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Abstract

The graphcolouring problemis a widely studied
combinatorialoptimisationproblemwith a highly
symmetric solution space. Marny heuristicsand
search algorithms are unattractve for general
solution, i.e. they generate poor approximate
solutions, becausethey were originally designed
for specific probleminstances. Population-based
approacheske geneticalgorithmsdo not provide
a goodalternatve becausef the dangerof recom-
bining good individuals from different regions of
the searchspace(having different symmetries)to
produce poor offspring. This paper presentsa
geneticalgorithmthat breaksthe symmetryof the
graphcolouring problem by fixing the coloursof
the nodesin a large clique of the graph. Experi-
mentshave beenconductedn both structuredand
randomgraphsto demonstrateéhe effectivenessof
theapproach.

1 Introduction

The ability to find quick androbust solutionsto hardoptimi-
sationproblemshasbeenappreciatedor longtime sincethere
are a vastnumberof practicalapplications. For example,a
timetabling problemcan be solved using a graphcolouring
one (de Werra 1997, 1999) as well as others. This paper
focuseson the applicationof geneticalgorithmsto the graph
colouring problem. Heuristicslike tabu search(Hertz and
de Werra 1987) or simulatedannealing(Johnson,Aragon,
McGeoch, and Scheron 1991) have been applied on this
domainwith somesuccessOtherapproachescludeDSatur
(Brélaz1979) and a greedyalgorithm (Turner 1988) which
have now beenoutperformedy the useof hybrid techniques
basednmaximalindependensetyCulbersorandLuo 1996;
GalinierandHao 1999). None of themtakesimplicitly into
accountone of the main featuresof the problem: namely
the presencef large symmetriesn the solutionspace.That
is, thereexist a large numberof differentsolutionswith the
samestructureand the samecost— suchthat one solution
can be mappedonto anothersimply by permutationof the
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colour labels. This is not a desirablefeaturewhena search
hasto be applied. Ideally, we would like to have distinct
representationfor differentsolutions althoughthisapproach
is not always feasiblewhenthe spaceto be searcheds not
completelyknown.

This paperintroducesa geneticalgorithm that breaksthe
symmetry of the graph colouring problem by fixing the
coloursof the nodesin a large clique of the graph. Exper

imentshave beenconductedon both randomand structured
graphs. Section2 illustratesthe type of symmetriesof the
graphcolouring problemwhile Section3 givessomeexpla-

nationsof their effectson geneticalgorithms. The symmetry
breakingalgorithmis introducedin Section4 andresultsof

its applicationarereportedin Section5. We find that perfor

manceis improved relative to a standardGA althoughthe

approachdoesnot yet outperformthevery besttechniqueso
far reported. Section6 discusseshe limits of this approach
andconcludes.

2 Symmetriesin Graph Colouring

Let G(V, E) beagraphwith vertex setV andedgesetE. Let
alsoK = {1, 2,..., k} beasetof colours.Thevertex graph
colouring problem(VGCP)consistsof finding a partition of
the graphG into & colour classessuchthat the numberof
edgeswith bothendpointsn thesameclassis minimised.We
will referto suchedgesasbad The smallestvalueof & for
which G hasno badedgess calledthe chromaticnumberof
thegraph.

Assumingthe graphG hasn vertices(or nodes)the number
II(n, k) of possiblek partitions(k < n) with an arbitrary
numberof verticesin eachclassis givenby:
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asreportedn Even(1973,pp.56-69).In caseg(a), aclassmay
be emptywhile, in case(b), all & classesqeedto beused.In
bothcasesthe orderof thecolourclassess notrelevant. The
sizeof the solutionspacemakesan exhaustve searcimpos-
sible but, what is even less helpful, thereis a high degree



of symmetryfor II(n, k). In fact, for ary given partition,

thereexist k! equivalentoneswhich areobtainedby asimple
renamingof the labels of eachclass. Let us assumethat
solutionsarerepresentetly sequencesf elementontheset
K, whereeachelementepresentthe coloursof anodein the
graph(we assumehereis an orderingof the setV). So, for

example,the sequenceél14321’ assignsolour1 to thefirst,

secondandlastnodeof a graphwith six vertices,colour4 to

thethird oneandsoon. Thesequencé442134’ represenan

equivalentsolutionfor the samegraphsincethefirst, second
andlast verticesare still groupedtogethey regardlessof the
nameof thecolourallocatedo them. Thedegreeof symmetry
grows exponentiallywith the cardinalityof thesetK . Hence,
it might be possibleto improve the searchby taking thisinto

account.

TheVGCPis known to be NP-completeandsomefeatureof

its solutionsspacehave beeninvestigatedoy Grover (1992)
while CheesemarKenefsly, and Taylor (1991)found thatit

is possibleto measurethe hardnessof problemin termsof

the valuesof problem-dependerparameter For the graph
colouringproblem,this parameteis representety the edge
probability p, which is definedasp = % In other
words, there exists a phasetransition betweeninstancesof
the problemthat are easyto solve and thosethat are very
comple.

3 Genetic Algorithmsand Symmetric Spaces

Genetic algorithms (GAs) have been successfullyapplied
to a variety of domains but the performanceof the
core technique (i.e. with swap/flip mutations and one
point/uniform crossw@er) on the VGCP is quite poor
unlessthey arehybridisedwith more specialisechrocedures
(Marino, Prigel-Bennettand Glass1999; GalinierandHao
1999). Themajordrawvbackhasbeenidentifiedastherecom-
bination operator since the relevant information about the
partition of the graphfor eachparentis often lost at this
stage.Figurel givesanexampleof the disruptiongenerated
by the recombinatiorof two perfectsolutions. The offspring
turns out to be worse that its parents,mainly becausehe
compositionof the colour classess not properly inherited,
reflectinga mismatt of the colourlabels. This phenomenon
generate®n averagesolutionswith a higherassociateaost
while keepinga high diversity in the population. Despite
the fact that the best-foundsolution can be retainedacross
the generationsusing elitism, the corvergencerate of the
algorithmremainsso low that good solutionsmay never be
found.

It was obsened that the label mismatch could be elimi-
natedby selectingan appropriatepermutationof one of the
solutions(for more detailsseeMarino, Priigel-Bennettand
Glass(1999)). In this way, the partition of the graphwould
not be changedbut the cost of the offspring would not be
worsethanthat of its parents. An issueto be addresseds
thereduction/eliminatiorof suchsymmetrieswhich cantrap
the searchin local optima. For eachpossiblepartition, the
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Figure 1. Exampleof disruptionduring the recombination
of two perfectsolutions. Colour clashesare shavn by bold
edges.

solution spacecontainsk! other equivalentoneswhich are
simply differentlyrepresentedThe actualnumberof distinct
solutionsin termsof structureis givenby w = O(ke™),
which is still exponentiallylarge even for small valuesof n
andk.

4 Symmetry-breaking Approach

In this section, we describe a method that breaks the
symmetry of the graph colouring problem by fixing the
coloursof somenodes As pointedoutin theprevioussection,
astandardross@eroperatolis notappropriaten thisdomain
becausethere is very little improvementof the solutions.
Marino (2000a, 2000b) obsened that cyclic permutations
improve the performanceof GAs on this domain. Exper
imental resultsshaved that GAs applying cyclic permuta-
tions evolve populationswhere almostall individuals have
the colour of the pivot nodefixed (the pivot nodeis the one
usedto determineghe offsetof the permutation).This feature
reducesthe searchspaceby one dimension. Would it be
beneficial,then,if the coloursof more nodescould be fixed
somehwv? If the size of the searchspaceis reduced,the
searchis morelikely to producegoodresults. Furthermore,
if thecolouringof a subgraphs fixed,the numberof symme-
triesof the problemvanishes.

Tofix thecolourof somenodesn agraph,severalissueseed
to beaddressednamely how mary nodesareto beallocated
afixedcolourandwhich ones?Giventhatthecolourationcan
useatmostk colours,onemaydecideto freezetheallocation
of k verticesof the graph. Verticescould be eitherrandomly
selecteddr choseraccordingto somepredefinectriteria (for
example, the first £ nodesin the graphrepresentation).A
randomselectionis obviously not a goodchoicesincetotally
disconnectediodesmaybeallocateddistinctcolourswithout
ary further possibility of change. The benefitsof fixing a
priori the colouring of someverticesare maximalwhenall
verticesareconnectedo eachother i.e. whenthey constitute



aclique of theoriginal graph. Unfortunatelyit is notalways
possibleto find a clique of sizek in a givengraph(in which
casethe chromaticnumbermaybesmaller).

We decidedto fix the coloursof the verticesin a clique of
thegraphof sizeat mostk andevolve the colourationfor the
othernodes. An immediateconsequencef this approachs
thatthe symmetrydescribedn Section2 is broken because
two solutionswill representhe samepatrtition of the graph
if andonly if they consistof the samesequencef elements.
Thereforethesearchof GAsis confinedto a spaceof smaller
dimension A first steptowardsits applicationis to identify a
cligue of sizeatmostk for theinputgraphby usingaroutine
basedon that of Turner(1988). All nodesin the clique are
then assignedlifferent coloursand marked to avoid further
modifications. Mutations and crossaer apply to all other
verticesof thegraphbut thosemarked.

For this application, GA operatorshave been modified

to improve performanceon the graph colouring problem.
Standardnutationsarereplacedy moreappropriateehanges
of the colour of a selectednode. This approachhasbeen
already shavn successfulon this domain (Marino 2000a)
since the cost of the solution cannotget worse when this

operatoris applied. The random selection of a typical

mutation operatoris replacedby a greedyselectionof the

colour which mostly reduceghe costof the whole solution.

This procedurecan be implementedwith limited computa-
tional expense. In fact, it is possibleto determinethe new

costof a solutionwith a differentallocationfor a vertex by

checkingadjacentverticesof the mutatedoneonly. Recom-
binationis appliedusinga greedyuniform crosseer. Once
again,a local searchmechanisnwasembeddedn a genetic
operatorto enhancdts performance.Whentwo individuals
are mated,the offspring inheritsthe colouring of the clique

andall commongeneswith no changesWhentwo different
valuesare encounteredthe offspring recevves the one from

parentwith the leastassociatedocal cost. This costrepre-
sentghenumberof badedgesn thesubgraphinducedby the

adjacenterticesof the specifiedgene.

5 Experimental Results

The approachdescribedin the previous section has been
tested on a selection of random and structured graphs.
Theseare availablevia f t p from file i nst ances. ht m

at URL http://mat.gsia.cnmu. edu/ COLOR/ . The
aim is to use GAs to generategood approximationsfor
generalgraphswhile keepingthe algorithm as simple as
possible. Instancesrepresentbenchmarkproblems with
known chromatichnumber exceptfor the DSJC ones(from
i nstances. ht nl ), for which simulationshave beenset
using a number of colours that correspondgo their best
known solution. This choice facilitates a qualitatve and
guantitatve measureof the results found. Retention of
the bestsolution is achieved by the applicationof elitism.
Individualsare uniformly selectedor mutationsandrecom-
binationto avoid prematurecorvergenceof the population.

The aim of the simulationsis to minimise a cost function
which countsthe numberof bad edges. Thus, a costvalue
of zeroindicatesthat the input graphcan be colouredusing
k colours. Table 1 reportsthe numberof verticesand edges
of the selectedgraphstogetherwith the numberof colours
they have beentestedagainst.

Graphs vertices| edges| k
DSJC250. 5. col 250 | 31366 28
DSJC1000. 5. col 1000 | 499652 | 83
fl at 300.20.0. col 300 | 21375 20
fl at 300.28.0. col 300 | 21695| 28
| e450_15c. col 450 | 16680| 15
| e450_25c. col 450 | 17343| 25
anna. col 138 493 | 11
honer. col 561 1629 | 13
gueen8_12. col 64 728 | 12
gueen9.9. col 81 2112 10
nyci el 5. col 95 755 | 6
nyci el 7. col 191 2360| 8

Tablel: Namesof graphinstancesogethemith theirnumber
of vertices,edgesandnumberof coloursusedfor the simula-
tions.

For eachinstancamentionedn thetable,a setof five simula-
tionswith 50 initial randomsolutionsanddifferentseedwas
run. Preliminarytestswith populationsof greedysolutions
underperformedh mary casedbecausef prematurecorver-
gence of the population. This option was, therefore,
discarded. Moreover, the algorithmsturnedout to be quite
robust againstrandomnessavoiding, thus, the needfor a
larger numberof runs. The evolutionary processerminates
either when a solution at cost zero is found or when the
numberof generationgxceedsl0,000.This valuerepresents
aboundon the computationatime allocatedo thealgorithm
to find a solution.Giventhe particularnatureof the operators
used,mutationsare appliedwith a rate of p,, = 0.5 while
crosswoer takesplacewith probability p. = 0.1. The choice
of the populationsizeandof p,,, andp,. is not arbitrarybut it
representshe bestcombinationof theseparametersn a set
of preliminarytests.

Figure 2 reports experimental results for three different
graph instances,which are representatie of the different
performancebehaiour obsened. Several variantsof GAs
are mentionedin the rest of the paper A GA with

greedy mutations and the clique approachis referred to
as CLIQUEGA as opposedto a standardGA with swap
mutationsand one point cross@er, namedSGA. A genetic
algorithm using cyclic permutationis identified as CMGA.

Resultsreveal that CLIQUEGA significantly outperformsa
standardSGA in all cases. This is not surprisingsincewe
usedmoredirectedoperatorsTheseoperatorgi.e.thegreedy
mutation and uniform crosseer) add local searchmecha-
nismsto increasethe exploitation of the searchspace. All

algorithms failed to producethe colouring of the graphs
(with the specifiednumberof colours)in mary cases.Some
instancesseemto be easierto solve than others. In fact,
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Figure 2: Averageresults for the bestindividual of the
populationon DSJC250. 5. col , queen_8_12. col and
fl at _300_28. col usingdifferentGAs.

a graphwith a lower numberof edges(i.e. with a smaller
associate@dgeprobability) is easierto colour sincethereis
alargernumberof possiblepartitionsthatsatisfythe require-
mentsof theproblem.Furthermorethephasedransitionof the
graphcolouring problemoccurswhenthe value of the edge
probability is between7/n and8/n (Eiben, van der Hauw
andvanHemert.J.l. 1998).

According to these figures, only the instancesnamed
| e450_25c. col and anna. col have associatededge
probabilitiesin that rangewhile most of them have values
above it and are, therefore, hard to solve. Surprisingly
enough Figure2 reportsa betterperformanceof the CMGA
in all cases. Why is that? The CMGA neitherbreaksthe
symmetryof thegraphcolouringproblemnor guaranteeary
fitnessimprovementafterrecombinationput it still produces
bettersolutions. Analysis of the simulationdatarevealsthat
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Figure 3: Average population standard deviation
in CLIQUEGA, CMCLIQUEGA, CMGA and SGA
on DSJC250. 5. col queen_8_.12. col and
fl at 300.28. col .

the diversity of the populationfor the CLIQUEGA is negli-
gible after 40 generationsand this preventsfurther signif-
icantimprovementsof the solutions. Figure 3 compareghe
averagepopulatiorstandardleviationfor thethreealgorithms
mentionedlusafourthone,the CMCLIQUEGA, which will
belaterdiscussed.

The CMGA keepsvariety in the populationuntil corver-
gence. Why doesthis not happenwith the CLIQUEGA?
A majorcauseof corvergein the populationis the combined
action of the mutation and cross@er. In both cases,the
operatorsapply a local searchwherethe selectionis always
donein a greedyway. Although this is also the casefor
the CMGA, the CLIQUEGA shaws a worse performance
becauseof the marked nodes. When a fairly good solution
is found, the algorithmis very likely to reproducet, evenas



aresultof a crosseer, whenthe otherparentsolutioncannot
contribute differently. In fact, sincethe CLIQUEGA breaks
the symmetry of the graph colouring problem, there exist

lesspossibilitiesfor mixing differentsolutionswhile keeping
the cost (if not lowering it). The absenceof duplicated
genotypedor the samesolutionsseemsnot to be beneficial
on the basisof the experimentalresults. All GA variants
with embeddedocal searchmechanisn(i.e. not the SGA)

presenta strong exponential reduction of the costin the

first 20 generationsvhich is followed by virtually no further
improvement. A completeexplanationof this phenomenotis

still notavailablebut onehypothesiss thatthealgorithmgets
trappedn alargeorbit of agroupactingon the setof colours
andthereis alow probabilityto escapdrom thatorbit.

6 Discussion

The symmetrybreakingalgorithmintroducedin the previous
sectionsloesnotguarante¢hatthereexistsonly onesolution
with a given cost. In fact, there might well exist different
partitionsof the graphthatcorrespondo a similar cost. This
canusually happenwhenthe graphhaslower degreenodes
which can be allocatedto different colour classeswithout
involving ary changen thecost.

A comparatie measuref the performancef the algorithms
discussedn Section5 is not easybecauseof the formu-
lation of the VGCP usedfor the investigation. However,
the numberof coloursusedfor the simulationscorresponds
to the best-knevn solution for randomgraphs(the classis
representelly thetwo DSJCinstancesyvith edgeprobability
p = 0.5 andthe chromaticnumberof the graphsin the other
cases. The symmetrybreakingapproachdoesnot perform
very well in ary of the instancesselectedwhile shaving a
similar behaiour to the CMGA. In orderto establisha better
evaluationwe shouldfind whatis the mininumvalueof & for
whichthe CLIQUEGA findsa colouringof thegraphsat cost
zero. This investigationhasnot beendone becauseve are
moreinterestedn speedingip the searclprocesgatherthan
finding the bestpossiblesolution. For a similar reasonwe
did not performsimulationswith a large numberof genera-
tions (like for examplethe onereportedby GalinierandHao
(1999))sincethe efficiengy of the algorithmwould be signif-
icantly lowerin this case.

To overcomethe problemof low populationdiversity in the
CLIQUEGA, we decidedto embedthe same mechanism
adoptedfor the CMGA in the crosswer, namely cyclic

permutation. In a previous study Marino (2000b)it was
obsered that they provide an easy and computationally
inexpensve way of keepinga reasonablediversity in the
population as well as having a good performance. The
additionof cyclic permutationdo the CLIQUEGA doesnot
affecttheverticeswith fixed colourationthough.We decided
to apply the schemeonly to the restof the graph. Eachtime

a crosswer takes place,a cyclic permutationof the colours
is appliedto one of the parentswith the aim of harmonising
the similarity of the partition generated. This processwill,
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Figure 4: Comparisonof the averagebestindividuals for
CLIQUEGA and CMCLIQUEGA on DSJC250. 5. col ,
gueen_8_12. col andfl at _300_28. col .

therefore,attemptto solve the graphcolouring problemfor
the set of unmarled verticesof the original one. The fact
that someverticeshave alreadybeencolouredis taken into
accountonly when the algorithmsevaluatesthe cost of the
solutionsfound. In principle, this approachshouldbe more
disruptive than the original CLIQUEGA since we cannot
guaranteahat the colouring of the subgraphnducedby the
setof unmarled nodesmatcheghe restof the graphwithout
generatingadditionalbadedges.

Figure 4 comparesthe performanceof the CLIQUEGA
againstthe CMCLIQUEGA. The latter outperformsthe
formerin almostall cases.The mainreasonfor the slightly
betterresultsis the higherlevel of populationdiversityin the
CMCLIQUEGA ascanbeobsenedin Figure3. Therefore,
therole of diversityis crucialin algorithmswith highselectve
operators(i.e. mutation and recombination)that tend to



reducethe differencesbetweenindividuals. Unfortunately
diversityis notasufficientconditionto achiese agoodperfor
mance asthe SGA shows, but it playsanimportantrole.

The applicationof GAs to problemswith large symmetries
seemstill to leave mary openquestionsincethebreakingof
the symmetriegdid not by itself leadto remarkablemprove-
ments. We expectedbetterresultsthanthoseobtained. The
CMGA still remainsthe best techniqueof those studied
here. A completeunderstandingf its underpinningmecha-
nismesis likely to contribute to the developmentof fasterand
more appropriatetechniquesfor graph colouring problems.
Symmetrybreakingin this context offers a valuableground
for further investigationsthat aim both at refining this
approachandat providing a bettersearchmethodfor spaces
with a high degreeof symmetry
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