Fast implementation of oversampled
modulated filter banks

S. Weiss and R.W. Stewart

The authors present an efficient implementation of oversampled
filter banks derived from a prototype filter by modulation. Via a
polyphase analysis, redundancies in the filter operations are
removed. With some modifications, a very simple and efficient
implementation is found, which is briefly compared to existing
realisations.

Introduction: Oversampled filter banks are widely used for reduc-
ing the computational complexity of resource-demanding signal
processing algorithms, such as subband adaptive filtering applied
to acoustic echo control [1, 2]. Therefore, low complexity realisa-
tions of such filter banks are desirable. However, despite this
motivation and in contrast to their critically decimated counter-
parts [3], numerically efficient implementations of noncritically (or
‘oversampled’) filter banks have received little attention.

The sparse literature on the implementation of oversampled fil-
ter banks includes the work of Wackersreuther [4], where a time
domain approach leads to a factorisation of the analysis filter
bank operation into a filtering operation linked to the prototype
filter coefficients, a cyclical shift, and the applications of the
appropriate modulating transform (e.g. a DFT). In [5], the analy-
sis filter bank is in the time-domain divided into a filter operation
with time-varying components of the prototype filter, followed by
the modulating transform. More recently, polyphase factorisations
in the z-domain have been presented [6, 7). For all cases [4 - 7], a
dual implementation can be found for the synthesis filter bank
operation.

Here, the polyphase approach [6, 7] is utilised as a starting
point to yield, with some modifications and rearrangements,
novel, simple and efficient filter bank implementations.

( )Yo(z) .
DML

( >YK-1(Z) ] 2 (z)

Fig. 1 Analysis and synthesis filter bank for subband decomposition of a
signal X(z)
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Analysis filter bank: Consider the analysis filter bank of Fig. 1
producing K subband signals. To remove computational redun-
dancies due to the decimation by N, a type-1 polyphase notation
. [3] is introduced for the analysis filters

N-1
Hy(2) = Z 27" Hyyn(2) 6]

n=0

The input signal is decomposed into N type-2 polyphase compo-
nents

N~1
X(z) =3 2V Xa(2) @)
n=0
Organising the polyphase components in vector form

H(2) = [Hyo(2) Hiplz) Hyv-1(2)]" (3

X(2) =[Xo(2) Xi(2) Xnva()]T @

the K subband signals ¥(z) = [Yy(2) Yi(2) ... Y (2)]7 can be
denoted by

Y(2) = [Hy(2) H,(2) Hy 1(2)]" - X(2)
=H(z) - X(2) (5)

where H(z) is the polyphase analysis matrix [6] and describes a lin-
ear periodically time-varying system of period N.

We assume that the analysis filters are FIR with L, coefficients,
g . Py, 1, which are derived from a prototype lowpass filter by
a modulation sequence g ... 1,1, With period K. For simplicity
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without loss of generality we assume that L, is a common multiple
of both N and K. With Iy being an N x ¥ identity matrix and the
filter coefficients of H,(z) organised in a vector hy, the polyphase
components in eqn. 3 can be written as

Hy(z)=[Iy 2! Iy Zz=Le/NH1 1y T by, (6)
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where t, € Clr is the modulation sequence for the kth analysis fil-
ter. The periodicity of this sequence can be exploited by

ty = [Ix Ik Ix]” -t (8)
Lo

where t; € CK. The K modulation sequences are collected in a
matrix

T= [EO ELP*]- ]T (9)
which for example for a DFT modulated fiiter bank would be a K
x K DFT matrix. The polyphase analysis matrix is now given by

H(Z) =T Ly -P Ll(z) (10)

Hence, a factorisation into prototype filter components and a
rotation by a transform matrix T has been established similar to
[6, 7]. The difference is that the diagonal matrix P contains no
sparse filters but only the prototype filter coefficients.

Synthesis filter bank: The synthesis-filter bank with expansion by
N followed by interpolation filters Gi(z) as shown in Fig. 1 can be
performed in an analogous fashion to the analysis filter bank
operation. The condition that all filters Gi(z) and Hi(z) are
derived from the same prototype lowpass filter and that the filter
bank is perfectly reconstructing is guaranteed by H(z) being
paraunitary [6]. Reconstruction is then given by the polyphase
synthesis matrix

G(z)=HEIY)Y=LT(z"Y)-P.L . TH (11)

This polyphase synthesis matrix relates the subband samples back
to the polyphase components of the fullband signal, X(z) = G(2) -
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Fig. 3 Synthesis filter bank signal flow graph

Implementation: The analysis filter bank operation in eqn. 10 can
be executed in two steps. First, the memory-requiring multiplica-
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tion Ly(z) - X(2) can be brought into the form of a tapped delay
line (TDL) block updated with N new samples for every opera-
tion. This is shown in Fig. 2. The second part of the operation is
memoryless, and consists of the multiplication with the L, proto-
type filter coefficients, forming K polyphase components, which
are then rotated by the modulation matrix T to yield the subband
samples.

For the synthesis filter bank operations, we split the equation
X(2) = G(2) - X(2) into two parts by introducing an intermediate
variable /(z) € Ch(z):

iye 0
Iy Oy

Vi(z)= . V(2)z '+P-LT . TH .Y (2)
0 In On

(12)

The second summand on the right-hand side of eqn. 12 is memo-
ryless, and the system matrix in eqn. 12 performs a shift operation
by N samples. The desired output can be derived from the inter-
mediate variable ¥(z) as

X(z) =0 0 Iy]-V(2) (13)

Thus, the only memory-exhibiting operation in the synthesis filter
bank is the shift operation in eqn. 12, and the circuit given in
Fig. 3 results. This circuit shows the derotation of the subband
samples by T, the copying by L, such that the L, multipliers are
excited, and accumulation of the products into a TDL. This TDL
results from rearranging the multiplexing of the N polyphase out-
puts in X{(z), and only requires a shift operation every N sampling
periods,

Computational complexity: From the signal flow graphs for analy-
sis and synthesis in Figs. 2 and 3, the computational complexities
for both operations in terms of multiply-accumulates (MACs)
evaluations is
c= % QL +4Klog, K)  [MACs]  (14)

for a complex input x[x]. Multiplication of the complex samples
with the real valued prototype filter coefficients accrues to 2L,
MACs. The modulation matrix T is assumed to be implemented
by a K-point FFT [7] requiring 4Klog,X real valued MAGCs. If the
fullband signal X(2) is real valued, the complexity C in eqn. 14 is
halved since all MACs outwith the transform are entirely real val-
ued and half of the subband signals Y,(z) are complex conjugate
copies of others subbands, and therefore do not need to be gener-
ated nor processed.

Although other methods reported in the literature give identical
complexities in terms of MACs, the realisations in Figs. 2 and 3
do not require any additional circular shifts [4], or the indexing of
time-varying filters [5] or filters with sparse coefficients [6, 7).

Conclusion. A filter bank analysis has been presented based on the
polyphase approach. With some modifications, filter bank realisa-
tions have been derived which are efficient, very simple, and avoid
some of the disadvantages of previous fast implementations.
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Feedback phase-shift compensation for
adaptive interference cancellers

E.W. Justh and F.J. Kub

An algorithm typically used for adaptive co-site interference
cancellers (for frequency-hopping spread-spectrum
communications systems) is the least-mean-square error (LMS)
algorithm. As adaptive cancellation moves into L-band and S-
band, feedback system stability becomes a critical issue for co-site
interference cancellers using the LMS algorithm. The authors
present a technique for compensating the high-frequency feedback
path phase shifts leading to instability with an additional complex
weight multiplication at baseband. Simulation and experimental
results confirm the effectiveness of the technique.

The co-site interference problem impacts a number of frequency-
hopping spread-spectrum communications platforms, and is now
being addressed for next-generation systems in L-band and S-
band. Co-site interference occurs owing to the physical proximity
of transmit and receive antennas (e.g. on a ship or rotorcraft), and
because transmission and reception occur simultaneously. Adap-
tive co-site interference cancellers reduce the interfering signal (due
to the transmit antenna) from the signal at the receive antenna, to
prevent the receiver from being overdriven. Using a reference sig-
nal from the transmitter, adaptive co-site interference cancellers at
VHF and UHF can typically achieve cancellation of the interferer
of 30 dB or more [1 - 3].
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Fig. 1 Adaptive canceller with single complex weight

A standard algorithm for co-site interference cancellers is the
least-mean-square error (LMS) algorithm {4, 5]. For narrowband
interferers and relatively slow frequency hopping at VHF or UHF,
a single complex weight circuit, as shown in Fig. 1, can provide
adequate cancellation. The adaptive canceller of Fig. 1 works by
generating a copy of the interfering signal from the reference sig-
nal, and then subtracting the copy of the interfering signal from
the receiver signal (which contains both the desired receive signal
and the co-site interference signal). The copy of the interfering sig-
nal is produced by appropriately weighting the in-phase and quad-
rature-phase copies of the reference signal, using the weights w;
and w, in Fig. 1. The weights are determined adaptively by inte-
grating the correlation between the error signal and the in-phase
and quadrature-phase versions of the reference signal (i.e. using
the LMS algorithm). The feedback loop consists of the low-fre-
quency path through the integrators, and the high-frequency path
through the summer, feedback amplifier, and subtractor (to which
the multipliers also contribute). The delay and phase-shift through

17th August 2000 Vol. 36 No. 17 1503



