
Dual Transitions Petri Net based Modelling Technique for
Embedded Systems Specification

Mauricio Varea and Bashir Al-Hashimi

Department of Electronics and Computer Science
University of Southampton, SO17 1BJ, Southampton, UK

{mv99r,bmah}@ecs.soton.ac.uk

Abstract
This paper presents a new modelling technique capable of mod-
elling both control and data information using a single uni-
fied approach. This is achieved by modifying the classical
Petri Net structure, allowing it to have two types of transitions
and arcs. As a consequence, loops and conditional operations
within complex specifications are easily identified. The system
dynamic behaviour is modelled using a new marking scheme
of the net consisting of a new element calledvalue for data
representation in addition to classical tokens used for control
purpose. Structural definitions, behavioural rules and graph-
ical representation of the new modelling technique are given.
One potential application of the proposed modelling technique
is the internal representation of embedded systems specifica-
tion. Two examples are included illustrating the applicability
and efficiency of the proposed modelling technique.

1. Introduction
Classical Petri Net (PN) have been applied to the modelling

of various systems [8]. Due to their inability to deal with data
flow, a number of extensions to the classical PN have been pro-
posed, including1 Predicate / Transitions Nets (PrT-Nets) [3]
and Coloured Petri Nets (CPN) [4–6]. Extended Timed Petri
Nets (ETPN) were introduced in CAMAD high-level synthesis
system [9]. It consists of two separate but related parts: The
control part, captured as a Timed Petri Net (TPN), and the data
path, represented as a directed graph where nodes are used to
capture data manipulation and storage.

Some progress has been achieved in applying PNs oriented
techniques to the modelling process in a hardware/software
embedded system co-design framework. In PURE methodol-
ogy [12], ETPN has been extended to allow modelling of hard-
ware/software interface and software structure. By making data
dependencies explicit, PURE is capable of easily identifying
communication needs. Recently another PN based representa-
tion called PRES has been introduced [1] as a modelling tech-
nique for verification of heterogeneous systems. It can be used
to model a system at different levels of of abstraction using hi-
erarchy. The model includes an explicit notation of time, and
tokens are redefined in order to let its dynamic behaviour to
deal with both data and control.

ETPN model [9] is a good internal representation for hard-
ware synthesis, since it exploits one of the features of PN,

1Both PrT-Nets and CPN are High Level Petri Nets (HLPN)

which is concurrency identification. However,data andcon-
trol flow are not very well linked in this model. To overcome
the lack of union between these two domains, PRES [1] and our
proposed modelling technique employ a single graph to model
the embedded system specification. Embedded Systems speci-
fication usually consists of both, control functions and data op-
erations. Its functionality can be thought as a transformation of
data controlled by logical functions [11]. Modelling the inter-
nal design representation (IDR) of such specification plays an
important role in the quality of the final solution for embedded
system co-design framework. We believe that a good embedded
hardware/software co-design framework is not only obtained
by speeding up the co-design algorithms affecting macroscopic
system implementation, i.e. partitioning and scheduling [7],
but also by efficient IDR of embedded system where data and
control flow should be tightly linked. The aim of this paper is
to present a new efficient modelling technique suitable for the
internal representation of embedded systems specification.

2. Proposed Modelling Technique
In this section we present the new modelling technique and

describe its structural definition, behavioural rules and graph-
ical representation. Although notation is based on PN, some
extensions have been made in order to allow the representation
of two mutually exclusive domains:control anddata. This has
resulted in modifying the classical four-tuple [10], extending
the definition of a PN structure (i.e.PN = 〈P,T,F,W〉) into a
seven-tuple (Definition 1, Section 2.1).

2.1. Structural model
The structure of the proposed modelling technique is com-

posed of passive elements, active elements, arcs and some map-
ping functions. Passive elements - or places (P), are associated
with memory storage in the embedded system (e.g. registers,
memory cells, latches, variables, etc.). Active elements - or
transitions (T, Q), refer to any logical or arithmetic operation
(e.g. data assignments, conditional jumps, control signals, etc.).
There are two types of transition in the new modelling tech-
nique: control transitions (T) and data transitions (Q). Also two
types of arcs support this structure, control flow arcs (FC) and
data flow arcs (FD).

It should be noted that a classical PN can be constructed
by means of using a subset of the proposed technique2. Con-

2The proposed structure is equivalent to the classical PN when it does not
contain any data information. This is:

N≡ PN = 〈P,T,FC,WC〉 ⇐⇒ ∃(Q =∅)∧∃(FD =∅)∧∃(G =∅)

trol transitions concept remains from the classical PN transi-
tions [10], whereas data transitions are incorporated into the
proposed technique to provide information from the data do-
main. This differs from other proposed modelling approaches
based on PNs. Neither ETPN nor PRES modifies the struc-
tural information of the four-tuple in order to deal with the data
domain. In ETPN, the data flow modelling is carried out by
including another graph. In PRES, token’s definition has been
modified in order to allow data representation. HLPNs have one
set of passive elements and one set of active elements, while the
proposed modelling technique has two sets of active elements
(T andQ) and allows each set to focus on a specific domain,
i.e. control and data.

Definition 1 The structure is a seven-tuple
N = 〈P,T,Q,FC,FD,W,G〉
Where: P= {p1, p2, · · · , pn} is a finite set of places.

T = {t1, t2, · · · , tm} is a finite set of control transitions.
Q = {q1,q2, · · · ,qh} is a finite set of data transitions.
FC ⊆ (P×T)∪ (T×P)∪ (P×Q) is a set of arcs

describing the control flow relation.
FD ⊆ (P×Q)∪ (Q×P)∪ (P×T) is a set of arcs

describing the data flow relation.
W : {FC∪FD}→ Z is a weight function.
G : 2P→{0,1} is the guard function.

P, T andQ are disjointed, i.e.P∩T =∅, P∩Q =∅ and
T ∩Q =∅. In order to have a valid model, the existence of
at least one passive and one active element is required, thus
bothP andT ∪Q are not empty sets. Note that arcs describing
the control/data flow connect only passive with active elements
or vice versa. The connection of passive to passive elements
or active to active elements are not allowed in the proposed
modelling technique. The order of each setP, T andQ is n∈N,
m∈ N and l ∈ N respectively; wheren> 0, m> 0 andh> 0.
Also m+h> 0 applies.

Let x be any passive or active element (i.e.pi , t j or ql).
Then, pre- and post-sets definitions are composed of:•x and
x•, which are kept from the classical PN [8] definitions for
modelling the control domain; and◦x and x◦, which are intro-
duced in the proposed modelling technique to support the data
domain. A summary of symbols is shown in Table 1.

Domain Pre-set Post-set
Control •x x•

Data ◦x x◦

Table 1. Symbols for pre- and post-sets

Definition 2 The weight function W is composed (i.e. union)
of:

WC ⊆ (P×T)∪ (T×P)→ Z
+ is a mapping from a subset

of FC into a finite set of positive integers.
WD ⊆ (P×Q)∪ (Q×P)→{Z+∪Z−} is a mapping from a

subset of FD into a finite set of integers (excluding 0).

The two subsets introduced in Definition 2 are disjointed,
i.e. WC∩WD =∅.

To link control and data information in the proposed mod-
elling technique a new mapping function called guard func-

tion (G) has been introduced3, in addition to the weight func-
tion (W) which is normally used to combine several arcs. The
guard function is used to represent situations where the con-
trol flow is influenced by some data. In order to give a formal
definition ofG, let L be a finite set of predicates, then:

Definition 3 The guard function G is a mapping from sets of
places to the boolean space, i.e. G: 2P → {0,1}, such that
each set of places in the guard function domain is the pre-set◦t
associated with a transition tj (i.e. ◦t j). Formally:

2P =
{
◦t j

∣∣∣ j <m,∃` j ∈ L
}

Therefore, the function G is composed (i.e. union) of a number
of sub-functions Gj :

∀ j <m
∣∣∣∃` j ∈ L =⇒ G j : ◦t j →{0,1}

Where the evaluation of Gj is performed4 through the assess-
ment of the predicatèj ∈ L.

2.2. Graphical model
Formal analysis of a IDR can be made in terms of graph

theory. The structure of a classical PN [8] is analogue to a
directed, weighted, bipartite graph. In order to include two
domains (control and data) rather than one (control), the pro-
posed modelling technique uses a directed, weighted,tripartite
graph [2]. The proposed modelling technique has three type of
vertices and two type of arcs, unlike classical PNs which has
two type of vertices and one type of arc. Eachvertexof the
graph is represented by either a circle, a bar or a rectangle (i.e.
either,, | or 8) according to if it is a place, control transition
or a data transition respectively.Arcsare employed to represent
either control flow relation (i.e.FC) or data flow relation (i.e.
FD), so the former is graphically represented with light directed
arcs and the latter with bold directed arcs. In other words, light
arcs are used for the flow oftokens(∈ control domain) and bold
arcs for the flow ofvalues(∈ data domain).

p
1

p

p

t t

q

1

1
3

2

2

>8

2

-2

Figure 1. A structure with n = 3, m= 2 and h = 1

A simple structure is shown in Figure 1 wheren = 3, m= 2
andh = 1. This isP = {p1, p2, p3}, T = {t1, t2} andQ = {q1}
respectively. Also several light and bold arcs can be easily iden-
tified as well as weights belonging to bothWC andWD.

3Despite being widely used in the literature [1, 4–6], guard functions defi-
nition varies slightly from one HLPN to another

4See Definition 6, Section 2.3

2.3. Behavioural model
In addition to tokens, the system’s dynamic behaviour is

modelled by means of a new element calledvalue. Therefore,
a marking is an assignment of not only tokens but values to
the places of the net. A token is a primitive concept derived
from the classical PNs and kept for control flow representation,
while values are introduced into the technique in order to allow
data flow representation. Unlike classical tokens, values have
a natural number attached which is an abstract representation
of data domain. The marking function (µ) provides a state-
oriented analysis to the model. For a certain markingµ given at
a time stepk, i.e. µk, changes in the embedded system state are
represented as changes in its marking.

Definition 4 A marking function (µ) is a mapping from the set
of places P to the complex numbersC. This is µ: P→ C

Since Definition 4 assigns to each placepi ∈ P a complex
numberς∈C, we say hereafter thatpi is marked withς = µ(pi).
The marking function has been defined in the complex domain.
This implies the coexistence of two disjoint domains, which is
a desirable feature for representing control and data flow in one
model. A complex number can be represented as a composi-
tion of two real numbers:modulusandphase, and the relation-
ship between them is given in Definition 5. It should be noted
that bothα and γ are natural numbers rather than real, since
the discrete nature of the state space. This is possible because:
N⊆ R⊆ C =⇒ N⊆ C. We will use the modulus of a marked
place for data domain representation and the phase for control
domain representation.

Definition 5 Each marked place µ(pi) has two parts, namely
value (αi) and the number of tokens (γi), corresponding to the
modulus and phase (respectively) of its complex number5.

∀(αi ,γi) ∈ N =⇒ ∃µ(pi) ∈ C
∣∣∣µ(pi) = αi e

iπ�2·γi

Definition 5 puts forward a phase step ofπ/2 in order to
reduce the complexity of mathematical analysis, since:eiπ�2 = i.
To extract modulus and phase information from a marked place
(i.e. a complex numberς), themodoperator (i.e.|ς|) and the
phaseoperator (i.e.∠ς) has been defined and its syntax is:

αi = |µ(pi)| , γi = ∠µ(pi)

Figure 2 illustrates the use of Definition 4 and 5 with a
simple marking on the proposed modelling technique. Place
p1 is marked with a value ofα1 = 10 and two tokens (i.e.
γ1 = 2). As a consequence:µ(p1) = 10eiπ�2·2 = 10eiπ. On
the other hand placep3 is only marked with a value of
α3 = 2, thenµ(p3) = 2eiπ�2·0 = 2. The markingµ of the set
P at a time k = 0 is represented by a vector (i.e.µk(P))
which hasµk(p1),µk(p2), · · · ,µk(pn) as components. This is
µ0 = (10eiπ,0,2)T for Figure 2’s marking. It should be noted
that values are represented by natural numbers stamped inside
marked places and tokens are represented in the classical way,
by black dots drawn in marked places. Definitions 6-10 are ap-
plied to this example, in order to provide a better understanding
of the modelling technique’s behaviour.

5Note the difference between index i and the imaginary uniti. The uniti is
the base of imaginary numbers (i.e.ℑ), which is: i =

√
−1

p
1

p

p

t t

q

1

1
3

2

2

>8

2

210

-2

Figure 2. Initial marking µ0 = (10eiπ,0,2)T

Definition 6 The guard function G is:

G j(pi ∈ ◦t j) =

 1 if
(
∀pi
)[
` j(|µ(pi)|)

]
=>

0 if
(
∃pi
)[
` j(|µ(pi)|)

]
=⊥

Where:> stands for TRUE and⊥ stands for FALSE.

In Figure 2, a guard6 function G2 assess the value placed
at p1 (i.e. G2(p1) = (|µ(p1)| > 8)). The assessment for
the markingµ0 results TRUE, since|µ(p1)| = 10. Therefore,
G2(p1) = 1.

For a certain markingµk, whether or not an active element
in the model is enabled depends on the marking of passive ele-
ments. This is stated by Definitions 7 and 8.

Definition 7 A transition t is said to be enabled if all the places
of its pre-set•t hold at least WC(p, t) tokens and the guard func-
tion G is valid for the values placed in pre-set◦t. This is:[

∠µ(pi ∈ •t)>WC(pi , t)
]
∧
[
G(|µ(p j) ∈ ◦t|) = 1

]
It should be noted that if no place exist in◦t, neither does

the functionG(�). Therefore, the transition is then enabled only
subject to the number of tokens placed in its pre-set•t, as in
classical PNs.

Definition 8 A transition q is said to be enabled when at least
one place in its pre-set•q holds WC(p,q) or more tokens. If
•q =∅, then transition q is always enabled. This is:[

∃pi ∈ •q
∣∣∣∠µ(pi)>WC(pi ,q)

]
∨
[
•q =∅

]
Figure 2 shows a markingµ0 where transitiont1 is enabled,

since∠µ(p1)> 2. AlthoughG2(p1) = 1, Definition 7 requires
a token placed inp2 as well, in order to let transitiont2 to be
enabled. Therefore,t2 is not enabled. Also, transitionq1 is not
enabled because there are no tokens in its pre-set•q.

Represented by a PN based modelling technique, the be-
haviour of an embedded system can be described in terms of
firing a sequence of transitions. Definitions 9 and 10 states the
firing rules for control and data transitions respectively.

Definition 9 The firing of an enabled transition t changes a
marking µk into µk+1 by the use of the following rules:

6Represented as a predicate attached to transitiont2, i.e. “> 8”

i. A finite number of tokens are removed from•t:

∀pi ∈ •t =⇒ ∠µk+1(pi) = ∠µk(pi)−WC(pi , t)

ii. A finite number of tokens are added to t•:

∀pi ∈ t• =⇒ ∠µk+1(pi) = ∠µk(pi)+WC(t, pi)

This is shown in Figure 3, where transitiont1 of Figure 2 has
been fired according to Definition 9. Note that the new marking
µ1 presents two enabled transitions, i.e.t2 andq1.

p
1

p

p

t t

q

1

1
3

2

2

>8

2

2

-2

10

Figure 3. Marking µ1 = (10,0ei π
2 ,2)T

Definition 10 introduces the functionality of a data transi-
tion, which is to perform a linear combination of all values
stored at input places and put the result in its output place.
It should be noted that a data transition has only one output,
since the synthesis of a embedded systemspecification would
consider arithmetic operations with only one result.

Definition 10 The firing of an enabled transition q changes a
marking µk into µk+1 by:

∀pi ∈ ◦q, p j ∈ q◦ =⇒ |µk+1(p j)|= ∑
i
|µk(pi)| ·WD(pi ,q)

Although conditions for enabling either a transitiont or q are
mapped from both control and data domains7 the firing of any
transition does not combine information from the two domains,
since Definition 9 takes place in control domain, i.e.{•t ∪ t•},
and Definition 10 in data domain, i.e.{◦q∪ q◦}).

p
1

p

p

t t

q

1

1
3

2

2

>8

2

6

-2

10

Figure 4. Marking µ2 = (10,0ei π
2 ,6)T

7Definition 7 mapping’s domain is{ •t ∪ ◦t}, which is a combination of
both control and data domains. Definition 8 mapping’s domain is{ •q}, which
is purely within the control domain

Figure 4 shows the marking of the system (i.e.µ2) after the
firing of transitionq1, according to Definition 10. The value
placed inp3 is the result8 of:

|p1| ·WD(p1,q1)+ |p3| ·WD(p3,q1) = 10+2· (−2) = 6

3. Application Examples
Two examples are given in this section. The first example

shows how the modelling principles are applied to the descrip-
tion of a simple multiplier. This example is also used to show
how the modelling technique compares with ETPN [9]. The
second example involves the modelling of a video processor’s
specification. This example is chosen to demonstrate the ef-
ficiency of the proposed modelling technique in dealing with
complex embedded systems specification.

3.1. Multiplier example
Figure 5 shows the specification of a multiplier proposed

in [1]. The algorithm calculates the product of two integers by
means of iterative sums.

1: int mult(int a,int b) {
2: int x,y,z;
3: x=a;
4: y=b;
5: z=0;
6: while(y>0) {
7: z=z+x;
8: y=y-1;
9: }
10: return z;
11: }
12:
13: c=mult(a,b);

Figure 5. Multiplier algorithm [1]

"-1"

x y

z

a b

t1 q

q

qq

4

> 0

p p

p
p

p
5 q5

c
p
6

1 2

21

4
3

3

Figure 6. Proposed representation of the multiplier

The graphical representation of the multiplier using the pro-
posed modelling technique is shown in Figure 6. To perform a
multiplication by means of this model, we place a value inp1
and other value inp2. We assume neitherp1 nor p2 receives
another value within the process. According to Definition 8,
bothq1 andq2 are enabled. Then we can fire eitherq1, q2, or
both, following Definition 10. This will lead to the movement
of the two values into placesp3 and p4. Some of the opera-
tions mapped into data transitions require a control signal to be
executed. This is useful for defining several scopes for the op-
eration. For example transitionq4 is enabled whenp4 holds a
token and only transitiont1 can place a token there, since it is

8Note that◦q = {p1, p3}

the only transition that exists in•p4. Furthermore,t1 will gen-
erate a token each time it is fired, if the guard function (G1(p4))
is valid (i.e. y> 0) according to Definition 9. The value ofp4
for a certain marking (i.e.|p4| = y) is changed only by transi-
tion q3, since ◦p4 is composed ofq2 andq3, but onlyq3 will
be active again according to our initial assumption. All these
actions together represent the behaviour of the completewhile
loop in the specification given at the beginning of the section.

It is important to note that in the proposed modelling tech-
nique operations and conditions are modelled in a different
way, when compared to ETPN [9] and PRES [1]. Operations
are carried out bydata transitionsin such a way that a linear
combination of the values contained in their input places is per-
formed (See Definition 10). Conditions are carried out bycon-
trol transitionsand its guard function, which validates the firing
of the transition based in the value placed at◦t. For example,
transitiont1 in Figure 6 represents the condition “y> 0” in the
while loop at Figure 5. The guard functionG1(p4) evaluates
the content ofp4, resulting 1 if|p4|> 0 or 0 otherwise.

C 1 C 1

S

S S S

S

S SS

S

0

1 2 3

6

5 47

8

1
t

t

t

t 6
t

t

2

3 4

5

(a) Control Part

+

"1"

"0" -

"0"

/C

>

S S

S
S4

S

S

S

SS

S

S2

S

SS

3 1

5 4
4

6

6

6 6

7

5 5

C 11

RX R

RZ

BIP

OPC

IPA

Y

(b) Data Path

Figure 7. ETPN representation of the multiplier

In order to show the advantages of having one unified graph
for modelling both data and control, we have constructed the
ETPN model shown in Figure 7 for the multiplier example.
Clearly the proposed modelling technique presents a more com-
pact and easier to follow model.

3.2. Video processor example
In [13] the development of a spectrum analyser is pre-

sented. One of its main embedded system is a video proces-
sor. This processor has three processes (memory, raster and
render). Figure 8 shows the Behavioural VHDL specification
of the raster process, which has been modelled using the pro-
posed modelling technique in Figure 9.

Transitionsq1, q2 and t4 represent some operations per-
formed in the inner loop of the VHDL code, given by lines
19-27. All these transitions are enabled whenp2 holds a token.
Transitiont3 can be interpreted as theunconditionalway into
the loop, since it is the only transition capable of introducing
a token intop2. Transitiont4 acts as aconditional exitto the
loop, since it would take out the token based on the condition
stated in the guard functionG(t4) (This is equivalent to the exe-
cution of line 25 in Figure 8). The VHDL code has four nested

1: Ports{ vclk : buffer bit; -- p1
2: hsync : out bit; -- p7
3: vsync : out bit; -- p9
4: }
5: Interprocess signals {
6: signal raster_sem : bit := ’1’;
7: signal memory_val : bit_vector(7 downto 0); -- p3
8: }
9: raster: process
10: variable pixel : bit_vector(7 downto 0); -- p4
11: variable pix_no : integer range 0 to 7; -- p2
12: variable read : bit_vector(8 downto 0); -- p6
13: variable line : bit_vector(8 downto 0); -- p8
14: begin
15: vsync <= ’1’;
16: refresh_loop: loop
17: vert_loop: loop -- t1
18: horiz_loop: loop -- t2
19: block_loop: loop -- t3
20: hsync <= ’1’; -- q9
21: vclk <= ’0’; -- q1
22: wait for 100 ns;
23: vclk <= ’1’;
24: wait for 100 ns;
25: exit when pix_no = 7; -- t4
26: pix_no := pix_no + 1; -- q2
27: end loop block_loop;
28: pix_no := 0; -- q3
29: if line(8) = ’0’ then -- (line < 256)? -- t5
30: pixel := memory_val; -- q4
31: raster_sem <= not raster_sem; -- q5
32: end if;
33: exit when read = convert_int2bv(39,9); -- t6
34: read := read + convert_int2bv(1,9); -- q6
35: end loop horiz_loop;
36: vclk <= ’0’; -- q1
37: hsync <= ’0’; -- q8
38: vsync <= ’0’; -- q10
39: wait for 100 ns;
40: read := convert_int2bv(0,9); -- q7
41: read := convert_int2bv(0,9); -- q7
42: exit when line = convert_int2bv(259,9); -- t7
43: line := line + convert_int2bv(1,9); -- q11
44: end loop vert_loop;
45: line := convert_int2bv(0,9);
46: vsync <= ’1’;
47: wait for 0 ns;
48: end loop refresh_loop;
49: end process;

Figure 8. Raster process [13]

loops (i.e.refresh, vert, horiz, block). Placesp9, p8, p6 andp2
are related to each loop in the following way: Holding a token
in p2 is associated to the execution of the inner loop whereas
holding a token inp9 is related to the outer loop. Pair of tran-
sitions{t1, t7}, {t2, t6} and{t3, t4} describe a bidirectional path
which represents moving towards the inner or the outer loop.
A subgraph of Figure 9 which concentrates more in the main
control flow between loops, is shown in Figure 10.

4. Conclusions
This paper has proposed a new modelling technique for em-

bedded systems specification where control and data flow are
tightly linked. The technique is based on a modified Petri Net
structure consisting of dual transition and arc definition, leading
to share control domain and data domain information in a sin-
gle unified graph. The union between control and data domain
is provided by the definition of a guard function (Definitions 3
and 6). One of the main features of the proposed modelling
technique, is the ability of dealing easily with nested loops and
conditional operations, which may lead to better results in the
co-design of embedded systems specification. This area of re-
search is currently being investigated by the authors.

q10

11q

t7

t1
t5

t2

t6

q7

t4

q
5

q
4

q6

q
2

q
3

q
9

q
8

q
1

t3

"1"

"0"

"1"

"0"

= 259
= 39

"0"

= 7

< 256

"1"

"1"

-1

"0"

"1"

"0"

7

1

2

4

6

8

9

p

p

p

p

p

p

3
p

p
5

p

Figure 9. Proposed model of the raster process specification

p
2

t

t7

9

t2

t6

p p
6

t3

t4

1

p 8

refresh vert block

=7

horiz

=259 =39

Figure 10. Control Flow between loops

References

[1] L. A. Cortés, P. Eles, and Z. Peng. A Petri Net Based Model for
Heterogeneous Embedded Systems. InIEEE NORCHIP Confer-
ence, pages 248–255, Oslo, Norway, Nov. 8-9 1999.

[2] R. Diestel. Graph Theory, volume 173 ofGraduate Texts in
Mathematics. Springer-Verlag, New York, 2nd edition, 2000.

[3] H. Genrich. Predicate/Transition-Nets. In W. Brauer, W. Reisig,
and G. Rozenberg, editors,Advances in Petri Nets 1986 Part I:
Petri Nets, central models and their properties, volume 254 of
Lecture Notes in Computer Science, pages 207–247. Springer-
Verlag, 1987.

[4] K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Meth-
ods and Practical Use, Vol. 1: Basic Concepts.EATCS Mono-

graphs in Theoretical Computer Science, pages 1–234, 1992.
[5] K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Meth-

ods and Practical Use, Vol. 2: Analysis Methods.EATCS Mono-
graphs in Theoretical Computer Science, 1994.

[6] K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Meth-
ods and Practical Use, Vol. 3: Practical Use.EATCS Monographs
in Theoretical Computer Science, 1997.

[7] G. D. Micheli and R. K. Gupta. Hardware/Software Co-Design.
Proceedings of the IEEE, 85(3):349–365, Mar. 1997.

[8] T. Murata. Petri Nets: Properties, Analysis and Applications.
Proceedings of the IEEE, 77(4):541–580, Apr. 1989.

[9] Z. Peng and K. Kuchcinski. Automated Transformation of Al-
gorithms into Register-Transfer Level Implementations.IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 13(2):150–166, Feb. 1994.

[10] J. Peterson. Petri net theory and the modeling of systems.
Prentice-Hall, Englewood Cliffs, 1981.

[11] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli. Formal
models for embedded system design.IEEE Design & Test of
Computers, 17(2):14–27, Apr.-June 2000.

[12] E. Stoy. A Petri Net Based Unified Representation for Hard-
ware/Software Co-Design. Licentiate thesis: LiU-Tek-Lic
1995:21, Link̈oping University, S-581 83, Sweden, 1995.

[13] A. Williams. A Behavioural VHDL Synthesis System using Data
Path Optimisation. PhD thesis, Department of Electronics and
Computer Science, University of Southampton, SO17 1BJ, UK,
1997.

