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nAbstra
tThis paper 
ompares the two approa
hes based onpole sensitivity and the 
omplex stability radius mea-sures for optimizing the 
losed-loop stability robust-ness of digital 
ontrollers implemented with �niteword length (FWL). Design details and related opti-mization pro
edures are derived for the two methods.An example is used to verify the theoreti
al analy-sis and to illustrate the two designs for determiningoptimal FWL 
ontroller realizations.Keywords|�nite word length, 
losed-loop stability,
omplex stability radius, pole sensitivity.1 Introdu
tionThe 
urrent 
ontroller design methodology often as-sumes that the 
ontroller is implemented exa
tly,even though in reality a 
ontrol law 
an only be re-alized in �nite pre
ision. It is now well-known that adesigned stable 
ontrol system may a
hieve a lowerthan predi
ted performan
e or even be
ome unstablewhen the 
ontrol law is implemented with a �nite-pre
ision devi
e. The FWL e�e
t on the 
losed-loopstability depends on the 
ontroller realization stru
-ture, and this property 
an be utilized to sele
t 
on-troller realization in order to improve the FWL sta-bility robustness. Currently, two approa
hes exist fordetermining the optimal 
ontroller realizations underthe 
riteria of the pole-sensitivity measure [1℄-[6℄ andthe 
omplex stability radius measure [7℄,[8℄.In the �rst approa
h, a suitable pole sensitivity mea-sure is used to quantify the FWL e�e
t, leading toa nonlinear optimization problem to �nd an opti-mal FWL 
ontroller realization. EÆ
ient global op-timization te
hniques to solve for this optimizationproblem are readily available [3℄,[4℄,[9℄. Fialho andGeorgiou [8℄ used the 
omplex stability radius mea-sure to formulate an optimal FWL 
ontroller realiza-tion problem that 
an be represented as a spe
ialH1norm minimization problem and solved for with themethod of linear matrix inequality (LMI) [10℄,[11℄.
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ĈFigure 1: Dis
rete-time 
losed-loop 
ontrol system.This paper provides a 
omparative study on thesetwo approa
hes for determining optimal FWL 
on-troller realizations1.2 Problem formulationConsider the dis
rete-time 
losed-loop 
ontrol sys-tem shown in Fig. 1, where the linear time-invariantplant P̂ is des
ribed by�x(k + 1) = Ax(k) +Be(k)y(k) = Cx(k) (1)whi
h is 
ompletely state 
ontrollable and observablewith A 2 Rn�n, B 2 Rn�p and C 2 Rq�n; and thedigital output-feedba
k 
ontroller Ĉ is des
ribed by�v(k + 1) = Fv(k) +Gy(k)u(k) = Jv(k) +My(k) (2)with F 2 Rm�m, G 2 Rm�q, J 2 Rp�m and M 2Rp�q . Assume that a realization (F0;G0;J0;M0)of Ĉ has been designed. It is well-known that therealizations of Ĉ are not unique. All the realizationsof Ĉ form the realization set:S = f(F;G;J;M) : F = T�1F0T;G = T�1G0;J = J0T;M =M0g (3)1Fialho and Georgiou's ACC99 paper [8℄ only 
ontainedthe two-page summary. The material for the 
omplex stabilityradius approa
h presented at this paper are our interpretation.



where T 2 Rm�m is any real-valued non-singularmatrix. Let wF = Ve
(F), where Ve
(�) denotes the
olumn sta
king operator. Denotew = 24 w1...wN 35 4= 264 wFwGwJwM 375 ; w0 4= 264 wF0wG0wJ0wM0 375 (4)where N = (m + p)(m + q). We also refer to w asa realization of Ĉ. The stability of the 
losed-loopsystem in Fig. 1 depends on the poles of the matrix�A(w) = �A+BMC BJGC F �= � I 00 T�1 � �A(w0) � I 00 T � (5)All the di�erent realizations w a
hieve exa
tly thesame set of 
losed-loop poles if they are implementedwith in�nite pre
ision. Sin
e the 
losed-loop systemis designed to be stable, the eigenvaluesj�i( �A(w))j = j�i( �A(w0))j < 1; 8i 2 f1; : : : ;m+ng(6)When a w is implemented with a �xed-point pro
es-sor, it is perturbed into w + �w due to the FWLe�e
t. Ea
h element of �w is bounded by ��=2,k�wk1 4= maxi2f1;���;Ng j�wij � �=2 (7)For a �xed point pro
essor of Bs bits, let Bs = Bi +Bf , where 2Bi is a \normalization" fa
tor to makethe absolute value of ea
h element of 2�Biw no largerthan 1. Thus, Bi are bits required for the integer partof a number and Bf are bits used to implement thefra
tional part of a number. It 
an be seen that� = 2�Bf ; (8)With the perturbation �w, �i( �A(w)) is moved to�i( �A(w+�w)). It is 
riti
al to know when the FWLerror will 
ause 
losed-loop instability. That is, wewould like to know the largest open \sphere" in �wspa
e, within whi
h 
losed-loop remains stable. Thesize or radius of this sphere is de�ned by:�0(w) 4= inffk�wk1 : �A(w +�w) is unstableg (9)The larger �0(w) is, the larger FWL error the 
losed-loop stability 
an tolerate. Let Bmins be the smallestword length, when used to implement w, 
an guar-antee the 
losed-loop stability. Bmins is generally un-known. An estimate of Bmins 
an be obtained byB̂mins0 = Bi + Int[� log2(�0(w))℄� 1 (10)where the integer Int[x℄ � x. It 
an easily be seenthat the 
losed-loop system remains stable if w is

implemented with a �xed-point pro
essor of at leastB̂mins0 . Moreover, �0(w) is a fun
tion of the 
ontrollerrealizationw, we 
ould sear
h for an optimal realiza-tion that maximizes �0(w).However, it is not known how to 
ompute �0(w). Asolution is to derive a lower bound of the stabilitymeasure �0(w), whi
h is 
omputationally tra
table.This in e�e
t de�nes a smaller but known stable\sphere" in the 
ontroller perturbation spa
e. The
loser a lower bound is to �0(w), the better. Thepole sensitivity and the 
omplex stability radius mea-sures 
an both be regarded as su
h lower bounds.3 Pole sensitivity approa
hRoughly speaking, how easily the FWL error �w
an 
ause a stable 
ontrol system to be
ome unsta-ble is determined by how 
lose ���i( �A(w))�� are to 1and how sensitive they are to the 
ontroller parame-ter perturbations. This leads to the following FWLstability measure [6℄�p(w) 4= mini2f1;���;m+ng 1� ���i( �A(w))���i(w) (11)with�i(w) 4= XX=F;G;J;M




� ���i( �A(w))���wX 




1 (12)For a ve
tor x 2 Cs, the 1-norm kxk1 is de�ned askxk1 4= sXi=1 jxij (13)It 
an be proved that under 
ertain 
onditions �p(w)is a lower bound of �0(w), that is, �p(w) � �0(w).The stability measure �p(w) is 
omputationallytra
table, as it 
an be shown that:� ���i( �A(w))���F = [0 I ℄Li(w) �0I � (14)� ���i( �A(w))���G = [0 I ℄Li(w) �CT0 � (15)� ���i( �A(w))���J = [BT 0T ℄Li(w) �0I � (16)� ���i( �A(w))���M = [BT 0T ℄Li(w) �CT0 � (17)withLi(w) = Re ���i ( �A(w))y�i ( �A(w))xTi ( �A(w))����i( �A(w))�� (18)



where xi( �A(w)) and yi( �A(w)) are the right and re-
ipro
al left eigenve
tors related to the �i( �A(w)), �denotes the 
onjugate operation, T the transpose op-erator, and Re[�℄ the real part. Similar to (10), anestimate of Bmins 
an be provided with �p(w) byB̂minsp = Bi + Int[� log2(�p(w))℄� 1 (19)Given an initial design w0, the optimal FWL 
on-troller realization that maximizes the stability mea-sure (11) is de�ned aswopt;p = argmaxw2S �p(w) (20)and the optimization pro
edure to �nd a wopt;p 
anreadily be derived. 8i 2 f1; � � � ;m+ ng, partitionxi( �A(w0)) = �xi;1( �A(w0))xi;2( �A(w0)) � (21)yi( �A(w0)) = �yi;1( �A(w0))yi;2( �A(w0)) � (22)where xi;1( �A(w0));yi;1( �A(w0)) 2 Cn, xi;2( �A(w0)),yi;2( �A(w0)) 2 Cm. It is easily seen from (5) thatxi( �A(w)) = � xi;1( �A(w0))T�1xi;2( �A(w0)) � (23)yi( �A(w)) = � yi;1( �A(w0))TTyi;2( �A(w0)) � (24)From (14){(17), we have� ���i( �A(w))���F = TTLi;2;2(w0)T�T (25)� ���i( �A(w))���G = TTLi;2;1(w0)CT (26)� ���i( �A(w))���J = BTLi;1;2(w0)TT (27)� ���i( �A(w))���M = BTLi;1;1(w0)CT (28)whereLi;j;l(w0) = Re h��i ( �A(w0))y�i;j( �A(w0))xTi;l( �A(w0))i���i( �A(w0))�� ;j; l = 1; 2 (29)De�ne the following 
ost fun
tion:f(T) 4= mini2f1;���;m+ng 1� j�i( �A(w0))j�i(w) = �p(w) (30)The optimal realization problem (20) 
an then beposed as the following optimisation problem:Topt;p = arg maxT2Rm�mdet(T)6=0 f(T) (31)Although f(T) is non-smooth and non-
onvex, eÆ-
ient global optimisation methods exist for solvingfor this kind of optimisation problem. With Topt;p,we 
an obtain the optimal realization wopt;p.

4 Stability radius approa
hLet �E denote the unit 
ir
le in the 
omplexplane, and ��(U) the maximal singular value ofthe 
omplex-valued matrix U. For a stable ma-trix ~A 2 C(n+m)�(n+m), i.e. j�i( ~A)j < 1 for i =1; � � � ; n+m, the 
omplex stability radius of a matrixtriple ( ~A; ~B; ~C) 2 C(n+m)�(n+m) � C(n+m)�(p+m) �C(q+m)�(n+m) is de�ned asrC( ~A; ~B; ~C) = inff��(�) :� 2 C(p+m)�(q+m) and~A+ ~B� ~C is unstableg (32)From [12℄,[13℄, we haverC( ~A; ~B; ~C) = 1supz2�E �� � ~C(zI� ~A)�1 ~B� (33)De�ne the transfer fun
tion matrix Ĝ = ~C(zI �~A)�1 ~B and the H1-norm of Ĝ [11℄:kĜk1 = supz2�E �� � ~C(zI� ~A)�1 ~B� (34)Then,rC( ~A; ~B; ~C) = 1kĜk1 (35)Let 
 > 0 be a given s
alar. A

ording to [11℄ (page158), the linear time-invariant dis
rete-time 
losed-loop transfer fun
tion Ĝ satis�es kĜk1 < 
 if andonly if there exists a matrix X > 0 su
h that�X 00 
2I � > � ~A ~B~C 0 ��X 00 I �� ~A ~B~C 0 �T (36)Let �A0 be the 
losed-loop system matrix for aninitial 
ontroller realization (F0;G0;J0;M0). For(F = T�1F0T;G = T�1G0;J = J0T;M = M0),
onsider the 
ontroller perturbation�M JG F �+� (37)where � is 
omplex-valued. With (37), the 
losed-loop system matrix (5) be
omes�A = � In 00 T�1 � �A0 � In 00 T �+ �B 00 Im �� �C 00 Im � (38)where Is denotes the s� s identity matrix. Denote~A(T) = � In 00 T�1 � �A0 � In 00 T � 2 R(n+m)�(n+m)(39)~B = �B 00 Im � 2 R(n+m)�(p+m) (40)



~C = �C 00 Im � 2 R(q+m)�(n+m) (41)Ĝ(T) = ~C�zI� ~A(T)��1 ~B (42)Then an alternative optimal FWL realization prob-lem is de�ned asmaxT rC( ~A(T); ~B; ~C) = 1minT kĜ(T)k1 = 1� (43)Consider how to solve for the optimal realizationproblem (43). From (36), kĜ(T)k1 < 
 if andonly if there exists a positive de�nite matrix X 2R(n+m)�(n+m) su
h that:24P1 Iq P2 35 >M
 24P1 Ip P2 35MT
 (44)subje
t toP1 = � In 00 T �X � In 00 TT � > 0 (45)andP2 = TTT > 0 (46)whereM
 = � �A0 ~B1
 ~C 0 � (47)The inequality (44) with the 
onstraints P1 > 0 andP2 > 0 is an LMI problem [10℄,[11℄, and numeri
alalgorithms for solving for this kind of problems arereadily available. Therefore, the optimal value of� 
an be obtained together with the 
orrespondingP1 opt and P2 opt. This leads toTopt;r = P1=22 opt (48)andXopt = � In T�1opt;r �P1 opt � In T�Topt;r � (49)With Topt;r, the 
orresponding optimal 
ontroller re-alization wopt;r 
an be obtained.Unlike the pole-sensitivity measure (11), the 
om-plex stability radius measure does not have a dire
trelationship with the word length, and a statisti
alword length was adopted to 
ir
umvent this diÆ
ulty[7℄. Under 
ertain assumptions, it 
an be shown thatthe 
losed-loop system is stable with probability noless than 0:9777, provided that the elements of� arebounded absolutely by�r(w) = rCrN3 + 4qN45 (50)

where N is the nonzero elements in �. The measure(50) 
an be regarded as a lower bound of �0(w), andthe statisti
al word length formula using the stabil-ity measure (50) leads to the following minimum bitlength estimateB̂minsr = Bi + Int[� log2(�r(w))℄ � 1 (51)5 A numeri
al exampleBoth the pole sensitivity and 
omplex stability ra-dius approa
hes involve some approximations in esti-mating the true stability measure �0(w). Therefore,they are 
onservative measures. As 
onditions aredi�erent for them to be lower bounds of �0(w), itis diÆ
ult to say whi
h measure is less 
onservativein estimating the true minimum bit length. It willbe 
ase dependent. In parti
ular, the 
orrespondingoptimal 
ontroller realizations wopt;p and wopt;r willbe di�erent. An advantage of the 
omplex stabilityradius measure is that the 
orresponding optimiza-tion problem 
an be posed as the LMI problem (44),and this LMI problem is easier to solve for than thenonlinear optimization problem (31).A numeri
al example was used to 
ompare thetwo approa
hes. The example was a torsional vi-bration 
ontrol system given in [14℄. Dis
retizingthe 
ontinuous-time plant with the sampling period0:001 yielded the dis
rete-time plant model:A = 24 0:0 0:0 1:01:0 0:0 �2:976860:0 1:0 2:97686 35 ; B = 24 1:00:00:0 35 ;C = � 0:24863 0:24621 0:24143 �and the initially designed 
ontroller:F0 = � 0:0 �0:333331:0 1:33333 � ; G0 = � 1:00:0 � ;J0 = � �1:20982 �0:41278 � ; M0 = [1:35120℄With this initial 
ontroller realization w0, the twooptimal 
ontroller realizations wopt;p and wopt;r ob-tained by solving for the two optimizations problem(31) and(44), respe
tively, are:Fopt;p = � 0:71295 �0:88451�0:12320 0:62038 � ;Gopt;p = � 0:629340:33823 � ;Jopt;p = � �0:62540 �2:41321 � ; Mopt;p = [1:35120℄andFopt;r = � 1:07316 0:16668�0:32475 0:26017 � ;
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Figure 2: Comparison of unit impulse response for the in�nite-pre
ision 
ontroller implementation wideal withthose for the two 6-bit implemented 
ontroller realizations wopt;p and wopt;r.Gopt;r = � 0:01716�0:48973 � ;Jopt;r = � 1:24139 2:51388 � ; Mopt;r = [1:35120℄For the initial and two optimal 
ontroller realiza-tions, the true minimal bit lengths Bmins that 
anguarantee the 
losed-loop stability were also deter-mined using a 
omputer simulation method. Table 1
ompares the values of the two stability measures�p and �r, 
orresponding estimated minimum bitlengths and true minimum bit lengths for the initialand two optimal 
ontroller realizations.We also 
omputed the unit impulse response of the
losed-loop 
ontrol system when the 
ontrollers werethe in�nite-pre
ision implemented w0 and variousFWL implemented realizations. Noti
e that any re-alization w 2 S, implemented in in�nite pre
ision,will a
hieve the exa
t performan
e of the in�nite-pre
ision implemented w0, whi
h is the designed 
on-troller performan
e. For this reason, the in�nite-pre
ision implemented w0 is referred to as the ideal
ontroller realizationwideal. Fig. 2 
ompares the unitimpulse response of the plant output for the ideal
ontrollerwideal with those of two 6-bit implementedwopt;p and wopt;r. For this example, although wopt;prealization �p B̂minsp rC �r B̂minsr Bminsw0 9.8513e-4 10 5.3470e-3 2.4434e-3 9 7wopt;p 8.9321e-3 8 2.0181e-2 9.2219e-3 8 6wopt;r 5.02743e-3 9 2.63050e-2 1.20205e-2 8 6Table 1: Comparison of the two stability measures, 
orresponding estimated minimum bit lengths and trueminimum bit lengths for the initial and two optimal 
ontroller realizations.

and wopt;r are di�erent, they both have similar goodFWL 
hara
teristi
s in �xed-point implementation.6 Con
lusionsIn this paper, we have 
ompared the two approa
hesfor obtaining optimal FWL 
ontroller realizationsbased on the pole sensitivity and 
omplex stabil-ity radius measures, respe
tively. Design pro
eduresfor the both methods are provided. Although themotivations for these two approa
hes are di�erent,they 
an be regarded as two methods of approxi-mating a true but 
omputationally intra
table FWL
losed-loop stability measure. An example is used to
ompare the two design pro
edures, and the resultsshow that for the example tested the two approa
hesprodu
e two di�erent optimal 
ontroller realizationswhi
h have similar good FWL 
hara
teristi
s.A
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