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Abstract

WehavepreviouslydescribedtheARBIB autonomous
robot which consistsof a mobile platform runninga
neuralnetwork simulator. Unlike mostotherbehav-
ing robots,the neuralsystemis biologically-inspired
andoperatesat the level of individual spikes. Rather
than using currently-popularreinforcementlearning
techniques,ARBIB learnsfrom exposureto its en-
vironmentvia low-level mechanismsof habituation,
sensitisationandclassicalconditioning. In previous
work, its short-termmemory(formedthroughrecov-
ery of synapticweights)madeits learningalmostto-
tally plastic;it hadno long-or medium-termmemory.
This paperexploresmeansof addingstability to its
learning.

Long-termmemoryis providedby asimpleform of
synaptogenesis,which formsnew connectionswithin
the nervous system. Medium-termmemory is pro-
vided by a recurrentneuralcircuit coupledto a sim-
ple modelof themedialpallium, which in turn is fed
from a sonarrange-findingcell. This allows thener-
voussystemto respondto successive stimuli that lie
outsidethedurationof its short-termmemory.

Theeffectsof thesetwo enhancementsareassessed
for their impact on ARBIB’s behaviour. Long-term
memory is testedby collision avoidancebehaviour,
demonstratedby presentingacomparisonof firing ac-
tivity in bumpsensorycellswith andwithoutsynapto-
genesis.Medium-termmemoryis testedby allowing
thesonar-drivenmedialpallium to habituateto a dis-
tant target,andthenintroducinga transitorytargetat
closerange.In this way, a usefulmeasureof learning
stability throughmedium-andlong-termmemoriesis
achieved.

1. Introduction

Previously, we have describedARBIB: an Autonomous
RobotBasedon Inspirationsfrom Biology (Damper, French,
andScutt,forthcoming). In engineeringterms,it consistsof
a mobile platform (a NomadScoutin this work) runninga
neuralnetwork simulatorcalledHi-NOON. Unlike otherbe-
having robots,theneuralsystemis biologically-inspiredand

operatesat the level of individual spikes. Ratherthanusing
currently-popularreinforcementlearningtechniques,ARBIB

learnsfrom exposureto its environmentvia low-level mech-
anismsof habituation,sensitisationandclassicalcondition-
ing. WeseeARBIB asavehiclefor studying“the animatpath
to AI” (Wilson1991).

One of the central ‘tenets of good old fashionedAI’
(Haugeland1985)was implementationindependence.That
is, intelligenceis achieved by runningsome‘program’; the
hardwareon which it runsis unimportant.By contrast,this
work is motivatedby new ideasof ‘embodiedAI’ whichhold
that possessionof a body situatedin its environment is a
vital part of being a behaving organism(Churchland1986;
Clark 1987;Brooks1991).Further, any suchorganismhasa
nervoussystemwhich obviously underliesits intelligentbe-
haviour. Philosophically, then,we areattractedto theneuron
doctrineof Barlow (1972),accordingto which behaviour is
inextricably linkedto neurophysiology. This is thereasonfor
the biological fidelity (spiking neuronsandneurobiological
learningmechanisms)with which ARBIB’s nervoussystem
is modelled/implemented.

As previously implemented,however, ARBIB suffered a
major shortcomingin that its learning was far too plastic
(becauseof recovery of synapticweights). This problem
hasbeenwell recognisedin the stability-plasticitydilemma
of Grey Walter (1951, p.63) and Carpenterand Grossberg
(1988). That is: How cana nervoussystemretainits stabil-
ity of learningwhile still beingplasticenoughto adaptin a
changingenvironment?Consistentwith thephilosophyout-
linedabove,weseekto addstability (in theform of medium-
andlong-termmemory)by biologicallyplausiblemeans.

The remainderof this paperis structuredas follows. In
Section2, we give an overview of ARBIB’s neuralsimula-
tor, calledHi-NOON. Section3 givestheequationsgoverning
nervoussystembehaviour. Section4 introducesthebiologi-
calphenomenononwhichwehavebasedARBIB’s long-term
memory: synaptogenesis.It is usedin simplified form in
this work. We alsopresentresultsof testingthis long-term
memorywith obstacleavoidanceexperiments.Section5 de-
scribesimplementationof a form of medium-termmemory.
Section6 briefly comparesARBIB with otheranimatstudies.
Finally, Section7 concludeswith somesuggestionsfor future
work.



2. Overview of Hi-NOON

In this section,we describethe neuralsimulatorHi-NOON,
which standsfor HierarchicalNetwork of Object-Oriented
Neurons.As thenamesuggests,in Hi-NOON, synapses,neu-
rons and networks are in principle representedas objects
within anobject-orientedhierarchy(ScuttandDamper1991,
1997)at variouslevelsof abstraction.The lowestsuchlevel
usesthemembranepotential(strictly, transmembranepoten-
tial difference)as the observable parameterin the network
model. Consistentwith our underlyingphilosophy, this is a
muchlower-level approachthanthe useof activationvalues
roughlycorrespondingto thespike or actionpotentialrateof
individualneuronsor collectionsof neuronsasin paralleldis-
tributedprocessing(PDP)models.By contrast,Hi-NOON re-
tainsdetailsof individualspikegenerationwhichis lost in the
traditionalconnectionistapproach.Also,Hi-NOON facilitates
simulationof a non-homogeneouspopulationof neurons.

2.1 NeuronParameters

Basicneurophysiologysuggeststhe attributesa modelspik-
ing neuronshould have. The fixed parametersBaseMP,
Threshold andTimeConst correspondto therestingpo-
tential, thresholdand time constantof the neuron,respec-
tively. Dynamic parametersMP, SynPot and fired (a
1/0 predicate)model the actual membranepotential as it
variesin time, accumulatethe weightedsumof synapticin-
putswhich influencetheupdatingof MP at thenext timestep,
and indicateif the object is in the processof firing, respec-
tively. This parametersystemallows us easily to describe
differencesbetweenneuronsandto keeptrackof thechang-
ing statesof neuronsover time. It approximatelysatisfiesthe
“minimum requirements”for effective neuralmodellingde-
tailedby Selverston(1993).

2.2 Hi-NOON Objects

Theneuralnetwork is representedasa list of objects,where
eachsuchobject correspondsto a single neuronand holds
all theinformationaboutits state(seebelow) andaboutsub-
sidiaryobjects.Theneuronobjectcomprisesinformationon:� asetof parameterswhich definestheneuron;� asetof datastructureswhichdefinesthe‘axonterminals’

for the neuron,eachof which is itself an objectandhas
its own parameters;� a setof methods– pointersto functions– which access
andalterparametervaluesandsodetermineexactly how
theneuronfunctions.

The top-level list correspondsto thenetwork object. This
possessestwo methods– h_access andadd – for access-
ing network objectsandaddingfurther objectsonto the list,
respectively. Simulationrunlengthis handledby aglobalob-
ject. This storesthe simulationandconcurrentsocket inter-
face‘housekeeping’data,includingacounterwhoseoriginal

value specifiesthe length of simulation. It decrementsaf-
ter eachevaluationof thenetwork object,andthesimulation
haltswhenthecounterreacheszero.

As synapsesare also objects, they too have fixed and
dynamic parameterssimilar to those of neurons. Thus,
BaseWeight is the default weight of the synapseandis a
constant;Weight holdsthepresentsynapticstrengthandis
variableduringsimulation;Recovery is a constant(within
eachsynapse)which determineshow quickly Weight re-
turnstoBaseWeight. To preventsynapticweightsgrowing
without limit, Weight is boundedduring simulation. This
modelsthe finite storesof neurotransmitterin the synaptic
terminalsof biologicalneurons.

2.3 NeuronTypes

Hi-NOON allows a non-homogeneouspopulationof neurons
to be simulated– reflectingthe fact that neuronshave spe-
cialised functions in real neurobiologicalsystems– at the
most appropriatelevel of abstraction. Modeling individ-
ual neuronsat the level of membranepotentialallows sub-
thresholdandspikingbehavioursto besimulatedat low com-
putationalcost. The fixed parameterscater for differences
betweenneuronswhich, in this work, are of the following
types:

basic: tells its synapsesto fire whenits membranepotential
crossesthresholdfrom below.

noisy: similar to basic, but hasan additionalinternalnoise
componentdeterminingtheweightedsynapticinput,and
henceinfluencingthemembranepotentialatthenext time
step.

ramp: similar to noisy, but hasability to rampupspikegen-
erationrate. It is usedasa testsignalsourcein network
development.

burst: similar to noisy but producesa shortburst of spikes
whenits membranepotentialcrossesthreshold.

sensor: similar to basic, but actsas a sensoryneuronin a
situatedsystem,suchasamobilerobot.

motor: similar to basic, but actsasamotorneuronin asitu-
atedsystem.

2.4 StateSystem

Eachneuronis treatedas being in one of a numberof six
statesdependingon the presentmembranepotential, cell
thresholdandwhetheror not the cell hasjust fired, etc. For
example,if themembranepotentialof thebasiccell is above
thresholdandthecell hasnot just fired, thentheneuronwill
start to generatea spike andwill initiate synaptictransmis-
sion.

Figure 1 (taken from a Hi-NOON simulation) shows the
statespassedthroughby a neuronduring firing. In the case
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Figure1: Timeevolutionof typicalactionpotential(spike)of abasic neuronin aHi-NOON simulation.Seetext for specificationof thestates
(A..F) passedthroughby a neuronduringfiring. Here,thesampleperiodis approximately4ms(this varieswith themachineon which the
simulationruns.)

illustrated,the minimum, restingandpeakpotentialsof the
neuronaresetat � 69, � 60and+45mV respectively, andthe
thresholdvaluewas � 45mV. (Note that actualvalueswill
under/overshootthesesettingsbeforestatecanchangeat the
next iterationof simulation.) Thestatesare:

A: MP aboverestingpotentialandbelow threshold
B: abovethresholdandbelow peak
C: atpeak
D: post-firing
E: atminimum
F: hyperpolarised

Equationsgoverningthemembranepotentialin eachof these
statesand behaviour of synapticweightsare given in Sec-
tion 3.

Theuseof astatesystemfor controllingthemembranepo-
tentialfacilitatestheadditionof new featuresto theprogram;
it is only necessaryto identify whichof thestatesmaytrigger
this featureandto addaprocedurecall at thatparticularstate.
This, coupledwith the inheritancemechanismof objectori-
entedprogramming(CoadandYourdon1991),allowsmodels
to bedevelopedandalteredwith aminimumof changesto the
neuralmodelsourcecode.

2.5 AxonalandSynapticTransmission

We modelboth sub-andsupra-thresholdbehaviour of neu-
rons, but sub-thresholdpotentialsare not propagated(from
axon hillock to terminal fibres) in real neurons,only ac-
tion potentialsare. We do not attemptto model (regener-
ative) spike transmissionalong the axon. This, however,
is not a seriousconcernbecausethe model’s behaviour de-
pendsentirely on how pre-synapticactivity is transformed
into post-synapticactivity. It is only in supra-threshold
statesB, C andD (Figure1) thatsynapticcommunicationcan
take place.Hence,it is irrelevantthatwe are,in somesense,

modelling sub-thresholdbehaviour incorrectly. An alterna-
tive view is that we arenot modellingaxonaltransmission,
i.e. we have ‘point’ neuronsas is commonin neuralmod-
elling (MacGregor1987,pp.21–24).

2.6 Learningin Hi-NOON

Thereis no specificsupportfor learningin Hi-NOON. Thus,
if PDP-typelearning(e.g. back-propagation)is to be used,
this mustbe implementedexternalto the simulator. In light
of Hi-NOON’s ability to modelat thelevel of transmembrane
potential,however, thereis implicit supportfor biologically-
basedformsof learningoperatingat the neuronlevel. In an
intriguing paper, Hawkins andKandel(1984)arguethat the
cellular mechanismunderlyingclassicalconditioningin the
well-studiedseaslug Aplysia is an extensionof the mecha-
nism underlyingsensitisation.They go on to state[p. 375]:
“This finding suggeststhat the mechanismsof yet higher
formsof learningmaysimilarly bebasedon themechanisms
of . . . simple forms of learning” referring to this as“an el-
ementarycellular alphabetof learning” [p.376]. Thus, we
build classicalconditioning on the basic neural model of
habituation/sensitisation.Generally, thesesimple forms of
learningareimplementedusingsynapse-on-synapseconnec-
tionsin Hi-NOON asdescribedbelow.

3. Neurons and Synapses

In this section,we presentmoredetaileddescriptionsof neu-
ronsandsynapseswithin Hi-NOON. Sinceit is intendedfor
(amongother things) applicationsin situatedroboticsstud-
ies, thereis provision for sensoryandmotor neuronswhich
connectto the environment,aswell asfor more‘basic’ (in-
formationprocessing)neurons.



3.1 Neurons

The ‘basic’ neurontype has the statesystemfunctionality
which is subsequentlyembeddedin all derivatives,suchas
thesensoryandmotorcells.

3.1.1 Basicneurons

Updatingequationsfor the membranepotential (
���

– in
milli volts) for thisneurontypeare:
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where:������

is the synapticpotential(SynPot) at time

�
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;D
is a counterwhichcountsoveractivepre-synapticcells;: 9

is thesynapticweightfrom a pre-synapticneuron;� is theneurontimeconstant;E �F�HGJI
is thepost-undershootincrementrate; ��KLI
is thepost-actionpotentialpeak-MPdecrement;< �F��MONPIHQ

is aheuristically-setlearningconstant;� �RKHQ
is thepost-thresholdattackincrement;�#��NPI
is thepost-thresholdmaximumMP;!S� ��TLU is thepre-undershootminimumMP;

Certainof theseparameters(e.g. � , E ) aretime-dependent
and have beenset empirically to suit a rangeof processor
speedsandimplementations.However, they maybeinappro-
priatein somecircumstances(aswhenimplementinga real-
time roboticsystemusinga fastprocessor).

3.1.2 SensoryNeurons

The sensoryneuronsin this work reactto objectproximity.
Distancesensorsfeedsensorycellswith asampledvalue(ap-
proximately)proportionalto objectrange,V ����
 , whence:�������S	��C
W����������
'	%X @CV ����
ZY
where

X�Y
representsthefloor functionand @ is anempirically

setscalingfactorwhosevaluedependsontheparticularphys-
ical sensoremployed.

wk
k j

Figure 2: Synapsefrom parentneuron [ to target neuron \ , with
weight ]�^ .
3.1.3 Motor Neurons

Theseclosetheloop betweenthenervoussystemandtheen-
vironment.Motor driveactivity is givenas:_ ����
`�baAced ��������
� f
where

_ �L

is usedatalowerlevel of abstraction(closerto the

hardware)to determinethespeedof motoroutput,and d is a
scalingconstantset to suit the particularrobot hardwarein
use.Its signis determinedby therequirementfor forwardor
reversedrive.

3.2 Synapses

The basic synapse(which is noise free) is shown in Fig-
ure 2. It has functionality which is subsequentlyembed-
dedin all derivativessuchasthehabituating,sensitisingand
conditioningtypes. Theseallow us to implementa simple,
biologically-basedform of learning.

:�g ���
	���
��ihjjjjk jjjjl

: g ����
 �nm if
: g ����
po :rq)sut5v: g ����
'	 m if
: g ����
pw :rq)sut5v:rxWs,y

if
: g ����
po :rxWs,y:rxWz {

if
: g ����
p| :rxWz {:rxWz {

otherwise

where m is theMP recovery parameterand
:rq)sut5v

is thebase
weight(typically 0). Theseareindividually set(togetherwith:rxWz {

and
:rxWs}y

, typically c � T ) for eachneuron.

3.2.1 Noise-freesynapse

A noise-freesynapseisguaranteedto fire whenevertheparent
neuronfires,accordingto:~��O���P� ����
���� TRUE if stateB, C,D

FALSE otherwise

3.2.2 Noisysynapse

A noisysynapsewill fire,with aknownprobability, whenever
theparentneuronfires:~"�O���P� ����
`��� TRUE if cond

FALSE otherwise

where� denotesaparent(pre-synaptic)neuron,� is its thresh-
old, and:

cond
�

(stateB, C,D) ��� ���S� ��� �� ��� � � rand(1)�
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Figure3: Learningin ARBIB is via mechanismsof (a) sensitisation
and(b) classicalconditioningmodelledby synapse-on-synapsecon-
nections.

3.2.3 Habituatingtype

Themagnitudeof thesynapticweight
: g

shown in Figure2
is simply decreasedevery time thesynapsefires.

:�g ���S	��C
�� hk l
:�g ����
 �ÉÈ if stateC � � :�g ����
poÊQP
:�g ����
'	 È if stateC � � :�g ����
p|ÊQP
:�g ����


otherwise

where È is aconstantdecrement(typically Ë �
).

3.2.4 Sensitisingtype

Thesynapsefrom
_

to > is strengthenedevery time Ì fires,
asshown in Figure3(a),accordingto::pÍ suÎ5Ï ���º	#�C
�� � :pÍ suÎ5Ï ����
'	 : t5Ðut ����


if statesB, CD:pÍ suÎ5Ï ����

otherwise

where‘targ’ denotesthetargetsynapse(to besensitised)and
‘sos’ denotesthesynapse-on-synapseinfluence.

3.2.5 Conditioningtype

As shown in Figure3(b),thesynapsefromconditionedstimu-
lus(CS)to unconditionedresponse(UR) is strengthenedpro-
portionallyto theinterstimulusinterval (ISI) betweentheCS
andtheUS firing:
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: Í suÎ5Ï ���Ò	��C
���� : Í suÎ5Ï ����
Ó	�Ô :rt5Ðut ����

if fired
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otherwise

where: Ô��ÖÕ
×Ø B �OÙ;ÚÜÛÝ 

and Õ
× is a countof sampleperiodsinitiated by encounter-
ing stateC for thetargetneuron,

Ø
(= 250)is anempirically-

set scaling factor, Þ (= 500) is a constantchosento max-
imise theeffect of conditioningwhentheconditioningstim-
ulusprecedestheunconditionedstimulusby 0.5s, asshown
in Figure4.

4. Long-Term Memory

Synaptic plasticity in ARBIB’s nervous system, provided
by models of associative classicalconditioning and non-
associative sensitisationand habituation,allows it to learn
collision avoidanceskills by switching from short-rangeto
long-rangesensorymodalities.However, oncethelong-range
modality has becomedominant in eliciting the avoidance
reflex, this conditionedresponsewill eventually extinguish
via autonomousdecay (Sutton and Barto 1981; Damper,
French,and Scutt, forthcoming), which previously consti-
tuted ARBIB’s short-term(and only) memory. Thus, the
useful information is lost until it is onceagainre-acquired
throughstimulussubstitutionfor acollisionavoidancereflex.
It thereforeneedsa way to keepusefulinformationacquired
by its short-termmemorybeforeit extinguishes.

In this section,we considerthecluethatbiologyhasgiven
us for building a long-term memory. Sensitisationexper-
iments with Aplysia have linked long-term memory with
the growth of new synapticconnections(Bailey andKandel
1994,p.42). Studiesof ratsgiven reachingtaskshave also
shown anincreasein synapsecount(Greenough,Larson,and
Withers1985).



4.1 Synaptogenesis

Synaptogenesis,which hasbeenfound to occur after long
term potentiation(LTP), duplicates(andso strengthens)lo-
calisedsynapseconnectivity. Hence, Toni, Buchs, Niko-
nenko, Bron,andMuller (1999,p.421)write:

“Aspharmacologicalblockadeof LTPpreventedthese
morphologicalchanges,weconcludethatLTPis asso-
ciatedwith theformationof new, matureandprobably
functionalsynapsescontactingthesamepre-synaptic
terminalandtherebyduplicatingactivatedsynapses.”

Also, Levitan andKaczmarek(1997,p.501) write on the
subjectof associativeLTP:

“The requirementsfor temporalpairing of the two
stimuli areidenticalto thoserequiredfor associative
learningparadigms.”

4.2 AugmentingtheCell Biological Alphabet

Canatemporalrelationshipcanbeusedto decidethestrength
of new synapses?In thespirit of Hawkins andKandel’s cell
biologicalalphabet,thetemporalrelationshipbetweentheun-
conditionedandconditionedstimuli for classicalcondition-
ing hasbeenappliedto synaptogenesisin Hi-NOON. Here,
thenewly-createdsynapsehasa strengthcalculatedfrom the
differencebetweentheelapsedtimesof post-synapticcell fir-
ing andconditioned-synapsefiring.

Pursuingthis idea,it wasdecidedto constrainthe forma-
tion of new synapsesby introducinga new predicateinto the
Hi-NOON model. This is simply the condition that a new
synapseis only created,parallel to an existing conditioned
synapse,oncetheconditionedsynapticstrengthreachessome
percentage(say, 90%)of theallowedmaximum.

Thus, the cell biological alphabethas beenextendedin
Hi-NOON. First the mechanismsof sensitisationhave been
appliedto classicalconditioning(Damper, French,andScutt,
forthcoming), and second,the temporal relationshipfrom
classicalconditioninghasbeenappliedto synaptogenesis.

4.3 ObstacleAvoidanceExperiments

A NomadScout2 (seehttp://www.robots.com) con-
trolled throughthe NomadicTechnologiesNserver software
via theScout’shostport wasusedastheARBIB platformfor
all experimentsin this paper. TheScouthas6 bumpsensors
and 16 sonardevices arrangedaroundits circumferenceas
shown in Figure5.

A total of 14 runs was carriedout. Each11 minute run
consistedof ARBIB having free rangeto travel aroundthe
robot laboratory, negotiatingobstaclesin its path. The first
seven runs were madewith synaptogenesisenabledin the
Hi-NOON model. For comparison,the remainingrunswere
madewith synaptogenesisdisabled.By interactionwith the
environment,ARBIB learns(by stimulussubstitution)to elicit

Figure5: TheNomadScout2 robotusedin theobstacleavoidance
experiments.

its avoidancereflex. Hence,the measureof bump sensory
neuronactivity (theunconditionedstimulus)is a usefulindi-
catorof how successfullyit haslearnedto avoiddirectcontact
with obstacles.

4.4 Results

Figure6 shows theaverageactionpotentialcountof the left
bumpsensoryneuronfor binsof 100samplepointsthrough-
out the tests. Resultsof the first seven runs are shown in
Figure6(a). Comparingtheseresultswith Figure6(b), we
seeadecreasein activity duringtherunswith synaptogenesis
enabled.

An important observation, obtained by examining log
files of synaptogenesiseventsgeneratedduring the experi-
ment,is that ipsilateralsensoryandinterneuronshadunder-
gonegreatersynaptogenesisthancontralateralneurons.This
meansthat sonarsensorshadstartedto act, throughstimu-
lus substitution,for bumpsensorson thesameside(Damper,
French,andScutt,Figure5, forthcoming). If the sonarsen-
sorytransducerswereto beswappedover, weexpectthatcon-
tralateralsensory-interneuronpairswould becomedominant
instead.Thisexperimentremainsto bedone.

5. Medium-Term Memory

ARBIB cannotassociatestimuli whichhavea largeISI (more
than two seconds,say) as this resultsin only a very small
strengtheningof a conditionedsynapse(Figure 4). Such
small changesin synapticstrengthmake very little differ-
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(a)Left bumpsensoryneuronfiring activity with synaptogenesis.
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(b) Left bumpsensoryneuronfiring activity without synaptogenesis.

Figure6: Neuralactivity in theleft bumpsensoryneurons(a) with and(b) without synaptogenesis.

enceto ARBIB’s behaviour, andyet in somecircumstances
being aware of sucheventscould have survival value. An
examplemightbelearningthethreatdisplaybehaviour of an-
otheragentdeliberatelycrossingARBIB’s path. This is po-
tentially importantsincean attackmight follow sometime
after the displayhasoccurred.ARBIB alsoneedsto be able
to ignoreconstant,neutralbackgroundinformation. Aspects
of the environmentwhich hold no survival valuebut which
persistovera largeperiodof time shouldnot consumeatten-
tion andprocessingresources.Thefollowing two subsections
introducethe basisfor medium-termmemoryandhabituat-
ing sensoryprocessingcircuits,inspiredfrom themechanical
‘tortoise’ Machinadocilisof Grey Walter(1951)andtheme-
dial pallium modelof WangandArbib (1992),respectively.

5.1 Machinadocilis

Machina docilis (Grey Walter 1951) can associatea neu-
tral stimuluswith an appetitive or aversive one depending
upon the internal configurationof the circuit. Its memory
is storedas the decayingfeedbackarounda valve oscilla-
tor, representinga recurrentneural circuit. Grey Walter’s
schematichasbeenmodified and incorporatedinto ARBIB

asM1, M2 andM3 in Figure 7. Hence,firing M1, say, will
initiate oscillations. As in the valve circuit, thesewill de-
caybecauseof anhabituatingsynapse,D betweenM1 andM2.
Hence,thetime of oscillationis governedby thehabituation
rate. ThedecayingoscillationsthroughM1, M2 andM3 form
themedium-termmemory.

5.2 MedialPallium Model

The medialpallium (MP) modelof WangandArbib (1992)
is onepartof a largermodelwhichsimulatessomeof thecir-
cuitry for orientingandprey catchingbehaviour in the toad.
TheMP receivesinput from thetoad’sretinaandanteriortha-
lamus(AT), giving anoutputwhichaffectsthetectum,where
prey catchingbehaviour is generated.

We have includeda small circuit inspiredfrom Wangand
Arbib’s medialpallium modelasshown in Figure7. Instead
of this simplifiedMP modelreceiving input from modelsof
a retinaandanteriorthalamus,it comesfrom the activity of
a sonar(range-finding)sensorycell, which therebyactsasa
simpleAT. The closerthe target and the greaterthe depo-
larisation,the higher the firing rateof the sensorycell and,
hence,of theMP circuit. Figure8(a)shows theoutputfrom
thesensorycell. Thiscircuit givesARBIB theability to ignore
constantstimuli throughhabituation,andyet dishabituateto
a changein stimulusstrength.

The P1 neuronsform a simple position-threshold-slope
map(Grossberg andKuperstein1986)thatconvertsdifferent
input intensitiesto differentpositionsof firing activity in an
arrayof neurons.Here,with an arrayof just two P1 cells,
ARBIB can differentiatebetweenhigh and low firing rates
of the sensorycell. There is a hierarchyof MP2 cells in
which the P1 HIGH cell inhibits the MP2 LOW cell. The
MP2 HIGH cell connectsto MP3 andP2 cells, whereasthe
MP2 LOW connectsonly with its P2 cell. Theseconnections
with MP3 andP2 cellsarehabituatingtypes,andarelabelled
A, B andC in Figure7.
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Figure7: Themedialpalliummodelfeedinganoscillatorymemory,
with apossibleinterfaceto ARBIB’s reflex interneurons.

5.3 Results

SupposeARBIB is placedinto a world whereit sensesonly
a distantobject, thenthe sensorycell will have a low firing
ratewhich is insufficient to depolariseMP2 HIGH through
threshold.Hence,only MP2 LOW fires, causingthe habitu-
atingsynapseA to fire andfiring P2 LOW. If anotheragent
now crossesARBIB’s ‘line of sight’ with the distantobject,
thenthesensorycell will fire atanincreasedrate(Figure8(a),
samples[0: 3000]),MP2 HIGH will fire andMP2 LOW will
be inhibited. Hence,P2 HIGH will startfiring (Figure8(c),
[0: 3000]).

SincesynapsesA, B andC arehabituatingtypes. Their
strengthwill be reducedeachtime they fire. Hence,with
a constantview of the distantobject,A will habituateto a
point whereP2 LOW will not reachthreshold(Figures8(b)
and 8(f) [3000:6000]). Thus, the distantobject will be ig-
nored. If our secondagent once again crossesARBIB’s
path(Figure8(a),[6000:9000]),theP2 HIGH cell will once
againfire becausesynapseC hasrecoveredfrom its earlierac-
tivity. Althoughthedistantobjectis beingignored,presence
of thisnew andcloserstimulusis receiving attention.As both

P2 cells stimulatethe cell labelledout in Figure7, we see
that its activity habituatesto the distantobject(Figure8(d),
[3000:6000]).However, it thendishabituatesin thepresence
of thecloserstimulus(Figure8(d), [6000:9000]).

TheP2 cellsexcite theM1 cell in theoscillatorymemory.
OnceARBIB hashabituatedto the distantstimulus,and is
dishabituatedto the transitoryclosestimulus,theoscillatory
memorywill storethiseventasanhabituatingactivity around
its loop. This is shown in Figure8(e)[6000:9000].

Cell M3 has only weak excitatory connectionswith in-
terneuronsI1 andI2. The right and left reflex interneu-
ronsmake sensitisingsynapse-on-synapseconnectionswith
theM3, I1 andI2 synapses, with theI1 andI2 cells mak-
ing conditioningsynapse-on-synapseconnectionswith P2-
to-reflex synapses.Thus,if ARBIB dishabituatesto our sec-
ond agent,which sometime later causesit to experiencean
aversivestimulusandsofire thereflex interneurons,thecon-
nectionsbetweentheP2 HIGH cell andthe appropriatere-
flex interneuronwill bestrengthened.This will occurfor the
durationof theoscillatorymemory, whichactsto amplify the
weak conditioning– becauseof a potentially large ISI be-
tweentheP2 activity andthereflex activity.

6. Discussion

The mainpurposeof this work hasbeento provide stability
of learningin the behaving animatARBIB. Our philosophy
throughouthasbeento baselearning,andtherebybehaviour,
on plausiblebiological principles. The questiontherefore
arises:canARBIB do anything that otherrobotsor animats
explicitly programmed(e.g.usingreinforcementlearning)to
performlow-level taskscannotdo?Someexamplesof thelat-
terapproachareseenin thepublicationsof Verschure,Kröse,
andPfeifer(1992),Zalama,Gaudiano,andCoronado(1995)
andGaudiano,Guenter, andZalama(1997)(althoughthese
have not always useda real robot platform). The answer
to the above questionis that thereis probablyvery little if
any differencein the observed behaviours. But this is per-
hapsto miss the point. Becausewe have modelledARBIB

veryfirmly onknown or inferredneuralmechanisms,we can
tracea clearlink betweenphysiologyandbehaviour. In par-
ticular, in this paper, we have shown how a simplified ver-
sionof synaptogenesis(currentlyreceiving greatattentionin
experimentalneurobiology)canneatlysolve thewell-known
stability-plasticitydilemmaof learningin a real-world robot.

It is, of course,alwayspossibleto useengineering,or non-
biological, mechanismsto achieve desiredrobot behaviour.
Examplesof this are the work of Nehmzow, Smithers,and
McGonigle (1995) who use a combinationof (PDP-style)
neuralnetworksandhigh-level ‘instinct’ rulesto increasebe-
havioural repertoirein a mobilerobot,andKrebsandBossel
(1997) who usesymbolic classifiersystemsas the basisof
evolvedbehaviour. While suchwork is valid andusefulin its
own terms,it doesnot illuminate links betweenneurophysi-
ologyandbehaviour – suchasthewaythatsymboliccapacity
mightbegroundedin roboticcapacity(Harnad1990,1995)–
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Figure8: Activity in: (a) Sonar sensory, (b) P2 LOW, (c) P2 HIGH, (d) medialpallium OUT, and(e) M1 memorycells,with (f) the
weightof synapseA.

in theway thatwe havetried to dohere.

7. Conclusions and Future Work

This paperhasreportedexperimentsincorporatinga simpli-
fied form of synaptogenesisasthebasisof a stablelong-term
memorymechanismin the ARBIB mobile robot. It hasalso
examinedan idea for a medium-termmemory, basedupon
the work of Grey Walter (1951), which in turn is fed from
a circuit derived from Wang and Arbib’s (1992) model of
the medial pallium. This gives the robot the beginningsof
an ability to ignoreneutralstimuli in its environment,while
alsoattemptingto overcometheproblemof conditioningwith
stimuli which have a large inter-stimulus interval. Thus,
ARBIB’s competenceis evolving as its nervoussystemex-
pands.This will continueasmoreadvancedrobotplatforms
utilising colour vision andmanipulatorcapabilitiesareem-
ployed,allowing greaterinteractionwith the world andsus-
taininggrowth of thenervoussystem.
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