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Abstract— The paper investigates the application of an emerging
learning technique, called support vector machines (SVMs), to con-
struct an adaptive nonlinear multiuser detector (MUD) for direct-
sequence code-division multiple-access (DS-CDMA) signals transmitted
through multipath channels. Computer simulation is used to study this
adaptive SVM MUD, and the results show that it can closely match the
performance of the optimal Bayesian one-shot detector, using a rela-
tively small training data block.

I. INTRODUCTION

DS-CDMA constitutes an attractive multiuser scheme that
allows users to transmit at the same carrier frequency. How-
ever, this creates multiuser interference which, if not con-
trolled, can seriously degrade the quality of reception. For
the downlink scenario, the linear minimum mean square er-
ror (MMSE) multiuser detector (MUD) [1]-[5] is widely
used, as its adaptive implementation is very simple. The
linear MUD, however, can only work when the underlying
noise-free signal classes are linearly separable. As nonlinear
separable cases are common in DS-CDMA channels, neural
networks have been considered as nonlinear MUDs [6]-[9].
Training times for these nonlinear MUDs, however, are often
long and unpredictable. Furthermore, the structures of these
neural network MUDs are usually determined by trial and
error.

A learning technique known as the support vector ma-
chines SVM has gained popularity due to its many attrac-
tive features and promising empirical performance [10]-[12].
For a brief introduction to SVMs please refer to the Ap-
pendix. For binary classification tasks, the SVM approach
nonlinearly maps the input space into a high dimensional
feature space via simple kernel representations. In the high
dimensional feature space, a linear classifier with maximum
margin is constructed. Apart from good generalisation prop-
erties, the learning process of SVMs is intriguing. A SVM
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Fig. 1. Discrete-time model of synchronous CDMA downlink.
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classifier is determined only by a sparse set of support vec-
tors (SVs), and these SVs are automatically selected from the
training data during the learning process.

Since the idea of SVMs originates from finding an opti-
mum hyperplane for separating two classes with maximum
margin, it is also very relevant to multiuser detection in DS-
CDMA. In this paper, the SVM technique is investigated as
an adaptive nonlinear MUD. Our study shows that a SVM-
based MUD trained using a relatively small block of noisy
received signal samples can closely approximate the perfor-
mance of the optimal MUD [13], which requires a complete
knowledge of the system in terms of the so-called system ma-
trix P to be introduced during our further discourse in (3) and
the noise variance. Another advantage of the SVM approach
over the existing nonlinear MUDs is an automatic determi-
nation of the detector structure. The main drawback of the
SVM method is that it is a block-data based method.

II. SYSTEM MODEL

The discrete-time model of the synchronous DS-CDMA
system supporting IV users and transmitting M (> N) chips
per bit is depicted in Fig. 1, where b;(k) € {£1} denotes
the k-th bit of user %, the unit-length signature code sequence
for user ¢ is § = [§;1 - §¢,M]T, and the transfer function
associated with the channel’s impulse response (CIR) is

np—1

H(z) = z hiz 7t ¢))

=0

The bit vector of N users at instant k is b(k) =
[b1(k) - - -bn(K)]T, and the received signal vector after the
chip-matched filters is r(k) = [ri(k)---rn(k)]7. It can be
shown that the baseband model for r(k) is:

b(k)
b(k - 1)

r(k) =P +1(k), @

bk —L+1)
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where the N x LN system matrix is given by

SA 0 --- 0

pP=§TH 9 SA- 3)
oL o
0 --- 0 SA

the user signature sequence matrix S = [§; - --5x}; the di-
agonal user signal amplitude matrix A = diag{A4; --- An};
the M x LM CIR matrix H has the form

ho h
ho

hnh -1
h’n.h-—l
ho h hny,-1
)
and orthogonal code sequences are assumed, so that the noise
vector fi(k) = [fi1 (k) - - - Aan (k)T at the outputs of the chip-
matched filters has a variance of E[f(k)nT (k)] = 021 We
note that the orthogonality of the codes is destroyed by the
channel-induced intersymbol interference (ISI). The ISI span
L depends on the length of the CIR, ny,, related to the length
of the chip sequence, M. Forn, =1, L = 1;forl < m; <
M,L=2;for M <np <2M,L =3;and so on.

ITII. LINEAR AND OPTIMAL DETECTORS

The linear MUD for user 7 has the form:
3i(k) = sgn(yr(k)) with y(k) = wTr(k:), 5

where w = {w; - -wN]T denotes the detector’s weight vec-
tor. The most popular solution for the detector (5) is the
MMSE solution given by
-1

wumse = (021+PPT) " p,, ©6)
where p; denotes the i-th column of P. The linear detector
(5) is computationally very simple, and the standard LMS or
RLS algorithms can be used to implement the MMSE solu-
tion adaptively.

However, a linear MUD only performs adequately in cer-
tain situations. Let the N, = 2LV possible combinations of
BT &) bT(k—1)---bT (k- L+1)]T be

b(j)(k)
. bl (k —1)
bW = . ,1SGEN, (D
b (k — L +1)

and bgj ) the ith element of b (k). Let us define the set of
the IV}, noise-free received signal states as

R={r; =PbY¥, 1<j < Ny}, @®)
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where R can be partitioned into two subsets:
Ry ={r; e R: b = +1}. ©)

If R_ and R are not linearly separable, a linear MUD will
exhibit an irreducible error floor even in the noise-free case,
as it can only form a hyperplane in the [NV-dimensional re-
ceived signal space.

Applying the Bayesian classification theory in a manner
similar to the channel equalization problem [14], it can be
shown that the optimal detector has the form:

Nb . k _ R 2
vo )= £o(s0) = 31 exp (et =)
(10)
with

bi(k) = sgn(ys(k)), (11)

where bﬁj) € {£1} serve as class labels, and all the channel

states are assumed to be equiprobable with 3; = m{
b(2mo2

IV. THE SUPPORT VECTOR MACHINE DETECTOR

The optimal detector obeying (10) requires the knowledge
of all the noise-free signal sates r;, which are unknown to
receiver ¢. In practice the receiver can have access to a block
of K training samples {r(k), b;(k)}X,. Let us denote the
training set of K noisy received signal vectors as

X={x,=r(k), 1<k< K} 12)
and the set of corresponding class labels as
C:{CkZbi(k), ISkSK} (13)

Applying the standard SVM method [10] (see Appendix for
a tutorial), an SVM detector can be constructed for user i:

K
ysvm(k) =Y gic;F(x(k),x;) +7,  (14)
i=1

where the set of Lagrangian multipliers {g; }, denoted in vec-
torial form as:

g=1[g9x]7, (15)

is the solution of the quadratic programming (QP)

1 K X K
g= argmgn 5 Z ZgjgleClF(Xj,xl) - Zlgj
j=

j=11l=1
(16)
with the constraints
0<g;<C, 1<j<K, (7
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and

K
> gic; =0. (18)
i=1

In this application it was found advantageous to choose the
Gaussian kernel function of:

- 2
F(x;,%;) = exp (—“"J—x‘u-) , (19)

2p?
where the width parameter p is related to the root mean
square o, of the channel noise, an estimate of which can
be obtained. The offset constant 7 is usually determined
from the so-called “margin” SVs, i.e. from those particu-
lar x;s, for which the corresponding Lagrangian multipliers
obey 0 < g; < C. Because the optimal decision bound-
ary, defined by {r : fg(r) = 0}, passes through the origin
of the received signal space and possesses certain symmet-
ric properties due to the symmetric structure of R_ and R4,
7 = 0 can be used. With this choice of the offset constant, the
equality constraint (18) is no longer needed, and this leads to
a simpler optimization task. The user-defined parameter C'
controls the trade-off between model complexity and train-
ing error. In our application, we will choose C' empirically.

The set of SVs, denoted by Xgyar, is given by those
particular x;s, which have non-zero Lagrangian multipliers
obeying 0 < g; < C, where Xsv s is usually a small sub-
set of the training data set X'. These SVs are determined
during the optimization process. Thus the SVM-based MUD
requires computing the decision variable

— x.:lI?
ySVM(k) = Z gjcj exp (_M) (20)

2,2
xX;EXsvm P
and making the decision according to:

bi(k) = sgn(ysvar(k)). 1))

V. SIMULATION RESULTS

Two simulation examples were used for comparing the
performance of the proposed SVM-based MUD to those of
the linear MMSE and optimal MUDs. It is worth pointing
out again that the linear MMSE MUD and the optimal MUD
are designed based on the complete knowledge of the system
- namely on that of the system matrix P and the noise vari-
ance - while the SVM MUD is trained using a block of the
noisy received signal samples.

Example 1. A two-user system employing 4 chips per bit
was constructed. The code sequences of the two users were
(+1,+1,-1,-1) and (+1,-1,-1,+1), respectively, and
the transfer function associated with the CIR was H(z) =
0.340.727140.3272. The two users had equal signal power,
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Fig. 2. The set of noise-free signal points and the three decision boundaries
(dotted: linear MMSE, thick solid: optimal, thin solid: SVM) for user 2
of Example 1. SNR; =SNR3 = 20 dB.

that is, the signal to noise ratio SNR; of user 1 was equal to
SNR; of user 2. In order to construct an SVM-based MUD
for user 2, 160 training data points were generated for each
given noise variance. The number of SVs was found typi-
cally to be around 40.
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Fig. 3. Performance comparison of three MUDs, linear MMSE, adap-
tive SVM and optimal detectors, for user 2 of Example 1. WE had
SNRj; =SNRy, and the training data set of the SVM had 160 samples.

Fig. 2 depicts the two subsets of noise-free signal states
for user 2 together with the decision boundaries of the linear
MMSE, as well as those of both the optimal and the SVM
detectors, given SNR; =SNR, =20 dB. It is clear that, for
user 2, R_ and R4 are not linearly separable and the linear
MMSE detector will have an irreducible error floor of 0.125,
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Fig. 4. Performance comparison of three MUDs, linear MMSE, adaptive
SVM and optimal detectors, for user 2 of Example 2. SNR;,1 < ¢ < 3,
were identical, and the training data set for SVM had 640 samples.

as can be seen in Figure 3, where the BERs of the optimal
and the SVM detectors are also shown.

Example 2. A 3-user system employing 8 chips per
bit was then also constructed. The code sequences for
the three users were (+1,+1,+1,+1,-1,—-1,—-1,-1);
(+1,-1,+1,-1, -1, +1, =1, +1); (+1,-1,-1,+1,-1,+1,+1,-
1), respectively, and the transfer function of the CIR was
H(z) = 0.4+ 0.927! + 0.4272. The three users had equal
signal power. The number of training data points used for
constructing SVM models was 640 for each given noise con-
dition. For user 2 and 3, typically 180 SVs were selected
from the training data set. The BERs of the resulting SVM-
based MUD:s for users 2 and 3 are given in Figs. 4 and 5, re-
spectively, in comparison to the corresponding linear MMSE
and optimal MUDs. The results again demonstrate that the
SVM MUD can closely approximate the performance of the
optimal detector.

VI. CONCLUSIONS

The SVM technique has been applied to adaptive non-
linear multiuser detection for DS-CDMA systems. It has
been shown that the SVM-based MUD can closely match
the performance of the optimal Bayesian one-shot detector,
while having the important advantage of requiring a rela-
tively small training data set, when compared to other neu-
ral network based multiuser detectors. A further advantage
of the SVM approach is that the structure of the detector is
automatically determined during training. A disadvantage of
the SVM method is its block-based adaptation nature. Future
research is required to investigate how to reduce the number
of support vectors further without sacrificing the BER per-
formance too much and how to incorporate the sample-by-
sample adaptive methodology into the SVM approach.
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Fig. 5. Performance comparison of three MUDs, linear MMSE, adaptive
SVM and optimal detectors, for user 3 of Example 2. SNR;, 1 <7 < 3,
were identical, and the training data set for SVM had 640 samples.
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APPENDIX: INTRODUCTION TO SVMS

The problem concerned is the separation of the set X' =
{(c1,x:) £, of K training data belonging to two classes,
where x; is an N-dimensional vector and ¢; € {£1} is its
class label. Let us first consider the case, when X’ is linearly
separable by a hyperplane

wlix+1n9=0, 22)
In order to obtain a unique solution for the hyperplane pa-
rameters, it is appropriate to consider a canonical hyperplane
[10], where wandn are constrained by:

min [wTx; + 7| = 1. (23)
X;EX
A canonical separating hyperplane must satisfy:
ci (wix;+1n) > 1, Vx; € X. (24)

Observe in Fig. 6 that there is an innumerable number of hy-
perplanes, which can correctly separate X’ into two classes.
The best hyperplane is the one exibiting the property that the
distance between the closest training vector to the hyperplane
is maximal, that is, the optimal hyperplane can be found by
maximizing the margin:

Wi + 1
w’n = m TR TR
plwim) = i
T
; 2
4 omn XA 2 25)
pelematy W] W

subject to the constraints (24). Thus, the optimal hyperplane
is the one that minimizes
1
d(w) = 3 lIwll*, (26)

subject to (24). The solution to this constrained optimization
problem is given by the saddle point of the Lagrangian:

1 K
Lw,n,g) = 5wl =Y _g: (Wxi+n) ci = 1), @7)

=1

Optimal
Nonoptimal

Fig. 6. Optimal and non-optimal separating hyperplanes.
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where g; are the Lagrange multipliers. The Lagrangian has
to be minimized with respect to (w.r.t.) w, 77 and maximized
w.r.t. g; > 0. Classical Lagrangian duality enables the pri-
mary problem (27) to be transformed to its dual problem:

max ¥(g) = max {min L(w,n,g)}
g g |wa

1 K K K
T
= mgax ~3 ;_1 jz_l gigj CiCj X; Xj + E gi p, (28)

i=1

and the solution of the dual problem is given by

1 K K K

_ . T

g= argmgln 3 z Z gigj CiCj X; Xj — Eg,- , 29
=1 j=1 =1

with the constraints

K
giZO,i=1,"‘,K, and Zng:O

i=1

(30)

Solving the quadratic optimization problem (29) subject to
the constraints (30) determines the Lagrange multipliers, and
the optimal separating hyperplane is given by

K
1
w =Z!7icixi and 7] = —EWT (x4 +x-),

=1

(3D

where x and x_ are any two support vectors, one from each
class. Notice that w, 77 are defined by the set of support vec-
tors, which are training points lying on the margin, since only
these have non-zero Lagrange multipliers. The support vec-
tors form a very small subset of X',

Let us now consider the nonlinearly separable case. The
basic idea is to nonlinearly map the data space onto a new
feature space, on which the problem becomes linearly sep-
arable. It turns out that the solution is given in the form of
(14), and the corresponding Lagrange multipliers are deter-
mined by substituting x7'x; in (29) with the kernel function
F (Xi, Xj).

In reality, a zero classification error may not be possible.
In such situations, the Lagrange multipliers have an upper
bound C, as given in (17). Notice that the support vectors
- namely those, which have non-zero Lagrange multipliers -
are not necessarily lying on the margin now. The parameter
C can be chosen to provide an appropriate trade-off between
the model’s complexity - which is quantified in terms of the
number of support vectors used - and training error.
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