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Abstract

The graphcolouring problemis a widely studied
combinatorialoptimisationproblemwith a highly
symmetric solution space. Many heuristicsand
search algorithms are unattractive for general
solution, i.e. they generate poor approximate
solutions, becausethey were originally designed
for specificproblem instances. Population-based
approacheslike geneticalgorithmsdo not provide
a goodalternative becauseof thedangerof recom-
bining good individuals from different regions of
the searchspace(having different symmetries)to
producepoor offspring. This paper presentsa
geneticalgorithmthat breaksthe symmetryof the
graphcolouring problemby fixing the coloursof
the nodesin a large clique of the graph. Experi-
mentshave beenconductedon bothstructuredand
randomgraphsto demonstratethe effectivenessof
theapproach.

1 Introduction

Theability to find quick androbustsolutionsto hardoptimi-
sationproblemshasbeenappreciatedfor longtimesincethere
area vastnumberof practicalapplications.For example,a
timetablingproblemcanbe solved usinga graphcolouring
one (de Werra 1997, 1999) as well as others. This paper
focuseson theapplicationof geneticalgorithmsto thegraph
colouring problem. Heuristicslike tabu search(Hertz and
de Werra 1987) or simulatedannealing(Johnson,Aragon,
McGeoch, and Schevon 1991) have been applied on this
domainwith somesuccess.OtherapproachesincludeDSatur
(Brélaz1979) anda greedyalgorithm (Turner1988)which
havenow beenoutperformedby theuseof hybrid techniques
basedonmaximalindependentsets(CulbersonandLuo1996;
Galinier andHao 1999). Noneof themtakesimplicitly into
accountone of the main featuresof the problem: namely,
thepresenceof largesymmetriesin thesolutionspace.That
is, thereexist a large numberof differentsolutionswith the
samestructureand the samecost – such that one solution
can be mappedonto anothersimply by permutationof the

colour labels. This is not a desirablefeaturewhena search
has to be applied. Ideally, we would like to have distinct
representationsfor differentsolutions,althoughthisapproach
is not always feasiblewhen the spaceto be searchedis not
completelyknown.

This paper introducesa geneticalgorithm that breaksthe
symmetry of the graph colouring problem by fixing the
coloursof the nodesin a large clique of the graph. Exper-
imentshave beenconductedon both randomandstructured
graphs. Section2 illustratesthe type of symmetriesof the
graphcolouringproblemwhile Section3 givessomeexpla-
nationsof their effectson geneticalgorithms.Thesymmetry
breakingalgorithmis introducedin Section4 andresultsof
its applicationarereportedin Section5. We find thatperfor-
manceis improved relative to a standardGA althoughthe
approachdoesnot yetoutperformtheverybesttechniquesso
far reported.Section6 discussesthe limits of this approach
andconcludes.

2 Symmetries in Graph Colouring

Let
���������
	

beagraphwith vertex set
�

andedgeset
�

. Let
also �
����� ����������������� beasetof colours.Thevertex graph
colouringproblem(VGCP)consistsof finding a partition of
the graph

�
into
�

colour classessuchthat the numberof
edgeswith bothendpointsin thesameclassis minimised.We
will refer to suchedgesasbad. The smallestvalueof

�
for

which
�

hasno badedgesis calledthechromaticnumberof
thegraph.

Assumingthegraph
�

has � vertices(or nodes),thenumber� � � ����	 of possible
�

partitions(
� � � ) with an arbitrary

numberof verticesin eachclassis givenby:

� � � �!��	 � "# $ �&% (a)'()+*-, �/. � 	 '10 ' )32 �4�5.768	 % (b)
(1)

asreportedin Even(1973,pp.56–69).In case(a),aclassmay
beemptywhile, in case(b), all

�
classesneedto beused.In

bothcases,theorderof thecolourclassesis not relevant.The
sizeof thesolutionspacemakesanexhaustivesearchimpos-
sible but, what is even lesshelpful, there is a high degree



of symmetryfor
� � � �!��	 . In fact, for any given partition,

thereexist
�:9

equivalentones,whichareobtainedby asimple
renamingof the labels of eachclass. Let us assumethat
solutionsarerepresentedby sequencesof elementson theset� , whereeachelementrepresentsthecoloursof anodein the
graph(we assumethereis anorderingof theset

�
). So, for

example,thesequence‘114321’ assignscolour � to thefirst,
secondandlastnodeof a graphwith six vertices,colour ; to
thethird oneandsoon. Thesequence‘442134’ representan
equivalentsolutionfor thesamegraphsincethefirst, second
andlast verticesarestill groupedtogether, regardlessof the
nameof thecolourallocatedto them.Thedegreeof symmetry
growsexponentiallywith thecardinalityof theset � . Hence,
it might bepossibleto improve thesearchby takingthis into
account.

TheVGCPis known to beNP-completeandsomefeaturesof
its solutionsspacehave beeninvestigatedby Grover (1992)
while Cheeseman,Kenefsky, andTaylor (1991)found that it
is possibleto measurethe hardnessof problemin termsof
the valuesof problem-dependentparameter. For the graph
colouringproblem,this parameteris representedby theedge
probability < , which is definedas <
� =?> @�>%&A+%�BDC/E . In other
words, thereexists a phasetransitionbetweeninstancesof
the problemthat are easyto solve and thosethat are very
complex.

3 Genetic Algorithms and Symmetric Spaces

Genetic algorithms (GAs) have been successfullyapplied
to a variety of domains but the performance of the
core technique (i.e. with swap/flip mutations and one
point/uniform crossover) on the VGCP is quite poor
unlessthey arehybridisedwith morespecialisedprocedures
(Marino, Prügel-Bennett,andGlass1999;Galinier andHao
1999).Themajordrawbackhasbeenidentifiedastherecom-
bination operator, since the relevant information about the
partition of the graph for eachparent is often lost at this
stage.Figure1 givesanexampleof thedisruptiongenerated
by therecombinationof two perfectsolutions.Theoffspring
turns out to be worse that its parents,mainly becausethe
compositionof the colour classesis not properly inherited,
reflectinga mismatch of thecolour labels.This phenomenon
generateson averagesolutionswith a higherassociatedcost
while keepinga high diversity in the population. Despite
the fact that the best-foundsolution can be retainedacross
the generationsusing elitism, the convergencerate of the
algorithmremainsso low that goodsolutionsmay never be
found.

It was observed that the label mismatchcould be elimi-
natedby selectingan appropriatepermutationof oneof the
solutions(for moredetailsseeMarino, Prügel-Bennett,and
Glass(1999)). In this way, the partition of the graphwould
not be changedbut the cost of the offspring would not be
worsethan that of its parents. An issueto be addressedis
thereduction/eliminationof suchsymmetries,which cantrap
the searchin local optima. For eachpossiblepartition, the

FIRST PARENT SECOND PARENT

CHILD SOLUTION

Figure 1: Exampleof disruptionduring the recombination
of two perfectsolutions. Colour clashesareshown by bold
edges.

solution spacecontains
�F9

other equivalent oneswhich are
simply differentlyrepresented.Theactualnumberof distinct
solutionsin termsof structureis givenby G AH%�I ' E'�J �LK �4�&MN%�	 ,
which is still exponentiallylarge even for small valuesof �
and
�
.

4 Symmetry-breaking Approach

In this section, we describe a method that breaks the
symmetry of the graph colouring problem by fixing the
coloursof somenodes.As pointedoutin theprevioussection,
astandardcrossoveroperatoris notappropriatein thisdomain
becausethere is very little improvementof the solutions.
Marino (2000a, 2000b) observed that cyclic permutations
improve the performanceof GAs on this domain. Exper-
imental resultsshowed that GAs applying cyclic permuta-
tions evolve populationswherealmostall individuals have
the colour of the pivot nodefixed (the pivot nodeis the one
usedto determinetheoffsetof thepermutation).This feature
reducesthe searchspaceby one dimension. Would it be
beneficial,then,if the coloursof morenodescould be fixed
somehow? If the size of the searchspaceis reduced,the
searchis morelikely to producegoodresults. Furthermore,
if thecolouringof asubgraphis fixed,thenumberof symme-
triesof theproblemvanishes.

To fix thecolourof somenodesin agraph,severalissuesneed
to beaddressed:namely, how many nodesareto beallocated
afixedcolourandwhichones?Giventhatthecolourationcan
useatmost

�
colours,onemaydecideto freezetheallocation

of
�

verticesof thegraph.Verticescouldbeeitherrandomly
selectedor chosenaccordingto somepredefinedcriteria(for
example, the first

�
nodesin the graphrepresentation).A

randomselectionis obviouslynot a goodchoicesincetotally
disconnectednodesmaybeallocateddistinctcolourswithout
any further possibility of change. The benefitsof fixing a
priori the colouringof someverticesaremaximalwhenall
verticesareconnectedto eachother, i.e.whenthey constitute



a cliqueof theoriginal graph.Unfortunately, it is not always
possibleto find a cliqueof size

�
in a givengraph(in which

casethechromaticnumbermaybesmaller).

We decidedto fix the coloursof the verticesin a clique of
thegraphof sizeat most

�
andevolve thecolourationfor the

othernodes.An immediateconsequenceof this approachis
that the symmetrydescribedin Section2 is broken because
two solutionswill representthe samepartition of the graph
if andonly if they consistof thesamesequenceof elements.
Therefore,thesearchof GAsis confinedto aspaceof smaller
dimension.A first steptowardsits applicationis to identify a
cliqueof sizeat most

�
for theinputgraphby usinga routine

basedon that of Turner(1988). All nodesin the clique are
thenassigneddifferentcoloursandmarked to avoid further
modifications. Mutations and crossover apply to all other
verticesof thegraphbut thosemarked.

For this application, GA operatorshave been modified
to improve performanceon the graph colouring problem.
Standardmutationsarereplacedby moreappropriatechanges
of the colour of a selectednode. This approachhasbeen
already shown successfulon this domain (Marino 2000a)
since the cost of the solution cannotget worse when this
operator is applied. The random selection of a typical
mutation operatoris replacedby a greedyselectionof the
colour which mostly reducesthe costof the whole solution.
This procedurecan be implementedwith limited computa-
tional expense. In fact, it is possibleto determinethe new
costof a solutionwith a differentallocationfor a vertex by
checkingadjacentverticesof themutatedoneonly. Recom-
bination is appliedusinga greedyuniform crossover. Once
again,a local searchmechanismwasembeddedin a genetic
operatorto enhanceits performance.Whentwo individuals
aremated,the offspring inherits the colouringof the clique
andall commongeneswith no changes.Whentwo different
valuesareencountered,the offspring receives the one from
parentwith the leastassociatedlocal cost. This cost repre-
sentsthenumberof badedgesin thesubgraphinducedby the
adjacentverticesof thespecifiedgene.

5 Experimental Results

The approachdescribedin the previous section has been
tested on a selection of random and structured graphs.
Theseare available via ftp from file instances.html
at URL http://mat.gsia.cmu.edu/COLOR/. The
aim is to use GAs to generategood approximationsfor
generalgraphswhile keeping the algorithm as simple as
possible. Instancesrepresentbenchmarkproblems with
known chromaticnumber, except for the DSJCones(from
instances.html), for which simulationshave beenset
using a number of colours that correspondsto their best
known solution. This choice facilitates a qualitative and
quantitative measureof the results found. Retention of
the bestsolution is achieved by the applicationof elitism.
Individualsareuniformly selectedfor mutationsandrecom-
binationto avoid prematureconvergenceof thepopulation.

The aim of the simulationsis to minimise a cost function
which countsthe numberof badedges. Thus,a cost value
of zeroindicatesthat the input graphcanbe colouredusing�

colours. Table1 reportsthe numberof verticesandedges
of the selectedgraphstogetherwith the numberof colours
they havebeentestedagainst.

Graphs vertices edges
�

DSJC250.5.col 250 31366 28
DSJC1000.5.col 1000 499652 83
flat300 20 0.col 300 21375 20
flat300 28 0.col 300 21695 28
le450 15c.col 450 16680 15
le450 25c.col 450 17343 25
anna.col 138 493 11
homer.col 561 1629 13
queen8 12.col 64 728 12
queen9 9.col 81 2112 10
myciel5.col 95 755 6
myciel7.col 191 2360 8

Table1: Namesof graphinstancestogetherwith theirnumber
of vertices,edgesandnumberof coloursusedfor thesimula-
tions.

For eachinstancementionedin thetable,asetof fivesimula-
tionswith 50 initial randomsolutionsanddifferentseedswas
run. Preliminarytestswith populationsof greedysolutions
underperformedin many casesbecauseof prematureconver-
gence of the population. This option was, therefore,
discarded.Moreover, the algorithmsturnedout to be quite
robust againstrandomnessavoiding, thus, the need for a
larger numberof runs. The evolutionaryprocessterminates
either when a solution at cost zero is found or when the
numberof generationsexceeds10,000.This valuerepresents
a boundon thecomputationaltime allocatedto thealgorithm
to find asolution.Giventheparticularnatureof theoperators
used,mutationsareappliedwith a rateof <POQ�SR �UT while
crossover takesplacewith probability <FVW� R � � . Thechoice
of thepopulationsizeandof <PO and<FV is not arbitrarybut it
representsthe bestcombinationof theseparametersin a set
of preliminarytests.

Figure 2 reports experimental results for three different
graph instances,which are representative of the different
performancebehaviour observed. Several variantsof GAs
are mentioned in the rest of the paper. A GA with
greedy mutations and the clique approachis referred to
as CLIQUEGA as opposedto a standardGA with swap
mutationsandonepoint crossover, namedSGA. A genetic
algorithm using cyclic permutationis identified as CMGA.
Resultsreveal that CLIQUEGA significantly outperformsa
standardSGA in all cases.This is not surprisingsincewe
usedmoredirectedoperators.Theseoperators(i.e. thegreedy
mutation and uniform crossover) add local searchmecha-
nismsto increasethe exploitation of the searchspace. All
algorithms failed to produce the colouring of the graphs
(with thespecifiednumberof colours)in many cases.Some
instancesseemto be easierto solve than others. In fact,
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Figure 2: Averageresults for the best individual of the
populationon DSJC250.5.col, queen 8 12.col and
flat 300 28.col usingdifferentGAs.

a graphwith a lower numberof edges(i.e. with a smaller
associatededgeprobability) is easierto coloursincethereis
a largernumberof possiblepartitionsthatsatisfytherequire-
mentsof theproblem.Furthermore,thephasetransitionof the
graphcolouringproblemoccurswhenthe valueof the edge
probability is betweenXZYN� and [\Y3� (Eiben,van der Hauw,
andvanHemert.J.I. 1998).

According to these figures, only the instances named
le450 25c.col and anna.col have associatededge
probabilitiesin that rangewhile most of them have values
above it and are, therefore, hard to solve. Surprisingly
enough,Figure2 reportsa betterperformanceof theCMGA
in all cases. Why is that? The CMGA neitherbreaksthe
symmetryof thegraphcolouringproblemnorguaranteesany
fitnessimprovementafterrecombination,but it still produces
bettersolutions.Analysisof the simulationdatarevealsthat
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Figure 3: Average population standard deviation
in CLIQUEGA, CMCLIQUEGA, CMGA and SGA
on DSJC250.5.col, queen 8 12.col and
flat 300 28.col.

the diversity of the populationfor the CLIQUEGA is negli-
gible after 40 generationsand this prevents further signif-
icant improvementsof the solutions. Figure3 comparesthe
averagepopulationstandarddeviationfor thethreealgorithms
mentionedplusafourthone,theCMCLIQUEGA, whichwill
belaterdiscussed.

The CMGA keepsvariety in the population until conver-
gence. Why doesthis not happenwith the CLIQUEGA?
A majorcauseof convergein thepopulationis thecombined
action of the mutation and crossover. In both cases,the
operatorsapply a local searchwherethe selectionis always
done in a greedyway. Although this is also the casefor
the CMGA, the CLIQUEGA shows a worse performance
becauseof the marked nodes. Whena fairly goodsolution
is found,thealgorithmis very likely to reproduceit, evenas



a resultof a crossover, whentheotherparentsolutioncannot
contribute differently. In fact, sincethe CLIQUEGA breaks
the symmetryof the graph colouring problem, there exist
lesspossibilitiesfor mixing differentsolutionswhile keeping
the cost (if not lowering it). The absenceof duplicated
genotypesfor the samesolutionsseemsnot to be beneficial
on the basisof the experimentalresults. All GA variants
with embeddedlocal searchmechanism(i.e. not the SGA)
presenta strong exponential reduction of the cost in the
first 20 generationswhich is followedby virtually no further
improvement.A completeexplanationof thisphenomenonis
still notavailablebut onehypothesisis thatthealgorithmgets
trappedin a largeorbit of agroupactingon thesetof colours
andthereis a low probabilityto escapefrom thatorbit.

6 Discussion

Thesymmetrybreakingalgorithmintroducedin theprevious
sectionsdoesnotguaranteethatthereexistsonly onesolution
with a given cost. In fact, theremight well exist different
partitionsof thegraphthatcorrespondto a similar cost.This
canusuallyhappenwhenthe graphhaslower degreenodes
which can be allocatedto different colour classeswithout
involving any changein thecost.

A comparativemeasureof theperformanceof thealgorithms
discussedin Section5 is not easybecauseof the formu-
lation of the VGCP usedfor the investigation. However,
the numberof coloursusedfor the simulationscorresponds
to the best-known solution for randomgraphs(the classis
representedby thetwo DSJCinstances)with edgeprobability<]�^R �UT andthechromaticnumberof thegraphsin theother
cases. The symmetrybreakingapproachdoesnot perform
very well in any of the instancesselectedwhile showing a
similarbehaviour to theCMGA. In orderto establishabetter
evaluationwe shouldfind whatis themininumvalueof

�
for

which theCLIQUEGA findsacolouringof thegraphsatcost
zero. This investigationhasnot beendonebecausewe are
moreinterestedin speedingup thesearchprocessratherthan
finding the bestpossiblesolution. For a similar reasonwe
did not performsimulationswith a large numberof genera-
tions(like for exampletheonereportedby GalinierandHao
(1999))sincetheefficiency of thealgorithmwould besignif-
icantly lower in thiscase.

To overcomethe problemof low populationdiversity in the
CLIQUEGA, we decided to embedthe samemechanism
adoptedfor the CMGA in the crossover, namely cyclic
permutation. In a previous study, Marino (2000b) it was
observed that they provide an easy and computationally
inexpensive way of keeping a reasonablediversity in the
population as well as having a good performance. The
additionof cyclic permutationsto the CLIQUEGA doesnot
affect theverticeswith fixedcolourationthough.We decided
to apply theschemeonly to the restof thegraph.Eachtime
a crossover takesplace,a cyclic permutationof the colours
is appliedto oneof the parentswith the aim of harmonising
the similarity of the partition generated.This processwill,

0 50 100 150 200 250 300 350 400
20

25

30

35

40

45

50

55

60

generations/10

co
st

DSJC250.5.col

CLIQUEGA  
CMCLIQUEGA

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

generations/10

co
st

queen8_12.col

CLIQUEGA  
CMCLIQUEGA

0 50 100 150 200 250 300 350 400
50

60

70

80

90

100

110

120

130

140

150

generations/10

co
st

flat300_28.col

CLIQUEGA  
CMCLIQUEGA

Figure 4: Comparisonof the averagebest individuals for
CLIQUEGA and CMCLIQUEGA on DSJC250.5.col,
queen 8 12.col andflat 300 28.col.

therefore,attemptto solve the graphcolouringproblemfor
the set of unmarked verticesof the original one. The fact
that someverticeshave alreadybeencolouredis taken into
accountonly when the algorithmsevaluatesthe cost of the
solutionsfound. In principle, this approachshouldbe more
disruptive than the original CLIQUEGA since we cannot
guaranteethat the colouringof the subgraphinducedby the
setof unmarkednodesmatchestherestof thegraphwithout
generatingadditionalbadedges.

Figure 4 comparesthe performanceof the CLIQUEGA
against the CMCLIQUEGA. The latter outperformsthe
former in almostall cases.The main reasonfor the slightly
betterresultsis thehigherlevel of populationdiversityin the
CMCLIQUEGA ascanbe observed in Figure3. Therefore,
theroleof diversityiscrucialin algorithmswith highselective
operators(i.e. mutation and recombination)that tend to



reducethe differencesbetweenindividuals. Unfortunately,
diversityis notasufficientconditionto achieveagoodperfor-
mance,astheSGA shows,but it playsanimportantrole.

The applicationof GAs to problemswith large symmetries
seemsstill to leavemany openquestionssincethebreakingof
thesymmetriesdid not by itself leadto remarkableimprove-
ments. We expectedbetterresultsthanthoseobtained.The
CMGA still remains the best techniqueof those studied
here. A completeunderstandingof its underpinningmecha-
nismsis likely to contributeto thedevelopmentof fasterand
more appropriatetechniquesfor graphcolouring problems.
Symmetrybreakingin this context offers a valuableground
for further investigationsthat aim both at refining this
approachandat providing a bettersearchmethodfor spaces
with a highdegreeof symmetry.
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