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Abstract

The Hough transform extracts a shape by gathering evidence obtained by
mapping points from the image space into a parameter space. In this
process, wrong evidence is generated from image points that do not
correspond to the model shape. In this paper, we show that significant
wrong evidence can be generated when the Hough Transform is used to
extract arbitrary shapes under rigid transformations. In order to reduce the
wrong evidence, we consider two types of constraints. First, we define
constraints by considering invariant features. Secondly, we consider
constraints defined via a gradient direction information. Our results show
that these constraints can significantly improve the gathering strategy,
leading to identification of the correct parameters. The presented
formulation is valid for any rigid transformations represented by affine
mappings.

1 Introduction

The Hough Transform (HT) gathers evidence for the parameters of the equation that
defines a shape, by mapping image points into the space defined by the parameters of
the curve [1,2]. After gathering evidence, shapes are extracted by finding local maxima
in the parameter space (i.e., local peaks). In a broad definition, the HT can be
generalized to extract arbitrary models by changing the equation of the curve under
detection [1]. For general forms, the curve under detection can be defined by
combining the equation of a shape and a parameterized transformation [3]. Thus, the
parameters of the model are actually the parameters of the transformation that
represents the different appearances of a shape in an image. Most general forms of the
HT has been defined for similarity transformations [4,5], althowgiently there has

been an interest on affine and more general mappings [6,7].

The HT is a robust technique capable of handling significant levels of noise and
occlusion. However, error analysis has suggested that when the HT is extended to
arbitrary shapes it gathers excesive wrong evidence leading to incorrect results [8].
This analysis and other matching hypothesis strategies [9][10][11][12] centre on the
extraction process defined by clustering and hashing techniques. Although the close
similarity between cluster methods and the generalized form of the HT might suggest
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that the analysis of clustering techniques and hypothesis strategies of clustering
techniques can be used to establish the performance of the generalized forms of the HT,
the difference in the type of features used by both techniques makes the uncertainty
under occlusion and noise essentially different [13]. Since geometric hashing is based
on primitives such as lines, curves or polygons, then the range of evidence accumulated
is increased by small errors in the primitives. Conversely, the HT and its
generalizations gather evidence by using single points. Thus, performance depends on
random matching, rather than on errors in the computation of image primitives.

In this paper, we show that significant wrong evidence can be generated when the
HT is used to extract arbitrary shapes under rigid transformations. The importance of
false evidence is directly related to the generality in which the HT is defined.
Intuitively, as the transformation that defines the appearance of a model shape becomes
more general, then local image information is less significant. Thus, image features
can easily produce false evidence. That is, as the transformation becomes more general,
the model increases the number of possible forms to be matched. Therefore, the model
can easily be matched to noise or to segments of objects that do not correspond to the
description of the whole shape. The false evidence generated can interfere seriously
with the detection process causing inaccurate, or even incorrect, results.

Here, we study the significance of wrong evidence for arbitrary shapes under affine
transformations. In this case, the generality of the transformation can produce an
excessive amount of wrong evidence that can spoil the extraction process. In order to
ameliorate this problem, we use two types of constraints. First, we define constraints by
considering invariant features. Secondly, we consider constraints defined via a gradient
direction information. Constraints are used to verify whether the transformation is
congruent to the image information. Our results show that these constraints can
significantly improve the gathering strategy of the HT. The presented formulation is
valid for general geometric transformations, however, our examples and results are
developed for affine transformations only.

This paper is organised as follows. For completeness, section 2 presents the
definition of the HT for arbitrary shapes. Arbitrary shapes are parameterised by
continuous curve under rigid transformations represented by affine mappings. In
section 3 we discuss the source of wrong evidence in the HT. Notice that this is
different to the combinatorial error discussed in [8]. In the HT wrong evidence is
generated when the model is matched against false evidence independently of the
accuracy in the data. In section 4 we consider constraints to reduce false evidence
during the gathering process. Section 5 presents implementations and examples.
Section 6 includes conclusions.

2 General shapes and affine mappings
2.1 HT mapping

The HT gathers evidence of a model shape through a mapping defined between the
image space and the parameter space. In this section, we are interested in obtaining a
formal representation of this mapping when the model is given by an arbitrary shape
under an affine mapping.

In a generalised approach, we can distinguish two components in the definition of a
model. First, we can consider a shape represented by an equation without any free
parameters. Secondly, the model can be obtained by applying a parameterised
transformation that defines the potential appearances of the shape. Thus, the






BMVC2000

parameters of the transformation become the parameters of the model. In order to
exemplify these concepts we can consider a circle with radius one and centred on the
origin to be a shape without any parameters. If we apply an affine transformation to the
shape, then the model is given by an ellipse. Each of the five parameters of the ellipse
is related to the parameters of the affine transformation. Thus, when we find an ellipse
in an image, we are actually finding a transformed circle. It is important to notice that
in this approach the complexity of the extraction process is independent of the
complexity of the shape. That is, if we replace the circle by a complex shape such as
the profile of a mountain or the course of a river, then the model defining its
appearance will still have five parameters. Therefore, the HT mapping for the circle
and the complex shapes both have a five-dimensional accumulator space and the
extraction process involves the same complexity.
If we consider an arbitrary shape given by the curfvg, then a parametric model

is composed of the points,

w(a,b,u)= f(a,u)+b, 1)
for vOu(s) a point in the shape. The parameters of the transformation have been
divided into the translation and the deformation parameters. If we consider an image
point p, then we can match this point to a point in the model. This would imply that
p=w(a,b,u). Thus, by solving fob in equation (1), we have that

b(p.u,a)=p- f(av) )

Here, the functionb(p,u,a) represents a mapping that obtains the location

parameters for each potential value of the parameteigiven an image poinp and
a model pointu . That is, it defines the point spread function (psf). After all evidence
has been gathered, then maxima in the parameter space define the best vahes
b" that represent the transformation that maps the model into the image.

2.2 Affine transformations

The mapping in equation (2) defines the value of the location parameters as a function
of the deformation parameters and a single image ppinHowever, we can obtain

alternative mappings by including additional image information. More information can
constrain the HT mapping and reduce the computational burden, since less points are
considered. Let us suppose that instead of considering one singleppirthe image
and a single poinb in the model, we have a collection of poiritsin the image and a
collection of points in the model.
If we consider an affine transformation, and we have that{p;, p,, p;} and

r ={u,,u,,05}, then by considering equation (2) we can obtain the simultaneous
equations,

p-p2 = fau)-f(au,) ©)

p-ps=flao)-faus)’
which can be developed as two independent equations by considering the orthogonal
components of each point. That is,
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and where

x O
e D%E
defines the affine transformation.
In general, we can redefine equation (3) as the pair of equations,
b(P,I)=p- f(S(P,I")v) (5)
a(P,r)=s(p,r) ’
for pOP anduOr . These equations define a general parameter decomposition of the
HT. The first equation defines the location parameters independently of the parameters
in a. The second equation solves for the deformation parametersindependently
of the location parameters.

3 Wrong evidence

Some edge points in an image represent the shape that we want to extract, whilst some
points represent background objects. Wrong evidence is generated when background
points are used to gather evidence. This wrong evidence is not related to the extension
of the psf as in the case of clustering techniques [8]. Wrong evidence corresponds to

psfs that do not define the primitive.

In equation (2) we associate a poimtin an image to a poind in the model. In a
straightforward implementation, we can consider for each ppirdll the pointsu
that form the model. However, this generates wrong evidence since we consider points
in the model and in the image (i.e., paifg,u)) that do not give the correct
transformation. That is, equation (2) provides the correct valuesaofd a only when
the values ofp andu are related by equation (1). That is, when

p= f(a*,u)+ b’ (6)

where b* and a” are the parameters that map the model shape into the image
primitive. Accordingly, only one point in the psf generates true evidence, the evidence
for the remainder is wrong. This problem is more significant for equation (5) since
many more pairs(P,l') can be generated from the combinations associated with a
collection of points. In this case the correct value of the parameters is obtained only
when the points match the transformed model, i.e.

p-fa'u)+b =0 OpOPw OF @)

If we considern image points (i.e.P ={py,..,p,} ) in equation (5), there existP,
permutations of possible pai(g,I), for m model points. One of these pairs gives the
correct transformation whilst the others generate wrong evidence. This wrong evidence
can easily lead to incorrect results. The obvious solution to this problem is to control
the selection of the points iR andT .

4 Gathering constraints

4.1 Invariance constraints

In order to reduce the wrong evidence, we can establish a mechanism aimed to select
the points inP and T that satisfy equation (7). This equation indicates that the points

in the image must correspond to the points in the model. Thus, we can consider a
verification stage, which ensures that only the points that share a measured feature in
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the model and in the image are used in equation (5). If points share a feature, then it is
probable that they correspond to the same point in the model and in the shape in the
image. Accordingly, it is probable that they satisfy equation (7). The only sources of
error are noise or sampling effects since points that do not share the same attribute(s)
are now discarded. Previous work has considered the use of intensity or chromatic
attributes as a possible characterisation of image points [14]. Here we focus on
obtaining a general geometric characterisation rather than a chromatic constraint.

We denote a geometric feature of a point or of a collection of poin®& @sand
R(P), respectively. We can consider a pair of poiptsand v only if the gradient
direction is the same. That is, &(p)=G(v) [4]. However, this information cannot
characterise points if the transformation includes rotation. Thus, an effective
characterisation should be independent of the transformation that dictates a shape's
appearance. In general, the HT can be improved if we constrain the gathering process
by using a featur&) that is invariant to the transformation. Thus, we can consider a
pair of pointsp andu only if

Q(p)=Q(v)
where Q is invariant with respect to the transformation. That is,
Q(f (2.0)= Q).
For equation (5), we can gather evidence only if
Q(P)=Qfr),

which indicates an invariant correspondence between a collection of points.

An invariance characterisation is not unique. Thus, given a poiot a collection
of points P, we can identify several points or I, respectively, in the model.
Accordingly, if we denote the points in the model characterised by the same invariant
feature asw (P) then,

w(P)={riQ(P)-Q(r)=o.r O{u}}, )
for {u} all the combinations of points in the model. Based on this constraint, we can
rewrite equation (5) as,
b(P,I")= p-f(S(P,r)v)dr ow(P)
- : )
a(P,r)=s(p,rorow(p)
These equations indicate that evidence will only be gathered when the invariant
featureQ in the model and in the image is the same.

4.2 Gradient direction constraints

The constraints in equation (9) reduce false evidence by considering a pre-verification
or selection process, which determines whether local geometric information has the
same characterisation in the model and in the image. Thus, the poimtshe image
are related to the point§ in the model only if they have the same geometrical
characterisation. However, this constraint relies on the supposition that the cardinality
of w(P) is small and it does not consider the false evidence generated by background
objects or other scene artefacts. Unfortunately, for general transformations these factors
can reduce the efficacy of the gathering process leading to incorrect results.

In an alternative approach, we can consider a post-verification process that
determines when the transformation defined by the pdntand I is congruent to
other image data. This process can be formalized by considering that the solution of
equation (9) defines the parameters of a transformation that maps thelpamspP .
That is,
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pi = f(@(P.r)v;)+b(P.r). (10)

This means that if we apply the transformation defined by equation (9) to the model
point u; , then we obtain the co-ordinates of the point in the image. Thus, in order to
verify the validity of the transformation we consider whether additional points in the
model and not i, are mapped to points in the image. In general, we can expect that
for each point in the model we have a point in the image. However, the transformation
will not give a perfect match since noise and occlusion might exist. Thus, we would
need to consider several points to see whether the transformation is congruent with the
image information. In order to avoid comparing a large number of points, we compare
only some features of the points . That is, we can compute a featur¢p,) for

p; OP and to compare it against the value
R(f (a(P,r)v;)+b(P,I)).

Thus, we will gather evidence only if the value is the same for all the points in the

collection. Notice that in this case the featwge) does not need to be invariant with

respect to the transformation. Here we use gradient direction. That is, we constrain the
gathering process in equation (10) to val(®s’) for which,
G(p)=G(f (a(P.r)vi)+b(P.r)). (11)

Accordingly, the solution of equation (9) is considered in the gathering process if
the gradient direction of the points in the image is the same that the gradient of the
points in the model after transformation. In this case, the verification is performed only
for the points that define the transformation, thus, it does not require additional image
information. Gradient direction has been previously used in several techniques to
reduce the computational requirements of the HT (e.g., [15][16][17][18]). This
information cannot be used for general geometric transformations since the
characterisation of points must be invariant. Nevertheless, its use in a post-verification
process provides important information for shape extraction.

5 Implementation and examples

In order to reduce wrong evidence we have constrained the mapping by the inclusion of
invariant properties (i.e., equation (9)) and by a post-verification process in equation
(11). We define the invariant featu@P) as the ratio of length of two parallel lines.
That is, Q(P)=|p, - p2|/|ps - ps| . The process of shape extraction in equation (9) and

(11) was implemented in four main stages. First, for each point in the image we select
another three points such that they define two parallel lines. Then, we search for a
collection of points in the model which satisfy equation (8). That is, points for which
Q(P)=Q(r). Following this, we solve for the parameters of the transformation
according to equation (5). Finally, we verify the constraint in equation (11) and we
gather evidence of the parameters in three 2D accumulators: one for the location
parameters and the other two for the deformation parameters. To reduce computations,
we consider the collection of points that have two points of high curvature. That is, we
consider P only if the curvature in the pointg; and p, is sufficiently large. This
constraint reduces the number of point combinations without reducing the effectiveness
of the extraction process.

Figure 1 shows an example of the extraction of the HT for affine shapes. Figure
1(a) shows the model used in this example. This model is defined by a continuous
curve with 15 Fourier coefficients. The image in Figure 1(b) contains a primitive that
approximates a linear transformation of this model. Figure 1(c) shows the result of the
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extraction process. The accumulators in Figures 1(d), 1(e) and 1(f) were obtained by
gathering evidence according to equation (9). These accumulators have well-defined
peaks which define an accurate value of the parameters of the transformation. The pair
of peaks in the accumulators of Figures 1(d) and 1(e) show that the matching allows
two solutions that correspond to mirror transformations. The shape defined by these
transformations is shown in Figure 1(f) superimposed on the original image.

(d) (e) D

Figure 1. Example of the extraction process. (a) Model shape. (b) Raw image.
(c) Extraction result. (d)Evidence of the translation parameters. (e) Evidence of two
transformation parameters. (f) Evidence of two transformation parameters.

Figure 2. Example of wrong extraction for two primitives. (a) Raw image. (b) Edge
points. (c) Translation parameters accumulator.
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The well-defined peaks in the accumulators of the example in Figure 1 show that
the mapping in equation (9) provides an effective approach for gathering evidence of
arbitrary shapes under rigid transformations. However, the generality of the
transformation can lead to incorrect results. This case is illustrated in the example
shown in Figure 2. This example was obtained by considering the same gathering
process as the one used in the example in Figure 1. The only difference is that the input
image contains an extra object. However, the accumulator for the location parameters
in Figure 2(d), contains two well-defined peaks which suggest that both objects
correspond to the model. Furthermore, the largest peak is associated with the letter "S",
not the letter "I", so the wrong shape/transformation is actually selected. An analysis of
the evidence gathering process shows that the incorrect location is due to the wrong
values produced by the lack of discriminatory power of the invariance constraints.

In order to obtain a good result it isaessary to include the constraint in equation
(11). The effectiveness of this constraint is illustrated in the example in Figure 3. The
image in Figure 3(a) contains four objects, two of which are instances of the model
shape. Figure 3(b) shows the edges used in the gathering evidence process. Figure 3(c)
shows the accumulator obtained by constraining the gathering process. The
accumulator presents two well-defined peaks that provide an accurate estimate of the
position of the instances of the primitive. Figure 3(d) shows the result of the complete
extraction process superimposed on the original image.

(e) (d)

Figure 3. Example of the extraction process. (a) Raw image. (b) Edge points.
(c) Location accumulator. (d) Extraction result.
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Figure 4. Example of the extraction process. (a) Raw image. (b) Edges. (c) Model
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Figure 4 shows another example of the improvement achieved in the gathering
process when the constraint in equation (11) is used. The edges in Figure 4(b) were
obtained from the image in Figure 4(a) and used to gather evidence of the model shape
in Figure 4(c). This model was actually defined by a continuous curve with 15 Fourier
coefficients. Figure 4(d) shows the accumulator obtained according to equation (9).
The accumulator in Figure 4(e) was obtained by including the constraint in equation
(11). Comparison of the accumulator arrays accumulator in Figures 4(d) and (e) shows
that prominent wrong peaks are completely eliminated, producing a single well-defined
peak. Figure 4(f) shows the result (superimposed on black) obtained by the extraction
technique.

6 Conclusions

The analytic formulation of the HT can be extended to extract arbitrary shapes under
general transformations. The generality of this extension increases significantly the
amount of false evidence. Geometric invariant features can be included in the
formulation as an effective way of reducing the dimensionality of the transformation
and to reduce the amount of false evidence gathered. However, the generality of the
transformation can still produce an excessive amount of false evidence, potentially
leading to incorrect results.

A significant reduction of false evidence can be obtained by considering a
verification process that evaluates if the parameters given by the HT mapping define a
transformation that is congruent to other image data. In this paper, we have used
gradient direction information to reduce the false evidence in affine mappings.
Experimental results show that this approach can improve the extraction process
significantly leading to correct identification of the appearance parameters even when
the original situation would have appeared ambiguous to an unconstrained approach.
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