubular capacitor is shown in Fig. 4. Due to symmetry
only a quarter of the system needs to be investigated (see
Fig. 5). A possible set of ‘construction lines’ and
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Fig. 4. A tubular capacitor.
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Fig. 5. Computational model of the capacitor.

‘quadrilaterals’ is demonstrated in Fig. 6. Such quadri-
laterals (each with a diagonal line) are used to match a
particular shape of system boundaries. These construc-
tion lines and quadrilaterals are at the same time used to
generate tubes and slices of Fig. 7. The two distributions
are also shown in Figs 8 and 9. Each tube and slice may
be further subdivided into subtubes and subslices to
improve the accuracy of computation. The whole
process is fully automated, although the user may wish
to change manually some distributions.

An even simpler solution may be found by ‘forcing’
the flux to go straight across the space between
electrodes, and thus making two particularly simple
tubes. For the potential map ‘rectangular’ slices are
assumed. These are demonstrated in Fig. 10.
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Fig. 6. Construction lines.
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Fig. 7. Distribution of tubes and slices.
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Fig. 8. Distribution of tubes.

This system is suitable for hand calculations. Thus for
the two tubes one can write

4 2 '
C_=§+’6=.0'833X6 (F/m) (15)
and for the slices we have
I 1 b 1
CFT3 A5 6B T TT
1-5 2 15 2 15 2
1
+—-———————~——9 +g (16)
1:5 2
so that
CT=1682x¢ (F/m) (17)
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Fig. 9. Distribution of slices.
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Fig. 10. Simple tubes (a) and slices (b) for hand calculations.

Taking the average yields
ct+cC~
2

Finally, an improved subdivision may be achieved by
adding more construction lines to the basic distribution
of Fig. 6 and repositioning them so that a more
orthogonal system is obtained. An example of such an
improved distribution is shown in Fig. 11.

The results are summarized in Table 1 and compared
with a finite-element solution. It is interesting to notice
that although the improved solution exhibits improved
orthogonality, the average value of the capacitance is
hardly changed and even for the very crude hand

Cave = =1258 x €+337% (F/m) (18)

Table 1. Summary of results

Hand Coarse Improved Finite
calculation distribution distribution elements

C (F/m) 1258 xe 13845xe 13954 xe 13979 x¢
(per unit length)

Confidence +33-7% +11-1% +50% +0-32%
limits

Error ~10% —0-96% —-0-18% —

(against FE)

calculation shows remarkable accuracy. Nevertheless,
the smaller error band of the improved solution gives
additional confidence to the user.

TUBES/SLICES AND FINITE ELEMENTS

The well-known and popular finite-élement method
divides regions into small elements (typically triangles
in 2D problems) and minimizes the energy functional to
obtain field approximation. The approach is substan-
tially different from the tubes and slices method because
the elements must always be considered as a complete
set. This leads to the solution of a set of simultaneous
equations, which is generally a cumbersome process.
However, the calculations can be greatly accelerated by
using approximate solutions provided by tubes and
slices.

The TAS program has a built-in finite-element
module. This combination of the two techniques has
been found very useful. First, an approximate field
distribution is calculated by the tube/slice process and
then the accuracy is improved by means of a finite-
element procedure. A much smoother distribution is
obtained as shown in Fig. 12. It should also be noted
that the finite-element method has been adapted to
produce upper and lower bounds to the unknown exact
values. '

Fig. 11. Improved distribution of tubes and slices.
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Fig. 12. Finite-element solution for the case of Fig. 4.
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Fig. 13. A basic FE mesh.

The two methods complement each other. The
construction lines and quadrilaterals from the TAS
calculations are now used as a basis of a FE mesh as
shown in Fig. 13. This mesh will typically be refined
automatically to improve accuracy, as demonstrated in
Fig. 14. The values at all nodes will be first calculated
from the TAS solution so that a relatively small number
of iterations will be required for the solution to
converge. It is also worth noting that the mesh is very
regular and that most mesh lines follow the direction of
the field or the direction of equipotential surfaces.

TAS AS A TEACHING AID

The method stimulates the student’s visual imagination
and has been found very effective in introductory
courses on fields as well as in advanced courses for
design engineers. The method is based on an approach
which describes the field in terms of an energy
distribution having a geometrical structure. This
enables the solution to be found without a direct
reference to the partial differential equations which
describe the field. Thus the subsequent discretization
and solution of a set of simultaneous algebraic
equations is not required. The structure allows the
region to be subdivided into orthogonal systems of tubes
and slices and the system energy parameters, such as
resistance, inductance or capacitance, may be calculated
as upper and lower bounds giving confidence limits to
the solution. If the two bounds are close the local field
will be correct. This can be checked visually by looking
at the orthogonality locally.

Various teaching aspects of using the TAS approach
have been discussed in Ref. 9.

Fig. 14. A refined FE mesh.
CONCLUSION

The Tubes and Slices method in general, and the TAS
program in particular, have been found helpful in field
computation as an alternative or complement to other
well established methods. TAS is based on a geometrical
approach and uses the sketching of fields as a means of
finding the solution. The range of applications is still
rather restricted but the program has proved an efficient
and low-cost CAD tool. It has also been found
extremely useful in teaching.
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