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Abstract

This paper compares the two approaches based on
pole sensitivity and the complex stability radius mea-
sures for optimizing the closed-loop stability robust-
ness of digital controllers implemented with finite
word length (FWL). Design details and related opti-
mization procedures are derived for the two methods.
An example is used to verify the theoretical analy-
sis and to illustrate the two designs for determining
optimal FWL controller realizations.
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1 Introduction

The current controller design methodology often as-
sumes that the controller is implemented exactly,
even though in reality a control law can only be re-
alized in finite precision. It is now well-known that a
designed stable control system may achieve a lower
than predicted performance or even become unstable
when the control law is implemented with a finite-
precision device. The FWL effect on the closed-loop
stability depends on the controller realization struc-
ture, and this property can be utilized to select con-
troller realization in order to improve the FWL sta-
bility robustness. Currently, two approaches exist for
determining the optimal controller realizations under
the criteria of the pole-sensitivity measure [1]-[6] and
the complex stability radius measure [7],[8].

In the first approach, a suitable pole sensitivity mea-
sure is used to quantify the FWL effect, leading to
a nonlinear optimization problem to find an opti-
mal FWL controller realization. Efficient global op-
timization techniques to solve for this optimization
problem are readily available [3],[4],[9]. Fialho and
Georgiou [8] used the complex stability radius mea-
sure to formulate an optimal FWL controller realiza-
tion problem that can be represented as a special H
norm minimization problem and solved for with the
method of linear matrix inequality (LMTI) [10],[11].
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Figure 1: Discrete-time closed-loop control system.

This paper provides a comparative study on these
two approaches for determining optimal FWL con-
troller realizations!.

2 Problem formulation

Consider the discrete-time closed-loop control sys-
tem shown in Fig. 1, where the linear time-invariant
plant P is described by

x(k + 1) = Ax(k) + Be(k) 1
y(k) = Cx(k) M)

which is completely state controllable and observable
with A € R™*", B € R"*? and C € R7*"; and the
digital output-feedback controller C' is described by

v(k +1) = Fv(k) + Gy(k) 9
u(k) = Jv(k) + My(k) 2)

with F € R™*™ G € R™*1, J € RP*™ and M €
RP*4. Assume that a realization (Fo,Go,Jo, Mg)
of C' has been designed. It is well-known that the
realizations of C' are not unique. All the realizations
of C form the realization set:

S={(F,G,JM):F=T""'F,T,G =T 'Gy,
J=J,T,M = M} (3)

IFialho and Georgiou’s ACC99 paper [8] only contained
the two-page summary. The material for the complex stability
radius approach presented at this paper are our interpretation.



where T € R™*™ is any real-valued non-singular
matrix. Let wg = Vec(F), where Vec() denotes the
column stacking operator. Denote

wy WF WF,
. A W A W
W = : = G , Wo = Go (4)
w3 wJ,
N WM WM,

where N = (m + p)(m + ¢). We also refer to w as
a realization of C. The stability of the closed-loop
system in Fig. 1 depends on the poles of the matrix

Aw) =

A + BMC BJ
GC F

el e

All the different realizations w achieve exactly the
same set of closed-loop poles if they are implemented
with infinite precision. Since the closed-loop system
is designed to be stable, the eigenvalues

INi(A(w))| = |Mi(A(wo))| < 1, Vi€ {1,...,m+n}(6)

When a w is implemented with a fixed-point proces-
sor, it is perturbed into w + Aw due to the FWL
effect. Each element of Aw is bounded by +e/2,

IAW[lo 2 max  |Aw;| < ¢/2 (7)
i€

{17...7N}

For a fixed point processor of B; bits, let By = B; +
By, where 2Bi is a “normalization” factor to make
the absolute value of each element of 2~ 5w no larger
than 1. Thus, B; are bits required for the integer part
of a number and By are bits used to implement the
fractional part of a number. It can be seen that

e=2""1, (8)

With the perturbation Aw, \;(A(w)) is moved to
Xi(A(w+Aw)). It is critical to know when the FWL
error will cause closed-loop instability. That is, we
would like to know the largest open “sphere” in Aw
space, within which closed-loop remains stable. The
size or radius of this sphere is defined by:

o (W) 2 inf{||Aw]||» : A(W + Aw) is unstable} (9)

The larger po(w) is, the larger FWL error the closed-
loop stability can tolerate. Let B™® be the smallest
word length, when used to implement w, can guar-
antee the closed-loop stability. B™™ is generally un-
known. An estimate of B™" can be obtained by

B = B; + Int[ log, (o(w))] — 1 (10)

where the integer Int[z] > z. It can easily be seen
that the closed-loop system remains stable if w is

implemented with a fixed-point processor of at least
Bmin Moreover, pio(w) is a function of the controller
realization w, we could search for an optimal realiza-
tion that maximizes po(w).

However, it is not known how to compute ug(w). A
solution is to derive a lower bound of the stability
measure uo(w), which is computationally tractable.
This in effect defines a smaller but known stable
“sphere” in the controller perturbation space. The
closer a lower bound is to po(w), the better. The
pole sensitivity and the complex stability radius mea-
sures can both be regarded as such lower bounds.

3 Pole sensitivity approach

Roughly speaking, how easily the FWL error Aw
can cause a stable control system to become unsta-
ble is determined by how close |/\Z(A(w))| are to 1
and how sensitive they are to the controller parame-
ter perturbations. This leads to the following FWL
stability measure [6]

>

. 1— [ Ai(A(w))|
min — 7!
i€{1, -, m+n} a;(w)

(11)

pp (W)

0| Mi(Aw))| H 12)

A
ai(w) = Z H owx

X=F,G,J,M

For a vector x € C*%, the 1-norm ||x||; is defined as
A S
el =Y |l (13)
i=1

It can be proved that under certain conditions g, (w)
is a lower bound of po(w), that is, p,(w) < po(w).

The stability measure p,(w) is computationally
tractable, as it can be shown that:

8| Ni(A(w))| 0
T:[O I)Li(w) [I] (14)
9 [Ni(Aw))] cr

—aa L0 IlLi<w>[ 0} (1)
8| Ni(A(w))| 0
T:[BT 07 ] Li(w) [I] (16)
—M —B" OT]Li(W)[ 0 ] (17)
with

Liw) = Re [} (A(w|>>y: (A(w)x] (A(w))] 1)



where x;(A(w)) and y;(A(w)) are the right and re-
ciprocal left eigenvectors related to the \;(A(w)), *
denotes the conjugate operation, T the transpose op-
erator, and Re[-] the real part. Similar to (10), an

estimate of B™™ can be provided with y,(w) by
BEin = B, 1 Tnt|— log (up (w)] — 1 (19)

Given an initial design wg, the optimal FWL con-
troller realization that maximizes the stability mea-
sure (11) is defined as

Wopt,p = AIg MAX i, (W) (20)

and the optimization procedure to find a Wqpy,, can
readily be derived. Vi € {1,---,m + n}, partition

ta) =[50 )
iR =[0G 00 .
wherg Xi71( A (Wo)),}’i,l (A(wo)) eCcn, Xi,2(A(W0))a
vi2(A(wo)) € C™. It is easily seen from (5) that
x(Aw) = | G ] )
_ _ ym(A(W )

yi(A(w)) = {TTyi72(A(3vo)) 24
From (14)—(17), we have
0 |/\2(A(W))| _ -

OF - TTLi,z,z(WO)T g (25)
0 |>\1(A(W))| _

oG = TTLis;(wo)CT (26)
MRS _ g, gt @)
0 |Aiéf;4<W>>| B"Li 11 (wo)C” (28)
where
. ~ Re [A;‘(A(Wo))}’{j (A(WO))XZI(A(WO))]

i.51(wo) = |Xi (A (wo))|

Define the following cost function:

1 — [ Xi(A(wo))|
i€{l,---,m+n} Oél(W)

>

f(T) = pp(w)  (30)
The optimal realization problem (20) can then be
posed as the following optimisation problem:
Top,p = arg _max f(T) (31)
o
Although f(T) is non-smooth and non-convex, effi-
cient global optimisation methods exist for solving
for this kind of optimisation problem. With Ty 5,
we can obtain the optimal realization wopt p.

4 Stability radius approach

Let OF denote the unit circle in the complex
plane, and &(U) the maximal singular value of
the complex-valued matrix U. For a stable ma-
trix A e ¢cvtm)x(ntm) je |\ (A)] < 1 for i =
1,---,n+m, the complex stability radius of a matrix
triple (A, B, C) e C(ntm)x(ntm) s o(ntm)x(ptm) y
Clatm)x(ntm) ig defined as

re(A,B,C) = inf{o(A): A e cPrmx(atm) 44
A +BAC is unstable} (32)

re(A,B,C) = . - (33)
sup & (C(zI - A)*lB)
z€E0F

Define the transfer function matrix G = C(zI —

A)~'B and the Hoo-norm of G [11]:

1G|oo = sup 7 (é(zx - A)—lﬁ) (34)

Then,

re(A,B,C) = —— (35)
1G]l

Let v > 0 be a given scalar. According to [11] (page
158), the linear time-invariant discrete-time closed-
loop transfer function G satisfies |Gls < 7 if and
only if there exists a matrix X > 0 such that

X 0]_[A B][x o][A B]" (36)
0 I C ollo I||C o

Let Ay be the closed-loop system matrix for an
initial controller realization (Fg, Go,Jo,Mj). For

(F = TingT,G = TﬁlGo,J = J()T,M = M[)),
consider the controller perturbation

M J
G F

] +A (37)

where A is complex-valued. With (37), the closed-
loop system matrix (5) becomes

A= G oh]als
+ []3 I?JA“; I?n} (38)

where I; denotes the s X s identity matrix. Denote

o T
B= |G p | erommen (40)



G {(5 I?n} € Rla+m)x(ntm) (41)

G(T)=C (zI - A(T)) B (42)

Then an alternative optimal FWL realization prob-
lem is defined as
. 1 1

m%xrc(A(T),B, C) = m = ; (43)

Consider how to solve for the optimal realization
problem (43). From (36), ||G(T)||e < 7 if and
only if there exists a positive definite matrix X €
Rntm)x(ntm) gych that:

{Pl I, ] > M, {Pl I, ]Mg’ (44)

A 5 N .
subject to
I, 0 I, O
Pl_[o T]X[O TT}>0 (45)
and
P, =TT >0 (46)
where
A, B
NE 0

The inequality (44) with the constraints Py > 0 and
P> > 0 is an LMI problem [10],[11], and numerical
algorithms for solving for this kind of problems are
readily available. Therefore, the optimal value of
1 can be obtained together with the corresponding
P, opt and Pygp. This leads to

1/2
Topt,r = PZ/Opt (48)
and

I I
Xope = | " ]p { . ] 19
opt [ Toplt,r topt T0p7£7r ( )

With Topt,r, the corresponding optimal controller re-
alization Wy, can be obtained.

Unlike the pole-sensitivity measure (11), the com-
plex stability radius measure does not have a direct
relationship with the word length, and a statistical
word length was adopted to circumvent this difficulty
[7]. Under certain assumptions, it can be shown that
the closed-loop system is stable with probability no
less than 0.9777, provided that the elements of A are
bounded absolutely by

r(W) = —— (50)

\/%+4\/§

where N is the nonzero elements in A. The measure
(50) can be regarded as a lower bound of po(w), and
the statistical word length formula using the stabil-
ity measure (50) leads to the following minimum bit
length estimate

BY™ = Bj + Int[—log, (ur(w))] — 1 (51)

5 A numerical example

Both the pole sensitivity and complex stability ra-
dius approaches involve some approximations in esti-
mating the true stability measure po(w). Therefore,
they are conservative measures. As conditions are
different for them to be lower bounds of ug(w), it
is difficult to say which measure is less conservative
in estimating the true minimum bit length. It will
be case dependent. In particular, the corresponding
optimal controller realizations wopt,, and wopt, ,» will
be different. An advantage of the complex stability
radius measure is that the corresponding optimiza-
tion problem can be posed as the LMI problem (44),
and this LMI problem is easier to solve for than the
nonlinear optimization problem (31).

A numerical example was used to compare the
two approaches. The example was a torsional vi-
bration control system given in [14]. Discretizing
the continuous-time plant with the sampling period
0.001 yielded the discrete-time plant model:

|'0.0 0.0 1.0 '|
A= [ 1.0 0.0 —2.97686

|’ 1.0 ]
, B=1 0.0
0.0 1.0 2.97686 J 0.0

C =[ 024863 0.24621 0.24143 |

and the initially designed controller:

0.0 —0.33333 1.0
Fo = { 1.0 1.33333 ] Go = [ 0.0 } ’

Jp =] —1.20982 —0.41278 |, M, = [1.35120]

With this initial controller realization wgq, the two
optimal controller realizations wWopt,, and Wops,» ob-
tained by solving for the two optimizations problem
(31) and(44), respectively, are:

F _ 0.71295 —0.88451
°optp T _(0.12320  0.62038 |’

G [ 0.62934
opt:r = | (0.33823 |’

Jopip = [ —0.62540 —2.41321 |, Myp;, = [1.35120]

and

g _ [ 107316 0.16668
Pt = | _0.32475 0.26017 |°
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Figure 2: Comparison of unit impulse response for the infinite-precision controller implementation wigea with
those for the two 6-bit implemented controller realizations Wopt,, and Wopg -

0.01716

Gopt.r = { —0.48073

Joptr = [ 1.24139 2.51388 |, My, = [1.35120]

For the initial and two optimal controller realiza-
tions, the true minimal bit lengths B™" that can
guarantee the closed-loop stability were also deter-
mined using a computer simulation method. Table 1
compares the values of the two stability measures
tp and p,, corresponding estimated minimum bit
lengths and true minimum bit lengths for the initial
and two optimal controller realizations.

We also computed the unit impulse response of the
closed-loop control system when the controllers were
the infinite-precision implemented wy and various
FWL implemented realizations. Notice that any re-
alization w € S, implemented in infinite precision,
will achieve the exact performance of the infinite-
precision implemented wg, which is the designed con-
troller performance. For this reason, the infinite-
precision implemented wy is referred to as the ideal
controller realization wigea1- Fig. 2 compares the unit
impulse response of the plant output for the ideal
controller wigea with those of two 6-bit implemented
Wopt,p ad Wopt,-. For this example, although wopt,

and Wop, » are different, they both have similar good
FWL characteristics in fixed-point implementation.

6 Conclusions

In this paper, we have compared the two approaches
for obtaining optimal FWL controller realizations
based on the pole sensitivity and complex stabil-
ity radius measures, respectively. Design procedures
for the both methods are provided. Although the
motivations for these two approaches are different,
they can be regarded as two methods of approxi-
mating a true but computationally intractable FWL
closed-loop stability measure. An example is used to
compare the two design procedures, and the results
show that for the example tested the two approaches
produce two different optimal controller realizations
which have similar good FWL characteristics.
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realization Iy Bmin rc Ly puwin | pmin
Wy 9.8513e-4 10 5.3470e-3 2.4434e-3 9 7
Wopt,p 8.9321e-3 8 2.0181e-2 9.2219e-3 8 6
Wopt,r 5.02743e-3 9 2.63050e-2 | 1.20205e-2 8 6

Table 1: Comparison of the two stability measures, corresponding estimated minimum bit lengths and true
minimum bit lengths for the initial and two optimal controller realizations.
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