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Abstract

We have previouslydescribedhe ARBIB autonomous
robot which consistsof a mobile platform runninga
neuralnetwork simulator Unlike mostotherbeha-
ing robots,the neuralsystemis biologically-inspired
andoperatesat the level of individual spikes. Rather
than using currently-popularreinforcementlearning
techniques,ARBIB learnsfrom exposureto its en-
vironmentvia low-level mechanism®f habituation,
sensitisatiorand classicalconditioning. In previous
work, its short-termmemory(formedthroughrecor-
ery of synapticweights)madeits learningalmostto-
tally plastic;it hadnolong-or medium-termnmemory
This paperexploresmeansof addingstability to its
learning.

Long-termmemoryis providedby a simpleform of
synaptogenesisyhich formsnew connectionsvithin
the nenous system. Medium-termmemoryis pro-
vided by a recurrentneuralcircuit coupledto a sim-
ple modelof the medialpallium, whichin turnis fed
from a sonarrange-findingcell. This allows the ner
voussystemto respondio successie stimuli thatlie
outsidethedurationof its short-termmemory

Theeffectsof thesetwo enhancementareassessed
for their impacton ARBIB’s behaiour. Long-term
memoryis testedby collision avoidancebehaiour,
demonstratetly presentingacomparisorof firing ac-
tivity in bumpsensoncellswith andwithoutsynapto-
genesisMedium-termmemoryis testedby allowing
the sonardrivenmedialpallium to habituateto a dis-
tanttarget,andthenintroducinga transitorytarget at
closerange.In this way, a usefulmeasuref learning
stability throughmedium-andlong-termmemorieds
achieved.

1. Introduction

Previously, we have describedARBIB: an Autonomous
RobotBasedon I nspirationdrom Biology (Damper French,
andScutt,forthcoming). In engineeringerms,it consistsof
a mobile platform (a Nomad Scoutin this work) runninga
neuralnetwork simulatorcalledHi-NOON. Unlike otherbe-
having robots,the neuralsystemis biologically-inspiredand

operatest the level of individual spikes. Ratherthanusing
currently-populareinforcementearningtechniquesARBIB

learnsfrom exposureto its environmentvia low-level mech-
anismsof habituation,sensitisatiorand classicalcondition-
ing. We seeARBIB asavehiclefor studying‘the animatpath
to Al” (Wilson1991).

One of the central ‘tenets of good old fashionedAl
(Haugeland1985) wasimplementationindependenceThat
is, intelligenceis achiezed by runningsome‘program’; the
hardware on which it runsis unimportant. By contrast,this
work is motivatedby new ideasof ‘embodiedAl’ which hold
that possessiorof a body situatedin its ervironmentis a
vital part of beinga behaing organism(Churchland1986;
Clark 1987;Brooks1991). Further any suchorganismhasa
nenoussystemwhich obviously underliesits intelligent be-
haviour. Philosophicallythen,we areattractedo the neuon
doctrine of Barlow (1972),accordingto which behaiour is
inextricably linkedto neurophysiologyThisis thereasorfor
the biological fidelity (spiking neuronsand neurobiological
learningmechanismsyvith which ARBIB’S nenous system
is modelled/implemented.

As previously implemented,however, ArRBIB suffereda
major shortcomingin that its learning was far too plastic
(becauseof recovery of synapticweights). This problem
hasbeenwell recognisedn the stability-plasticitydilemma
of Grey Walter (1951, p.63) and Carpenterand Grossbeg
(1988). Thatis: How cana nenoussystenretainits stabil-
ity of learningwhile still being plasticenoughto adaptin a
changingernvironment? Consistentwvith the philosophyout-
lined above, we seekto addstability (in theform of medium-
andlong-termmemory)by biologically plausiblemeans.

The remainderof this paperis structuredas follows. In
Section2, we give an overview of ARBIB’S neuralsimula-
tor, calledHi-NOON. Section3 givestheequationgoverning
nenoussystembehaiour. Section4 introducesthe biologi-
calphenomenownwhichwe have basedARBIB’s long-term
memory: synaptogenesislt is usedin simplified form in
this work. We also presentresultsof testingthis long-term
memorywith obstacleavoidanceexperiments.Section5 de-
scribesimplementationof a form of medium-termmemory
Section6 briefly comparesARBIB with otheranimatstudies.
Finally, Section7 concludesvith somesuggestionfor future
work.



2. Overview of Hi-NOON

In this section,we describethe neuralsimulator Hi-NOON,

which standsfor HierarchicalNetwork of Object-Oriented
Neurons.As the namesuggestsin Hi-NOON, synapsesyeu-
rons and networks are in principle representedas objects
within anobject-orientedhierarchy(ScuttandDamper1991,
1997)at variouslevels of abstraction.The lowestsuchlevel

usesthe membrangpotential(strictly, transmembranpoten-
tial difference)as the obsenable parameteiin the network
model. Consistenwith our underlyingphilosophy this is a
muchlower-level approactthanthe useof activation values
roughly correspondingo the spike or actionpotentialrateof

individual neuronsor collectionsof neuronsasin paralleldis-
tributedprocessindPDP)models.By contrastHi-NOON re-
tainsdetailsof individual spike generatiorwhichis lostin the
traditionalconnectionispproachAlso, Hi-NOON facilitates
simulationof a non-homogeneoysopulationof neurons.

2.1 NeuonParametes

Basic neurophysiologysuggestghe attributesa model spik-

ing neuronshould have. The fixed parametersBaseP,

Thr eshol d andTi neConst correspondo therestingpo-

tential, thresholdand time constantof the neuron,respec-
tively. Dynamic parameterdvP, SynPot andfired (a
1/0 predicate)model the actual membranepotential as it

variesin time, accumulatehe weightedsumof synapticin-

putswhichinfluencetheupdatingof MP atthenext time step,
andindicateif the objectis in the procesof firing, respec-
tively. This parametersystemallows us easily to describe
differencesbetweemeuronsandto keeptrack of the chang-
ing statesof neuronsovertime. It approximatelysatisfiesghe
“minimum requirements’for effective neuralmodellingde-
tailedby Seherston(1993).

2.2 Hi-NOON Objects

The neuralnetwork is representea@sa list of objects,where
eachsuchobject correspondgo a single neuronand holds
all theinformationaboutits state(seebelon) andaboutsub-
sidiary objects.The neuronobjectcomprisesnformationon:

o asetof parametersvhich definesheneuron;

o asetof datastructuresvhich defineshe ‘axonterminals’
for the neuron,eachof which is itself an objectandhas
its own parameters;

¢ asetof methods- pointersto functions— which access
andalter parameteraluesandso determineaxactly how
theneuronfunctions.

The top-level list correspondso the network object. This
possessesvo methods-h_access andadd —for access-
ing network objectsandaddingfurther objectsonto the list,
respectiely. Simulationrunlengthis handledby aglobalob-
ject. This storesthe simulationand concurrentsoclet inter-
face'houseleeping’data,includinga counterwhoseoriginal

value specifiesthe length of simulation. It decrementsaf-
ter eachevaluationof the network object,andthe simulation
haltswhenthe counterreachezero.

As synapsesare also objects, they too have fixed and
dynamic parameterssimilar to those of neurons. Thus,
BaseWei ght is the default weight of the synapseandis a
constantMéi ght holdsthe presentsynapticstrengthandis
variableduring simulation;Recover y is a constaniwithin
eachsynapseWwhich determineshow quickly Wei ght re-
turnsto BaseWei ght . To preventsynaptioweightsgrowing
without limit, Wi ght is boundedduring simulation. This
modelsthe finite storesof neurotransmittein the synaptic
terminalsof biologicalneurons.

2.3 NeuonTypes

Hi-NoON allows a non-homogeneousopulationof neurons
to be simulated- reflectingthe fact that neuronshave spe-
cialised functionsin real neurobiologicalsystems— at the
most appropriatelevel of abstraction. Modeling individ-
ual neuronsat the level of membranepotentialallows sub-
thresholdandspikingbehaioursto be simulatedatlow com-
putationalcost. The fixed parametersaterfor differences
betweenneuronswhich, in this work, are of the following

types:

basic: tellsits synapseso fire whenits membrangootential
crosseshresholdirom below.

noisy: similar to basic, but hasan additionalinternalnoise
componenteterminingthe weightedsynapticinput, and
hencenfluencingthemembrangotentialatthe next time
step.

ramp: similarto noisy, but hasability to rampup spike gen-
erationrate. It is usedasa testsignalsourcein network
development.

burst: similar to noisy but producesa shortburst of spikes
whenits membrangootentialcrosseshreshold.

sensor: similar to basic, but actsas a sensoryneuronin a
situatedsystemsuchasamobilerobot.

motor: similarto basic, but actsasa motorneuronin asitu-
atedsystem.

2.4 StateSystem

Eachneuronis treatedas beingin one of a numberof six
statesdependingon the presentmembranepotential, cell
thresholdandwhetheror not the cell hasjust fired, etc. For
example,if the membrangotentialof the basiccell is above
thresholdandthe cell hasnot just fired, thenthe neuronwill
startto generatea spike andwill initiate synaptictransmis-
sion.

Figure 1 (taken from a Hi-NOON simulation) shows the
statespassedhroughby a neuronduring firing. In the case
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Figurel: Time evolution of typical actionpotential(spike) of abasic neuronin aHi-NOON simulation.Seetext for specificatiorof the states
(A..F) passedhroughby a neuronduring firing. Here,the sampleperiodis approximately4 ms (this varieswith the machineon which the

simulationruns.)

illustrated,the minimum, restingand peakpotentialsof the
neuronaresetat —69, —60and+45mV respectiely, andthe
thresholdvaluewas —45mV. (Note that actualvalueswill
under/wershoothesesettingsbeforestatecanchangeat the
next iterationof simulation.) The statesare:

VP above restingpotentialandbelow threshold
above thresholdandbelov peak

atpeak

post-firing

atminimum

hyperpolarised

Tmoow>

Equationggoverningthe membrangotentialin eachof these
statesand behaiour of synapticweightsare givenin Sec-
tion 3.

Theuseof a statesystentor controllingthemembrango-
tentialfacilitatesthe additionof new featuredo the program;
it is only necessaryo identify which of thestateamaytrigger
thisfeatureandto adda proceduresall atthatparticularstate.
This, coupledwith the inheritancemechanisnof objectori-
entedprogramming CoadandYourdon1991),allows models
to bedevelopedandalteredwith aminimumof changego the
neuralmodelsourcecode.

2.5 Axonaland SynapticTransmission

We model both sub-and supra-thresholdbehaviour of neu-
rons, but sub-thresholgotentialsare not propagatedfrom
axon hillock to terminal fibres) in real neurons,only ac-
tion potentialsare. We do not attemptto model (regener
ative) spike transmissionalong the axon. This, however,
is not a seriousconcernbecausehe models behaiour de-
pendsentirely on how pre-synapticactiity is transformed
into post-synapticactiity. It is only in supra-threshold
statesB, C andD (Figurel) thatsynapticcommunicatiorcan
take place.Hencei|it is irrelevantthatwe are,in somesense,

modelling sub-thresholdehaiour incorrectly An alterna-
tive view is that we are not modelling axonaltransmission,
i.e. we have ‘point’ neuronsasis commonin neural mod-
elling (MacGregor 1987,pp.21-24)

2.6 Learningin Hi-NOON

Thereis no specificsupportfor learningin Hi-NOON. Thus,
if PDP-typelearning(e.g. back-propagationjs to be used,
this mustbe implementedaxternalto the simulator In light
of Hi-NOON’s ability to modelatthelevel of transmembrane
potential,however, thereis implicit supportfor biologically-
basedforms of learningoperatingat the neuronlevel. In an
intriguing paper Hawkins and Kandel (1984) aguethatthe
cellular mechanisnunderlyingclassicalconditioningin the
well-studiedseaslug Aplysiais an extensionof the mecha-
nism underlyingsensitisation.They go on to state[p. 375]:
“This finding suggestghat the mechanismsof yet higher
formsof learningmay similarly be basedon the mechanisms
of ... simpleforms of learning” referringto this as“an el-
ementarycellular alphabetof learning” [p.376]. Thus,we
build classicalconditioning on the basic neural model of
habituation/sensitisationGenerally thesesimple forms of
learningareimplementedisingsynapse-on-synapsennec-
tionsin Hi-NOON asdescribedelow.

3. Neuronsand Synapses

In this sectionwe presenmoredetaileddescriptionf neu-
ronsandsynapsesvithin Hi-NOON. Sinceit is intendedfor
(amongotherthings) applicationsin situatedroboticsstud-
ies, thereis provision for sensoryand motor neuronswhich
connectto the ervironment,aswell asfor more ‘basic’ (in-
formationprocessingpheurons.



3.1 Neuons

The ‘basic’ neurontype hasthe state systemfunctionality
which is subsequentiembeddedn all derivatives, suchas
thesensoryandmotorcells.

3.1.1 Basicheuions

Updating equationsfor the membranepotential (M P — in
milli volts) for this neurontypeare:

stateA: MP(t+1) = MP(t) — 7 + S(t)
stateB: MP(t+1)= MP(t) —a+ S(t)
stateC: MP(t+1) =h+ S(¢)

stateD: MP(t+1) = MP(t) — p+ S(t)
stateE: MP(t+1) =1+ 5(t)

stateF: MP(t+1) = MP(t) + BeseMP-MP()

n
+S(t)
where:

S(t) is the synapticpotential(SynPot ) at time ¢, equalto
> wik (M P;(t) — BaseM F;);

1 is acounterwhich countsover active pre-synapticells;
w; isthesynapticweightfrom a pre-synaptimeuron;

T istheneurontime constant;

n = 1.5 is thepost-undershodhcrementate;

u = 25 isthepost-actiorpotentialpeak-MPdecrement;
k = 1/450 is aheuristically-setearningconstant;

a = 20 isthepost-thresholdttackincrement;

h = 45 is the post-thresholdnaximumMP;

[ = —69 isthepre-undershoaninimumMP;

Certainof theseparameterge.g.7, n) aretime-dependent
and have beenset empirically to suit a rangeof processor
speedandimplementationsHowever, they maybeinappro-
priatein somecircumstance¢aswhenimplementinga real-
time roboticsystemusinga fastprocessor).

3.1.2 SensoryNeuions

The sensoryneuronsin this work reactto objectproximity.
Distancesensorgeedsensorycellswith asampledralue(ap-
proximately)proportionalto objectrange,R(t), whence:

MP(t+1) = MP(t) + |sR(¢)]
where| | representshefloor functionands is anempirically

setscalingfactorwhosevaluedepend®ntheparticularphys-
ical sensoemployed.
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Figure 2: Synapserom parentneuronk to target neurony, with
weightwy.

3.1.3 Motor Neuions

Theseclosetheloop betweerthe nenoussystemandthe en-
vironment.Motor drive actvity is givenas:

A(t) = livﬂzP(t)J

whereA() is usedatalowerlevel of abstractior{closerto the
hardware)to determinethe speedf motoroutput,and+y is a
scalingconstantsetto suit the particularrobot hardwarein
use.lts signis determineddy the requirementor forwardor
reversedrive.

3.2 Synapses

The basic synapse(which is noise free) is shavn in Fig-
ure 2. It hasfunctionality which is subsequentlyembed-
dedin all derivativessuchasthe habituating,sensitisingand
conditioningtypes. Theseallow us to implementa simple,
biologically-basedorm of learning.

W (t) - B if wy (t) > Whase
W (t) +8 if wy (t) < Whase

wr(t+1) = ¢ Wmax if wg(t) > Wmax
Wmin if Wk (t) < Wmin
Winin otherwise

whereg is the MP recovery parameteandwp,se IS the base
weight(typically 0). Theseareindividually set(togethemwith
Win @Ndwy,ax, typically +£16) for eachneuron.

3.2.1 Noise-feesynapse

A noise-freesynapsés guaranteetb fire whenarertheparent
neuronfires,accordingto:

fired(t) = {

TRUE
FALSE

if stateB, C,D
otherwise

3.2.2 Noisysynapse

A noisysynapsevill fire, with aknown probability, whenever
the parentneuronfires:

fired(t) = {

wherep denotesparentpre-synapticheuron§ isits thresh-
old, and:

if cond
otherwise

TRUE
FALSE

MP, -6

cond = (stateB, C,D) A 2 > rand(1)
h—0,
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Figure3: Learningin ARBIB is via mechanismsef (a) sensitisation
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3.2.3 Habituatingtype

The magnitudeof the synapticweightw;, shavn in Figure2
is simply decreaseedvery time the synapsédires.

wi(t) —d if stateC A (wg(t) > 0)
wr(t+1) =< w(t)+d if stateC A (wg(t) < 0)
wy(t) otherwise

whered is a constantdecrementtypically ~ 1).

3.2.4 Sensitisingype

The synapsdrom A to B is strengthenedvery time I fires,
asshawvnin Figure3(a),accordingto:

if statesB,CD
otherwise

Wtarg (t) + Wsos (t)
Wharg (t)

Wearg (t+1) = {

where'targ’ denoteghetargetsynapsdto be sensitisedand
‘sos’ denoteghe synapse-on-synapg#luence.

3.2.5 Conditioningtype

As shovnin Figure3(b),thesynapsdrom conditionedstimu-
lus (CS)to unconditionedespons€UR) is strengthenegro-
portionallyto theinterstimulusinterval (1SI) betweerthe CS
andthe USfiring:
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Figure 4: Incrementin synapticweight throughconditioningasa
functionof thelSl.

_ Wrarg () + Ewsos(t) if fired g
Wearg(t +1) = { Wrarg (t) otherwise
where:
nT (=nT
k= _e(T)
(U

andnT is a countof sampleperiodsinitiated by encounter
ing stateC for thetargetneurony (= 250)is anempirically-
set scaling factor, ¢ (=500) is a constantchosento max-
imise the effect of conditioningwhenthe conditioningstim-
ulus precedeghe unconditionedstimulusby 0.5s, asshavn
in Figure4.

4. Long-Term Memory

Synaptic plasticity in ARBIB’S nenwous system, provided

by models of associatie classical conditioning and non-

associatie sensitisationand habituation,allows it to learn
collision avoidanceskills by switching from short-rangeto

long-rangesensorymodalities.However, oncethelong-range
modality has becomedominantin eliciting the avoidance
reflex, this conditionedresponsewill eventually extinguish
via autonomousdecay (Sutton and Barto 1981; Damper

French, and Scutt, forthcoming), which previously consti-
tuted ARBIB’s short-term(and only) memory Thus, the
usefulinformationis lost until it is once againre-acquired
throughstimulussubstitutiorfor a collision avoidancereflex.

It thereforeneedsa way to keepusefulinformationacquired
by its short-termmemorybeforeit extinguishes.

In this sectionwe considetthe cluethatbiology hasgiven
us for building a long-termmemory Sensitisationexper
iments with Aplysia have linked long-term memory with
the growth of new synapticconnectiongBailey andKandel
1994,p.42). Studiesof rats given reachingtaskshave also
shavn anincreasen synapseount(Greenoughl.arson,and
Withers1985).



4.1 Synaptgenesis

Synaptogenesisyhich has beenfound to occur after long
term potentiation(LTP), duplicates(and so strengthens)o-
calised synapseconnectvity. Hence, Toni, Buchs, Niko-
nenlo, Bron,andMuller (1999,p.421)write:

“As pharmacologicablockadeof LTP preventedthese
morphologicathangeswe concludehatLTPis asso-
ciatedwith theformationof new, matureandprobably
functionalsynapsesontactingthe samepre-synaptic
terminalandtherebyduplicatingactivatedsynapses.

Also, Levitan and Kaczmarek(1997,p.501) write on the
subjectof associatie LTP:

“The requirementdor temporal pairing of the two
stimuli areidenticalto thoserequiredfor associatie
learningparadigms.

4.2 Augmentinghe Cell Biological Alphabet

Canatemporakelationshipcanbeusedto decidethestrength
of new synapses™n the spirit of Hawkins andKandels cell

biologicalalphabetthetemporarelationshigbetweertheun-

conditionedand conditionedstimuli for classicalcondition-
ing hasbeenappliedto synaptogenesis Hi-NOON. Here,
the newly-createdsynapséhasa strengthcalculatedrom the
differencebetweerthe elapsedimesof post-synapticell fir-

ing andconditioned-synapsfring.

Pursuingthis idea, it wasdecidedto constrainthe forma-
tion of new synapsesy introducinga new predicatento the
Hi-NOON model. This is simply the condition that a new
synapseis only created,parallelto an existing conditioned
synapsegncetheconditionedsynapticstrengthreachesome
percentagésay 90%) of the allowed maximum.

Thus, the cell biological alphabethas beenextendedin
Hi-NOON. First the mechanism®f sensitisatiorhave been
appliedto classicakonditioning(Damper French,andScultt,
forthcoming), and second,the temporal relationshipfrom
classicalkonditioninghasbeenappliedto synaptogenesis

4.3 ObstacleAvoidanceExperiments

A NomadScout2 (seeht t p: / / www. r obot s. com) con-
trolled throughthe NomadicTechnologiedNsener software
via the Scouts hostportwasusedasthe ARBIB platformfor
all experimentsn this paper The Scouthas6 bump sensors
and 16 sonardevices arrangedaroundits circumferenceas
shavnin Figureb.

A total of 14 runswas carriedout. Each11 minute run
consistedof ARBIB having free rangeto travel aroundthe
robot laboratory negotiating obstaclesn its path. The first
se/en runs were madewith synaptogenesisnabledin the
Hi-NoON model. For comparisonthe remainingrunswere
madewith synaptogenesidisabled.By interactionwith the
environment,ARBIB learns(by stimulussubstitution)o elicit

Figure5: The NomadScout2 robotusedin the obstacleavoidance
experiments.

its avoidancereflex. Hence,the measureof bump sensory
neuronactity (the unconditionedstimulus)is a usefulindi-
catorof how successfullyt haslearnedo avoid directcontact
with obstacles.

4.4 Results

Figure6 shaws the averageaction potentialcountof the left
bump sensoryneuronfor binsof 100samplepointsthrough-
out the tests. Resultsof the first seven runs are showvn in
Figure6(a) Comparingtheseresultswith Figure6(b), we
seeadecreasén activity duringtherunswith synaptogenesis
enabled.

An important obsenation, obtained by examining log
files of synaptogenesisventsgeneratedduring the experi-
ment, is thatipsilateralsensoryandinterneuroniad under
gonegreatersynaptogenesithancontralateraheurons.This
meansthat sonarsensorshad startedto act, throughstimu-
lus substitutionfor bump sensor®n the sameside(Damper
French,and Scutt, Figure 5, forthcoming). If the sonarsen-
sorytransducersvereto beswappedover, we expectthatcon-
tralateralsensory-interneuropairswould becomedominant
instead.This experimentremainsto bedone.

5. Medium-Term Memory

ARBIB cannotassociatestimuli whichhave alargelSI (more
thantwo secondssay) as this resultsin only a very small
strengtheningof a conditionedsynapse(Figure 4). Such
small changesin synapticstrengthmalke very little differ-
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(b) Left bumpsensoryneuronfiring actvity withoutsynaptogenesis.

Figure6: Neuralactiity in theleft bumpsensoryneuronga) with and(b) without synaptogenesis.

enceto ARBIB’s behaiour, andyet in somecircumstances 5.2 Medial Pallium Model

being aware of sucheventscould have survival value. An
examplemightbelearningthethreatdisplaybehaiour of an-
otheragentdeliberatelycrossingARBIB’s path. This is po-
tentially importantsince an attackmight follow sometime
afterthe displayhasoccurred. ARBIB alsoneedsto be able
to ignoreconstantneutralbackgroundnformation. Aspects
of the ervironmentwhich hold no survival value but which
persistover a large periodof time shouldnot consumeatten-
tion andprocessingesourcesThefollowing two subsections
introducethe basisfor medium-termmemoryand habituat-
ing sensoryprocessingircuits, inspiredfrom themechanical
‘tortoise’ Machina docilis of Grey Walter(1951)andthe me-
dial pallium modelof WangandArbib (1992),respectiely.

5.1 Machinadocilis

Machina docilis (Grey Walter 1951) can associatea neu-
tral stimuluswith an appetitve or aversive one depending
upon the internal configurationof the circuit. Its memory
is storedas the decayingfeedbackarounda valve oscilla-
tor, representinga recurrentneural circuit. Grey Walter's
schematichas beenmodified and incorporatedinto ARBIB
asML, M2 andMB in Figure 7. Hence,firing ML, say will
initiate oscillations. As in the valve circuit, thesewill de-
caybecausef anhabituatingsynapseD betweerML andM2.
Hence thetime of oscillationis governedby the habituation
rate. The decayingoscillationsthroughML, M2 andMB form
themedium-termmemory

The medial pallium (MP) modelof WangandArbib (1992)
is onepartof alargermodelwhich simulatessomeof thecir-

cuitry for orientingandprey catchingbehaiour in thetoad.
TheMP recevvesinputfrom thetoadsretinaandanteriortha-
lamus(AT), giving anoutputwhich affectsthetectum,where
prey catchingbehaviour is generated.

We have includeda small circuit inspiredfrom Wangand
Arbib’s medialpallium modelasshown in Figure7. Instead
of this simplified MP modelreceving input from modelsof
a retinaandanteriorthalamus,t comesfrom the actvity of
a sonar(range-finding)sensorycell, which therebyactsasa
simple AT. The closerthe target and the greaterthe depo-
larisation, the higherthe firing rate of the sensorycell and,
hence,of the MP circuit. Figure 8(a) shawvs the outputfrom
thesensonyell. ThiscircuitgivesARBIB theability toignore
constantstimuli throughhabituation,andyet dishabituateo
achangdn stimulusstrength.

The P1 neuronsform a simple position-threshold-slope
map (Grossbeg andKupersteinl986)that corvertsdifferent
inputintensitiesto differentpositionsof firing actiity in an
array of neurons.Here,with an array of justtwo P1 cells,
ARBIB can differentiatebetweenhigh and low firing rates
of the sensorycell. Thereis a hierarchyof MP2 cells in
which the P1 HI GH cell inhibits the MP2 LOWCcell. The
MP2 HI GH cell connectsto MP3 andP2 cells whereashe
MP2 LOWconnectnly with its P2 cell. Theseconnections
with MP3 andP2 cellsarehabituatingypes,andarelabelled
A, BandCin Figure7.
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5.3 Results

SupposeARBIB is placedinto a world whereit sensenly
a distantobject, thenthe sensorycell will have a low firing
rate which is insufiicient to depolariseMP2 H CGH through
threshold. Hence,only MP2 LOWfires, causingthe habitu-
ating synapseA to fire andfiring P2 LOW If anotheragent
now crossesARBIB’s ‘line of sight’ with the distantobject,
thenthesensoncell will fire atanincreasedate(Figure8(a),
sampleq0: 3000]), MP2 HI GHwill fire andMP2 LOWwill
beinhibited. Hence,P2 H CHwill startfiring (Figure8(c),
[0:3000)).

Sincesynapse®\, B andC are habituatingtypes. Their
strengthwill be reducedeachtime they fire. Hence,with
a constantview of the distantobject, A will habituateto a
point whereP2 LOWwill not reachthreshold(Figures8(b)
and 8(f) [3000:6000]). Thus, the distantobjectwill be ig-
nored. If our secondagentonce again crossesARBIB’S
path(Figure8(a),[6000:9000]),theP2 HI GHcellwill once
againfire becaussynapseéC hasrecoveredfromits earlierac-
tivity. Althoughthe distantobjectis beingignored,presence
of this new andcloserstimulusis recevving attention.As both

P2 cells stimulatethe cell labelledout in Figure7, we see
thatits activity habituatedo the distantobject(Figure 8(d),
[3000:6000]). However, it thendishabituaten the presence
of the closerstimulus(Figure8(d), [6000:9000]).

The P2 cellsexcite the ML cell in the oscillatorymemory
Once ARrBIB hashabituatedto the distantstimulus,andis
dishabituatedo the transitoryclosestimulus,the oscillatory
memorywill storethis eventasanhabituatingactivity around
its loop. Thisis shovn in Figure8(e)[6000:9000]

Cell M3 hasonly weak excitatory connectionswith in-
terneuronsl 1 andl 2. The right and left reflex interneu-
rons make sensitisingsynapse-on-synapsnnectionswith
theMB, | 1 andl 2 synapseswith thel 1 andl 2 cells mak-
ing conditioning synapse-on-synapsmnnectionswith P2-
to-reflex synapsesThus,if ARBIB dishabituateso our sec-
ond agent,which sometime later causest to experiencean
aversive stimulusandsofire thereflex interneuronsthe con-
nectionsbetweenthe P2 HI GH cell andthe appropriatere-
flex interneuronwill be strengthenedThis will occurfor the
durationof the oscillatorymemory which actsto amplify the
weak conditioning— becauseof a potentially large ISI be-
tweenthe P2 actiity andthereflex actiity.

6. Discussion

The main purposeof this work hasbeento provide stability
of learningin the behaiing animatARBIB. Our philosophy
throughouthasbeento basdearning,andtherebybehaiour,
on plausible biological principles. The questiontherefore
arises:can ARBIB do arything that otherrobotsor animats
explicitly programmede.g.usingreinforcementearning)to
performlow-level taskscannotdo? Someexamplesof thelat-
terapproactareseenin the publicationsof VerschureKrose,
andPfeifer (1992),Zalama,GaudianoandCoronadg(1995)
and Gaudiano,Guentey and Zalama(1997) (althoughthese
have not always useda real robot platform). The answer
to the above questionis that thereis probablyvery little if
ary differencein the obsened behaiours. But this is per
hapsto missthe point. Becausewve have modelledARBIB
veryfirmly onknown or inferredneuralmechanismsye can
tracea clearlink betweerphysiologyandbehaiour. In par
ticular, in this paper we have shovn how a simplified ver
sionof synaptogenesigurrentlyreceving greatattentionin
experimentalneurobiology)canneatlysolve the well-known
stability-plasticitydilemmaof learningin areal-world robot.
It is, of course alwayspossibleto useengineeringpr non-
biological, mechanismgo achiese desiredrobot behaiour.
Examplesof this are the work of Nehmzav, Smithers,and
McGonigle (1995) who use a combinationof (PDP-style)
neuralnetworksandhigh-level‘instinct’ rulesto increasebe-
havioural repertoirein a mobilerobot,andKrebsandBossel
(1997) who use symbolic classifiersystemsas the basisof
evolvedbehaiour. While suchwork is valid andusefulin its
own terms, it doesnotilluminate links betweenneurophysi-
ology andbehaviour — suchastheway thatsymboliccapacity
mightbegroundedn roboticcapacity(Harnad1990,1995)—
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weightof synapseA.

in theway thatwe have tried to do here.

7. Conclusionsand Future Work

This paperhasreportedexperimentsincorporatinga simpli-
fied form of synaptogenessthe basisof a stablelong-term
memorymechanisnin the ARBIB mobile robot. It hasalso
examinedan ideafor a medium-termmemory basedupon
the work of Grey Walter (1951), which in turn is fed from
a circuit derived from Wang and Arbib’s (1992) model of
the medial pallium. This givesthe robot the beginningsof
an ability to ignore neutralstimuli in its ervironment,while
alsoattemptingo overcometheproblemof conditioningwith
stimuli which have a large inter-stimulus interval. Thus,
ARBIB’S competencas evolving asits nenous systemex-
pands.Thiswill continueasmoreadwancedrobot platforms
utilising colour vision and manipulatorcapabilitiesare em-
ployed, allowing greaterinteractionwith the world and sus-
taininggrowth of thenenoussystem.
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