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Abstract. This paper presents an efficient implementation of oversampled filter banks derived from
a prototype filter by modulation. Via a polyphase analysis, redundancies in the filter operations are
removed. With some modifications, a very simple and efficient implementation is found, which is
briefly compared to existing realisations.

1. INTRODUCTION

Oversampled filter banks are widely used for reducing the computational complexity of resource-
demanding signal processing algorithms, such as subband adaptive filtering applied to acoustic echo
control [4, 1]. Therefore, low complexity realisations of such filter banks are desirable. However,
despite this motivation and in contrast to their critically decimated counterparts [6], numerically effi-
cient implementations of non-critically (or “oversampled”) filter banks have received little attention.

The sparse literature on the implementation of oversampled filter banks includes the work of
Wackersreuther [7], where a time domain approach leads to a factorisation of the analysis filter bank
operation into a filtering operation linked to the prototype filter coefficients, a cyclical shift, and the
applications of the appropriate modulating transform (e.g. a DFT). In [5], the analysis filter bank is in
the time-domain divided into a filter operation with time-varying components of the prototype filter,
followed by the modulating transform. More recently, polyphase factorisations in the z-domain have
been presented [2, 8]. For all cases [7, 5, 2, 8], a dual implementation can be found for the synthesis
filter bank operation.

Y

0Y

1Y

Y

0Y

1Y

analysis filter bank synthesis filter bank

N

N

N

)(z1H

)(z0H

)(z1K-H

N

N

N

)(z0G

)(zG1

)(z1K-G
)(z1K-

)(z

)(z

)(z1K-

)(z

)(z )(zX)(zX Fig. 1: Analysis and synthesis filter
bank for subband decomposition of
a signalX(z).

Here, the polyphase approach [2, 8] is utilised as a starting point to yield, with some modifications
and rearrangements, novel, simple and efficient filter bank implementations.

2. ANALYSIS FILTER BANK

Consider the analysis filter bank of Fig. 1 producingK subband signals. To remove computational
redundancies due to the decimation byN , a type-1 polyphase notation [6] is introduced for the
analysis filters,

Hk(z) =

N�1X
n=0

z�nHkjn(z) : (1)

The input signal is decomposed intoN type-2 polyphase components,

X(z) =

N�1X
n=0

z�N+n�1Xn(z) : (2)



Organising the polyphase components in vector form,

Hk(z) =
�
Hkj0(z) Hkj1(z) � � � HkjN�1(z)

�T
(3)

X(z) = [X0(z) X1(z) � � � XN�1(z)]
T (4)

theK subband signalsY (z) = [Y0(z) Y1(z) � � � YK�1(z)]
T can be denoted by

Y (z) =
�
H0(z) H1(z) � � � HK�1(z)

�T
�X(z) = H(z) �X(z) (5)

whereH(z) is the polyphase analysis matrix [2] and describes a linear periodically time-varying
system of periodN .

We assume that the analysis filters are FIR withLp coefficients,hk;0 � � �hk;Lp�1, which are
derived from a prototype lowpass filter by a modulation sequencetk;0 � � � tk;Lp�1 with periodK.
For simplicity (w.l.o.g.) we assume thatLp is a common multiple of bothN andK. With IN being
anN�N identity matrix and the filter coefficients ofHk(z) organised in a vectorhk, the polyphase
components in (3) can be written as

Hk(z) = [IN z�1�IN � � � z�Lp=N+1
�IN ]| {z }

LT
1
(z)

�hk (6)

= L
T
1 (z) �

2
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�

2
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(7)

wheretk 2 C Lp is the modulation sequence for thekth analysis filter. The periodicity of this
sequence can be exploited by

tk = [IK IK � � � IK| {z }
L2

]T � ~tk (8)

where~tk 2 CK . TheK modulation sequences are collected in a matrix

T = [~t0 � � � ~tLp�1]
T (9)

which for example for a DFT modulated filter bank would be aK�K DFT matrix. The polyphase
analysis matrix is now given by

H(z) = T � L2 �P � L1(z) (10)

Hence, a factorisation into prototype filter components and a rotation by a transform matrixT has
been established similar to [2, 8]. The difference is that the diagonal matrixP contains no sparse
filters but only the prototype filter coefficients.

3. SYNTHESIS FILTER BANK

The synthesis filter bank with expansion byN followed by interpolation filtersGk(z) as shown in
Fig. 1 can be performed in an analogous fashion to the analysis filter bank operation. The condition
that all filtersGk(z) andHk(z) are derived from the same prototype lowpass filter and that the filter
bank is perfectly reconstructing is guaranteed byH(z) being paraunitary [2]. Reconstruction is then
given by the polyphase synthesis matrix

G(z) = H
H(z�1) = L

T
1 (z

�1) �P � L
T
2 �T

H (11)

This polyphase synthesis matrix relates the subband samples back to the polyphase components of
the fullband signal,̂X(z) = G(z) � Ŷ (z).
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4. IMPLEMENTATION

The analysis filter bank operation in (10) with can be executed in two steps. First, the memory-
requiring multiplicationLN (z) � X(z) can be brought into the form of a tapped delay line (TDL)
block updated withN new samples for every operation. This is shown in Fig. 2. The second
part of the operation is memoryless, and consists of the multiplication with theLp prototype filter
coefficients, formingK polyphase components, which are then rotated by the modulation matrixT

to yield the subband samples.

For the synthesis filter bank operations, we split the equationX(z) = G(z) � Y (z) into two parts
by introducing an intermediate variableV (z) 2 C Lp (z):

V (z) =

2
6664

0N 0

IN 0N

. . .
. . .

0 IN 0N

3
7775 � V (z)z�1 + P � L

T
2 �T

H
� Y (z) (12)

The second summand on the right hand side of (12) is memory-less, and the system matrix in (12)
performs a shift operation byN samples [3]. The desired output can be derived from the intermediate
variableV (z) as

X(z) = [0 � � � 0 IN ] � V (z) (13)

Thus, the only memory-requiring operation in the synthesis filter bank is the shift operation in (12),
and the circuit given in Fig. 3 results. This circuit shows the de-rotation of the subband samples by
T
H, the copying byL2 such that theLp multipliers are excited, and accumulation of the products

into a TDL. This TDL results from rearranging the multiplexing of theN polyphase outputs inX(z),
and only requires a shift operation everyN sampling periods. The algorithms for both analysis and
synthesis filter bank operations are given in Tab. 1.

5. COMPUTATIONAL COMPLEXITY

From the signal flow graphs for analysis and synthesis in Figs. 2 and 3, the computational complex-
ities for both operations in terms of multiply-accumulates (MACs) evaluations is

C =
1

N
� (2Lp + 4K log2K) [MACs] ; (14)



Analysis Filter Bank

1: updatex with N new samples
2: repeat fork = 0(1)K � 1:

x̂k = x(k : K : end)T � p(k : K : end)
3: y = T � x̂

Synthesis Filter Bank

1: x̂ = T
H
� y

2: repeat forl = 0(1)Lp � 1:
v(l) = v(l) + p(l) � x̂(modK l)

3: the lastN samples inv are outputs samples
4: shift v byN samples, padding with zeros.

Tab. 1: Algorithms for analysis
(top) and synthesis filter bank (bot-
tom); arrays are indicated as under-
lined quantities, and their elements
are marked by indices (subscripts or
bracketed). Both filter bank rou-
tines have to be executed only once
within a sampling period at the low
subband rate.

for a complex inputx[n]. Multiplication of the complex samples with the real valued prototype filter
coefficients accrues to2Lp MACs. The modulation matrixT is assumed to be implemented by a
K-point FFT [8] requiring4K log2K real valued MACs. If the fullband signalX(z) is real valued,
the complexityC in (14) is halved since all MACs outwith the transform are entirely real valued and
half of the subband signalsYk(z) are complex conjugate copies of others subbands, and therefore
do not need to be generated nor processed.

Although other methods reported in the literature give identical complexities in terms of MACs,
the realisations in Figs. 2 and 3 do not require any additional circular shifts [7], or the indexing of
time-varying filters [5] or filters with sparse coefficients [2, 8].

6. CONCLUSION

A filter bank analysis has been presented based on the polyphase approach. With some modifications,
filter bank realisations have been derived which are efficient, very simple, and avoid some of the
disadvantages of previous fast implementations.
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