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ABSTRACT

This paper develops and evaluates a new decision theoretic
framework in which autonomous agents can make rational
choices about coordinating their actions. The framework
covers the decisions that are involved in determining when
and how to coordinate, when to respond to requests for coor-
dination and when it is profitable to drop contracts in order
to exploit better opportunities. Our motivating hypothe-
sis is that enabling agents to dynamically set and re-assess
both their degree of commitment to one another and the
sanctions for decommitment according to their prevailing
circumstances will make coordination more effective. This
hypothesis is evaluated, empirically, in a grid-world scenario,
taking into account three levels of commitments (total, par-
tial and loose) and three kinds of sanctions (fixed, partially
sanctioned and sunk cost).

1. INTRODUCTION

Autonomous agents are increasingly being required to act
and interact in dynamic and unpredictable environments.
While considerable effort has been devoted to designing ag-
ents that can act appropriately in such circumstances, com-
paratively less effort has been devoted to endowing agents
with the ability to interact in similarly flexible ways. Thus,
for instance, the majority of extant systems impose a sin-
gle, predefined mechanism that the agents must use for co-
ordinating their actions and agents are often expected to
make commitments within such mechanisms that cannot
be dropped even if better opportunities present themselves.
However, we believe this rigidity is both harmful and unsuit-
able for many of the applications that are most amenable to
an agent-based solution. Thus, this paper reports on our
work on endowing agents with decision making procedures
that will enable them to coordinate in more flexible ways.

Flexible coordination relies on two key decision making
components [7]: (i) the ability to select a means of coordi-
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nating that is appropriate to the prevailing situation; and
(ii) the ability to assess (and re-assess) an agent’s commit-
ment to the on-going coordination activity. Each of these
issues will now be dealt with in turn.

With regard to the former point, a variety of protocols
and structures have been developed to address the coordina-
tion problem. These range from long-term social laws [14],
through medium term mechanisms such as Partial Global
Planning [6], to one-shot (short-term) mechanisms like the
Contract-Net Protocol [15]. All of these coordination mech-
anisms have different properties and characteristics and are
suited to different tasks and environments. However, to
date, the choice of which mechanism to use is something
that the designer imposes upon the system at design time.
This means that in many cases the coordination mechanism
that is employed is not ideally suited to the agents’ prevail-
ing circumstances. To circumvent this problem, we devel-
oped a decision making framework that enables agents to
dynamically select the coordination mechanism that is most
appropriate to their circumstances [2]. While this framework
improved both the individual and the system performance,
it imposed an overly rigid view of commitment (once agents
agree to participate in a coordination activity they cannot
renege until it is complete). Therefore the work reported
here seeks to extend the preliminary framework by intro-
ducing greater flexibility into the handling of commitment
and decommitment.

The notion of commitment is central to all coordination
mechanisms [7]; it provides the basis of trust on which agents
perform their part of the social activity. However the impo-
sition of unbreakable commitments can lead to irrational and
inefficient behaviour. For this reason, a number of models
have been developed that allow commitments to be dropped
if specified contingencies arise (e.g., [4, 7, 9]). While this cer-
tainly represents an improvement, the drawback is that the
specific conditions under which commitments can be broken
must be enumerated in advance. In dynamic and unpre-
dictable environments this can be extremely difficult (and
sometimes impossible). To provide yet greater flexibility,
levelled commitment contracts were introduced [11]. In such
contracts, either party can decommit, for whatever reason,
as long as they pay the fixed decommitment penalty that is
specified in the contract. This type of commitment avoids
the problem of having to a priori enumerate specific environ-
mental or agent states and allows agents to decommit unilat-
erally for whatever reason they deem appropriate. However,



levelled commitments do not explicitly take the ongoing cost
of participating in the coordination activity into account.
This is because the decommitment penalty is assumed to be
fixed, both for the contractor and contractee, no matter at
what stage of the coordination process the commitment is
broken.

Drawing these points together, it can be seen that flexi-
ble coordination requires an agent to make decisions about
when to coordinate, which coordination mechanism to use,
what levels of decommitment penalty to set, and when to
break contracts to take up more promising opportunities.
To this end, we present a decision theoretic model that cov-
ers all these aspects within the context of a specific coor-
dination scenario based on a grid-world. Such an idealised
scenario was adopted to distill an agent’s essential decision
making capabilities. Nevertheless the scenario incorporates
the necessary degree of dynamism and uncertainty to make
the models we develop appropriate for more realistic ap-
plications. Moreover, the specific models we develop in-
form the general debate on flexible coordination in that they
identify the key reasoning components, specify their inter-
relationships, and identify their information requirements.

This work advances the state of the art in two important
ways. Firstly, it presents a model that covers the spectrum
of reasoning an agent needs to perform in order to coordi-
nate in a flexible manner. No other decision making model
is as complete. Specifically, it extends the work presented in
[2] in that it incorporates the ability to reason about com-
mitment levels and sanctions for decommitment. Secondly,
our framework introduces the notion of variable penalty con-
tracts, as an extension to levelled commitment contracts,
that incorporate the ongoing cost of participating in the co-
ordination process in the decommitment penalty. Moreover,
we present the decision procedures that deal with setting
and decommitting from such contracts.

The remainder of this paper is structured in the following
manner. Section 2 details our specific coordination scenario.
Section 3 describes the model of commitment and penalty
used in the scenario. Section 4 formalises the decision proce-
dures of the agents. Section 5 reports on the experimental
work to evaluate the effect of the decision making frame-
work. Section 6 deals with related work and Section 7 con-
cludes and presents the areas of further work.

2. THE SCENARIO

Our exemplar domain takes the form of a grid-world in
which some number of autonomous agents (A;) perform
tasks for which they receive units of reward (R;). Each
agent has a specific task (ST;) which only it can perform;
there are other tasks which require several agents to perform
them, called cooperative tasks (CTs). Each task has a re-
ward associated with it. Generally, the rewards for the CTs
are higher than those for STs since they must be divided
between the coordinating agents. An example of a typical
grid at one instant in time with two agents, two STs and
one CT is given in figure 1.

The agents move about the grid one step at a time, up,
down, left or right, or stay still. At any one time, each agent
has a single goal, either its ST or a CT over which it is co-
ordinating. On arrival at a square containing its goal, the
agent receives the associated reward. In the case of STs, a
new one appears, randomly, somewhere in the grid, visible
only to the appropriate agent. In the case of CTs, a new
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Figure 1: A typical coordination world grid.

one appears, randomly, somewhere in the grid, but this is
only visible to an agent who subsequently arrives at that
square. If an agent encounters a CT, en route to its cur-
rent goal (i.e., its ST), it takes charge of the CT! and must
decide on both whether to initiate coordination with other
agents over this task, and if so which coordination mecha-
nism (CM) it should use. In this context, each agent has a
predefined range of CMs at its disposal. Each CM is param-
eterised by two key attributes: set up cost (in terms of time-
steps) and its chances of success. For example, a CM may
take ¢ time-steps to set up (modelled by the agent waiting
that number of time-steps before requesting bids from other
agents) and have a probability, p, of success (thus when the
other agent(s) arrive at the CT square, the reward will be
allocated with probability p, with zero reward otherwise).
An agent may well decide that attempting to coordinate is
not a viable option, in which case it adopts the null CM
(meaning the agent rejects adopting the CT as its goal).

The Agent-in-Charge (AiC) of the coordination selects a
CM and, after waiting for the set up period, broadcasts a
request for other agents to engage in coordination. The
other agents respond with bids composed of the amount of
reward they would require in order to participate in the CT
and how many time-steps away from the CT square they are
situated. If an agent’s bid is successful, then it is termed
Agent-in-Cooperation (AiCoop) to denote the fact that it is
a participant (not AiC) for a CT task. The role Agent-in-
ST (AiS) is used to denote the situation where an agent is
working toward a ST. The protocol that each agent follows
is summarised in figure 2.

In contrast to [2], this scenario permits more than one
CT to appear in the grid at any one time and the possi-
bility of more than two agents being required to achieve a
CT (this number, m, is specified randomly when the CT is
generated). If an agent finds more than one CT in a given
cell, it randomly selects one to analyse. Agents might also
receive more than one proposal at the same time step, in
which case they reply with as many bids as proposals they
receive. However, they will only accept one CT contract at
a time. Agreements between AiCs and AiCoops to achieve
a particular CT are established via a contracting protocol.
This contract-net-like protocol consists of three steps. In
the first step, AiC broadcasts a proposal to all agents. It
then waits for the bids. The second step involves selecting
the bids and contracts from AiCs and AiCoops respectively
(both of them have to consider refusals and denials of their
corresponding offers). Finally, the third step consists of the
commitment about the terms of the contract and the time
step at which AiCoops will arrive at the CT square.

1If several agents arrive at a CT square at the same time,
one of them is arbitrarily deemed to be in charge.



[1] Agents arrive at a square. If AiS arrives at its ST cell,
its goal is attained, it receives the reward and updates
its goal. If AiCoop arrives at the CT cell, it notifies the
AiC that it has arrived. It might have to wait in the
cell until the remaining AiCoops arrive. If AiC receives
confirmations from all AiCoops, the CT is achieved and
the rewards are paid to AiCoops.

[2] If AiS finds a CT it must decide if it wants to become
AiC and, if so, which CM = (t,p) it should use. If
t > 0 it must wait t time-steps before broadcasting a
request for coordination. If AiCoop finds a new CT, it
must decide if it should become AiC or continue with

its present aim. If AiC finds a new CT, it ignores it.

—_—

[3

—_—

If AiS or AiCoop receive a request for coordination, they
decide whether and what to bid to participate in the
CT. If AiCoop decides to submit a bid, it factors in
the penalty fee (if present) for dropping its current con-
tract. The AiC then evaluates all bids. If AiS's bid is
accepted, it adopts CT as its new goal. If AiCoop's bid
is accepted, it drops its current contract (paying the
associated penalty to the AiC) and becomes AiCoop
of the new CT. AiC does not respond to requests for
coordination.

[4

—_

If AiC receives a decommitment message, it tries to find
a replacement for the reneging agent by re-proposing
the CT. If it does not receive appropriate bids, it cancels
the current CT by paying the contracted penalty to the
remaining AiCoops.

[5] Each agent decides on its next move according to its
current goal and all agents move simultaneously.

Figure 2: Protocol for agents at each time-step.

As more than two agents may be required to achieve a CT,
it is necessary to deal with the fact that an AiCoop may
have to wait in the CT cell while the remaining AiCoops
arrive (because agents have to travel different distances). In
such cases, the AiC pays an additional reward for the time
elapsed—AiC knows the number of time steps that each
AiCoop is likely to have to wait (specified in the bid) and
the amount it will pay for waiting time at a specific waiting
rate (¢). Thus when an AiCoop notifies the AiC of its arrival
at the CT cell, it either receives its share of the CT reward
or the waiting rate followed by its share of the CT reward.

3. COMMITMENTS AND PENALTIES

The ability to renege upon commitments and to claim
different types of redress impacts the decision making be-
haviour of both AiCs and AiCoops. In the former case,
agents need to be able to attend to and recover from the
situation when one of the AiCoops decommits. In the latter
case, AiCoops have to assess opportunities to increase their
utility by moving to more profitable CTs whenever they are
found. To give maximum flexibility in coordination, we be-
lieve that agents require the ability to make agreements that
involve different levels of commitment and different types of
penalty. In particular, we consider three types of commit-
ment:

e Total: Once an agent accepts a contract to achieve a
CT, it cannot renege upon it.

e Loose: An agent always drops a commitment if it finds
a better option.

o Partial: Agents commit to achieve a CT, but with a
percentage of probability they can drop this commit-

ment if they find a better CT to pursue. For example,
if an agent has a commitment level of 50%, then half
the time it finds a better CT it will cancel and half the
time it will continue with its current agreement.

Associated with the dropping of commitment is the use of a
penalty model to compensate the agents that remain in the
CT. Penalty payments are made each time an agent cancels
a commitment and they are paid to the AiC (see section 4.5
for details); here we consider penalties that are:

e Fixed: The amount is fixed at design time and is un-
related to the current coordination context.

e Partially sanctioned: The amount is specified dynam-
ically in the contract when it is agreed. The actual fee
depends on the state of the coordination activity and
its participants, and the AiC’s estimate of the profit
that it will receive.

e Sunk cost: The amount is based on the effort that has
been invested in the CT to date; if the agents are close
to achieving their goal they pay a higher fee than if
the contract has only just started.

In identifying whether a new CT is more beneficial than
the current one, AiCoops include the decommitment penalty
from their existing contract in their deliberations. Thus, a
new CT may offer an intrinsically higher reward than the
current one, but when the penalty is incorporated the agent
may be better off sticking with its existing commitment.

4. AGENT DECISION MAKING

This section formalises the decision procedures of the ag-
ents and extends the model in [2] to deal with varying com-
mitment levels and penalties. To study the average impact
of coordination mechanisms, an infinite horizon model of de-
cision making was adopted; a finite horizon model may lead
to erratic behaviour as the last time-step approaches.

The agents are assumed to be rational and self-interested;
so their aim is to maximise their reward, in particular their
average reward per unit time. To account for heterogene-
ity in the population, each agent keeps track of its average
reward, termed its reward rate, being its total cumulative
reward divided by the total number of time-steps taken to
obtain it. It uses this rate both to model the (approximate)
expected rates of other agents and to decide how much to
charge for its own services. Specifically, each agent uses its
reward rate to evaluate and compare the different actions
available to it; if it can maintain or improve on this rate,
it chooses to do so. Of course, this decision model approxi-
mates the true relative values of different actions, however,
since the environment may change rapidly, we believe that
a simple reactive decision procedure is appropriate (see [8]).

There are six types of decisions that agents have to make:
the direction to move in; which CM to adopt, if any; how
much to bid when a request for coordination is received; how
to determine which bid to accept, if any; how much to ask
for the penalty fee, and how to determine when to drop a
contract.

4.1 Deciding on the direction of movement

An agent always has a target square in which its current
goal is located. The agent decides to move towards its goal



by selecting the direction, up, down, left, or right, proba-
bilistically according to the ratio of up/down to left/right
squares away from the goal it is.

4.2 Deciding which CM to select

An agent which, en route to its current goal, encounters a
CT, must decide whether to initiate coordination with other
agents in order to perform it. To do this, the agent must
determine whether there is any advantage in so doing. This
depends not only on the reward that is being offered, but
also on the CMs available, as well as various environmental
factors which affect the expected demands of the potential
coordinating agents.

To model the expected demands of the other agents, the
agent assumes that they are randomly distributed through-
out the grid, and that their current goals are similarly dis-
tributed. Thus some agents may be near the CT while others
may be far away; likewise, for some agents there would be a
significant deviation from their current goal to reach the CT,
while others may be able to coordinate over the CT en route
to their own goals. The agent assesses the possible CMs on
the basis of how long before the task can be performed (in-
cluding both the set up time and the average distance away
each agent is situated), and of how much reward it is likely
to obtain after deducting the expected reward requirement
of the other agents (based on the amount of time they must
spend deviating from their path and the probability of suc-
cess of the CM). The expected reward is also affected by the
level of commitment in the system (degree_commit); here
AiC assumes that its AiCoops have the same degree of com-
mitment as itself. If the agent that finds the CT is currently
AiCoop (rather than AiS), then it also needs to subtract the
penalty of decommitting from its current contract from the
expected reward it expects from the new CT.

The agent uses all these factors to assess each CM in terms
of the amount of surplus reward it can expect, over and
above what it expects to obtain during its normal course of
operation, i.e., its own average reward rate, r. The agent
selects the CM that maximises this surplus reward.

To formalise this decision procedure, consider an M x N
grid with reward size S for STs, and R for CTs, a coordi-
nation mechanism, CM = (t,p), which takes ¢ time-steps to
set up and has a probability of success p. In this grid-world
of known size, the agent can calculate the average distance
(ave_dist) away of any randomly situated agent from the
CT square, as well as the average deviation (ave_dev) such
agents have to make to get there. The agent further assumes
that all agents have similar average rewards as its own.?

Based on these figures, the agent can assess the expected
surplus reward from coordinating over the CT at [z, y] using
CM; = (tj,p;). First, it must estimate its own cost in terms
of how long the CM will take to set up and how long it
expects to wait for the other agents to arrive. Since the AiC
would usually expect to receive r reward units per time-step,
the cost of C'M; is given by:

cost;(z,y) =r x (t; + ave_dist(z,y))

Second, the AiC must estimate the average amount of re-

2Though in reality such common knowledge may not always
be available, an agent may be able to build up a picture of its
environment through past experience—clearly it needs some
means of handling the uncertainty and this assumption is
not an unreasonable preliminary approximation.

ward the other m agents will require considering that they
have the same degree of commitment as itself:

X d
ave bid, (z,1) = r X ave_dev(z,y)

p; X degree_commit

Third, the agent estimates the expected surplus from adopt-
ing the CT taking into account the probability of success
of the task, the degree of commitment and discounting the
decommitment payment, decommit_costy, (this includes the
current contract value it expects to receive and the penalty
it has to pay), from its existing CT}y, if there is one.

surplus;(z,y) = p; X R X degree_commit — decommit_costy,

Using these estimates, the AiC can evaluate the expected
surplus reward of adopting C'M;:

ave_surplus;(z,y) = surplus;(z,y)—
(cost; (@) + (m x ave bid; (z,y)))

Note that the null CM is defined to have zero surplus.

When deciding which CM to adopt, the agent computes
its expected surplus reward from each of them and selects
the CM which maximises this value. If the surplus associ-
ated with all CMs is negative, the agent adopts the outside
option of the null CM.

By means of illustration consider the scenario of figure 1
with a total level of commitment. An AiS with total com-
mitment (degree_commit = 1.0), occupies a 5 x 5 grid and
finds a CT requiring one other agent with R = 6 at square
[3,2]. The average distance of other agents from [3,2] is 2.6.
Since the average distance between two random squares is
3.2, the average deviation of any agent is 2. Given that
the agent has an average reward per time-step of r = 0.625
and it does not have a penalty to pay, the expected surplus
reward of adopting a CM = (3,0.9) is given by:

ave_surplus(3,2) = (0.9 x 6 x 1.0) — (3.5 + 1.389)
0.511

4.3 Deciding what to bid to become an AiCoop

When agents receive a request to participate in a CT they
submit a bid based on the amount of reward that they would
require to compensate them for deviating from their current
goal. They also submit their current distance away from the
CT square®. To formalise this, consider an agent, A;, with
average reward per time-step r;. The agent calculates its
deviation, i.e., the number of extra time-steps it requires to
reach its current goal if it goes via the CT square. Note that
if, for example, the CT square lies directly on a path to its
current goal, the agent’s deviation would be zero. Clearly,
such an agent will submit a very attractive bid, since the
cost to coordinate is effectively zero.

Again by means of illustration consider the agents de-
picted in figure 1. A; at [5, 3] would take 4 time-steps to
reach STy at [2,4] directly, but 6 steps going via the CT
at [3,2], a deviation of 2 time-steps. However, Az at [1,1]
would take 7 time-steps to reach ST, at [4, 5] directly, and
also 7 steps going via the C'T at [3,2]; A; therefore has a
deviation of 0.

%In reality, agents could lie about both of these values. How-
ever, such strategic behaviour would not affect the basic de-
cision making processes as they are described here. Thus,
at this time, we assume agents bid truthfully.



To compute the reward A; requires from engaging in co-
ordination over the CT, it must be compensated both for its
deviation and for the possibility that the CM might fail or
that some of the agents might renege:

r; X deviation;

bidij = N
pj X degree_commit
If the agent is already AiCoop (rather than AiS), bid;; needs
to have decommit_cost added to it.

4.4 Deciding which AiCoop bids to accept

Once the AiC has received bids from all agents, it selects
the set that maximises its surplus reward, given the new
(firm) information it has received. For each agent, A;, the
AiC knows the amount of reward it will require (bid;;) and
the time it will take to arrive (T;).

Since all AiCoops need to be in the cell at the same time
to accomplish the CT, AiC needs to pay an additional award
to those AiCoops that have to wait in the CT square. AiC
calculates this reward by selecting the agent that will take
the longest time to arrive from the set of bids received. From
this, it can determine the maximum time, waiting_time;;,
that each agent will spend in the cell. For this time, the
waiting AiCoops are compensated at a pre-specified rate gq.
Formally, AiC calculates the cost_bid;; based on the reward
each agent requires and the reward AiC has to pay for the
waiting time;;:

cost_bid;; = bid;; + T; X r + waiting time;; X ¢
Next it selects the m bids with the minimum cost:
S = min[cost_bid;;]

From this S, it selects the furthest bid (i.e., max;es[Ti])
and calculates its expected surplus (which is affected by the
likelihood that some of the agents may renege):

surplus; = p; X R X degree_commit —

D leost bidi;] + 7 x (5 + max[T:])

icS
Now, it may be the case that no bids are received which give
a positive surplus. Thus even though the chosen CM had
an expected surplus, by chance it may be that no agents
are sufficiently near to provide reasonable bids. In such a
situation the AiC returns to its ST.

4.5 Deciding how to set the penalty fee

The penalty fee can be set independently or dependently
of the actual state of the coordination activity. In the former
case, the fixed penalty is set as a pre-specified percentage
of the CT reward (the actual percentage is an experimental
variable that allows penalties to be high, medium or low).

penalty; = percentage_penalty X R

In the latter case, there are two possibilities. For partially
sanctioned penalties, the fee is based on the current expected
surplus of the CT (again in a proportional manner). In this
case, however, the proportion is set according to the degree
of commitment within the group; if decommitment is likely,
then a high penalty is set since the AiC needs to recoup its
costs in setting up and running the group (mutatis mutandis
when decommitment is unlikely).

penalty; = (100% — degree_commit) X surplus;

With sunk cost penalties, the fee is calculated with the per-
centage time_invested of the CT reward. In contrast to
fixed penalties, this percentage is calculated as a ratio of
the time spent on the CT and the time that the agent be-
lieves needs to be spent in order to complete the CT.

penalty; = time_invested X R

Partially sanctioned and sunk cost penalties are both vari-
able penalty contracts because the sanction changes dynam-
ically based on the state of the coordination activity.

4.6 Deciding when to drop a commitment

The introduction of loose and partial commitments allows
agents to consider the possibility of decommitting. This can
occur in two situations: the agent may go from an AiCoop
to an AiC or from an AiCoop on its current contract to
an AiCoop on a new one (because the bid;; it proposed
was accepted). In what follows, let the current CT be sub-
scripted by k and the potential new one by j. Moreover,
let expected_reward; represent the reward the agent is ex-
pecting to get from its current activity (this is calculated as
the reward it will receive divided by its distance from the
current goal).

An AiCoop will drop its current contract to become an
AiC on a new one if it finds a CT such that:

ave_surplus;(z,y) > expected_reward

Similarly, an AiCoop will drop its current contract in favour
of becoming the AiCoop on a new CT if:

bid;; > bidik

5. EXPERIMENTAL EVALUATION

The experiments seek to explore the following basic hy-
pothesis: incorporating various levels of commitment and
penalties into a coordination framework improves the effec-
tiveness of the coordination. The experiments divide into
two types: those that probe the effect of the levels of com-
mitment and those that deal with the effect of penalties.
To this end, experiments were set-up with a simulation run
of 10,000 time steps, a grid size of 10x10, 5 agents in the
environment, 3 CTs in the grid at any one time, a max-
imum group size of 4, a single coordination mechanism,
CM = (1,1), a ST reward of 1 and the reward of the CT was
randomly generated in a range of [20, 40, 60]. The exper-
imental variables were the percentage of commitment and
the level of penalty which were tested in a range of 0, 25,
50, 75 and 100%. The measured variables were the reward
obtained by agent role type, the number of CTs successfully
finished, the average penalty fee by penalty type, the num-
ber of contracts dropped (CTs decommitted) and how many
of them were successfully recovered. The measured variables
plotted correspond to the means of the data collected over
10 simulation runs. In all experiments, the means of partial
commitment scored significantly higher than those achieved
by total or loose commitment?.

*Analysis of variance (ANOVA) was used to test hypothe-
ses about differences between the means collected, the null
hypothesis of equal means was rejected because the proce-
dure revealed for all experiments that the differences among
means were significant, p < 0.05 in a range of [.000,.037],
F(2,147).
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Figure 3: Reward distribution by agent role

First we deal with the commitment related experiments,
here the penalty is set as 26% of CT reward. Figure 3 shows
the variance in the reward distribution, by agent role type,
for the different levels of commitment. Specifically, the to-
tal reward obtained by the agents increases as there are op-
portunities for decommitment. This is because agents can
drop commitments to take up more profitable ones as they
arise (even accounting for the fact that they have to pay a
penalty). However, looser commitments do not necessarily
improve agent performance; if agents can drop commitments
easily, then a greater percentage of started CTs fail to finish
because agents are continually attracted onto newer more
profitable activities. Thus having flexibility to drop com-
mitments is good, but the best performance is achieved by
also having some degree of loyalty to existing contracts. The
differences between the various levels of commitment in fig-
ure 3 are mainly due to the CTs (second axis) accomplished.
Here agents with partial commitment get more reward be-
cause they achieve more and more profitable CTs; thus AiCs
perform better on average. In contrast, AiCoops and AiS re-
ceive only the reward they negotiated (which is broadly sim-
ilar across the commitment types), this is because whether
a decommitment occurs or not, they only demand a reward
which improves their current situation.

As a consequence of introducing the degree of commit-
ment into the agent’s decision making procedures, AiCoops
with low levels of commitment have few opportunities to find
CTs with high expected surplus rewards (section 4.2) and
their bids are too high to ever be contracted (section 4.3).
Correspondingly, agents with a high degree of loyalty to CTs
have more chances to attempt coordination and their bids
have a higher probability of being accepted. Additionally,
the degree of commitment affects the frequency with which
agents drop contracts, a higher degree means fewer decom-
mitments are performed. Figure 4 clearly illustrates this
behaviour. The number of CTs dropped by AiCoops varies
with the degree of commitment; AiCoops with a commit-
ment level of 25%, for example, decommit more often than
those with 75%. In contrast, AiCoops with a commitment
level of 0% even though they have more opportunities to
do so, decommit much less frequently because their bids to
participate in new CTs are too high (as previously noted).

70
O Unrecovered
60 — O Recovered
g 50
=
£
£
8 40 -
3
o
2
o N
S 30
5
£
=
=

20 4

10

=

0% 25% 50% 75% 100%
Percentage of Commitment

Figure 4: Contracts dropped by partial commitment
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Figure 6: Partially sanctioned penalties
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Figure 7: Sunk cost penalties
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Figure 8: Comparing fixed, partially sanctioned and
sunk cost penalties

Turning to the penalty related experiments. Figures 5, 6
and 7 show the effects of the number of contracts decommit-
ted using fixed, partially sanctioned and sunk cost penalties,
respectively. With fixed penalties, figure 5 indicates that the
number of contracts dropped by AiCoops (here AiCoops
have a commitment level of 50%) gradually decreases as
the penalty fee increases (because agents cannot afford a
high penalty fee). With partially sanctioned (figure 6) and
sunk cost penalties (figure 7), the same broad trends can
be observed, fewer decommitments occur with low and high
degrees of commitments. This is because of the high penal-
ties for decommitment and as a consequence of the fewer
opportunities to decommit which occur when an agent has
a low degree of commitment. However, both figures show
similar values for the average penalty fee (second Y axis)
and for the number of decommitments performed. In short,
AiCoops with lower penalties perform more decommitments
independently of the kind of sanction that is in place.

To compare the three penalty types, figure 8 shows the
AiC total reward by commitment level type. The best re-
ward is obtained by combining a sunk cost penalty with par-

tial commitment (50%). With sunk cost and partially sanc-
tioned penalties, agents decommit less frequently than they
do with a 0% fixed penalty but more often than they do with
a 50% of penalty fixed, however the reward obtained by AiCs
using a fixed penalty of 50% is better than that with par-
tially sanctioned penalties. Using a sanction which changes
dynamically with the state of the coordination, specifically,
sunk cost, seems a good model because it sets a more appro-
priate payment for decommit when compared with partially
sanctioned penalties. In sum, as was the case with the com-
mitment related experiments, sunk cost and partial commit-
ment level agents represent the most effective combination
between loyalty to the existing situation and flexibility to
discover better situations and to submit better proposals.

6. RELATED WORK

There are two broad strands of work that are primarily
related to our model: (i) work on reasoning about coordina-
tion; and (ii) work on commitments to contracts. Each will
now be dealt with in turn.

In terms of coordination, most extant work assumes it is
a design time problem (e.g., [14, 15, 6, 10]). Thus, compar-
atively little work addresses run-time reasoning about the
selection of particular coordination protocols. Durfee [5] has
argued that agents need the flexibility to coordinate at dif-
ferent levels of abstraction, depending upon their particular
needs at a given moment in time. To date, however, there
are no mechanisms for explicitly reasoning about which level
to coordinate at in a given situation. Such flexibility was also
built into cooperative agents by Jennings [7]. Here, agents
could choose to cooperate according to various conventions
which dictated how they should behave in particular team
problem solving contexts. These conventions varied in terms
of the time they took to establish and the communication
overhead they imposed upon the agents. However, again,
there was no reasoning mechanism for determining which
convention was appropriate for a given situation. Barber et
al. [1] present a software engineering framework that enables
agents to vary their coordination mechanisms according to
their prevailing circumstances. They also identify criteria for
determining when particular mechanisms are appropriate.
However, the decision procedures for actually trading-off
these criteria are not well developed. Boutilier [3] presents
a decision making framework, based on multi-agent Markov
decision processes, that does reason about the state of a
coordination mechanism. However, his work is concerned
with optimal reasoning within the context of a given coor-
dination mechanism, rather than actually reasoning about
which mechanism to employ in a particular situation.

In terms of work on commitment, our model is most closely
related to that of Sandholm and Lesser’s levelled commit-
ment contracts [11] (a discussion of how our model relates
to that of other work on commitment is given in section
1). Our approach builds upon Sandholm’s basic intuition
that agents should be able to unilaterally decommit from a
contract, for whatever reason they deem appropriate, sub-
ject to the payment of a penalty. However, our model dif-
fers in a number of important ways. Firstly, we cover more
than just reasoning about decommitment. Secondly, levelled
commitment contracts typically assume a fixed penalty for
decommitment that ignores the current costs of the ongoing
coordination activity. Our variable penalty contracts thus
offer a more realistic model for assessing the real cost of



reneging. Thirdly, Sandholm’s original proposal contained
no algorithms (decision procedures) for agents to compute
when they should decommit from a given contract. This was
rectified in [12], however only in a limited manner. In par-
ticular, his algorithm for computing the Nash equilibrium
decommitment threshold relies on the fact that agents have
information about the actual and likely alternative options
(as well as their probability distribution functions) that may
be presented to the agents with which they are coordinating.
This is, we believe, somewhat unrealistic and is not required
by our model. Sen and Durfee’s work on commitmentsin the
domain of distributed scheduling is also related [13]. They
focus on the use of different commitment strategies and eval-
uate the impact of various environmental factors on their ef-
fectiveness. Their results show that the “blind” use of com-
mitment in their system does not improve the performance.
This is also consistent with our experimental findings, but
they do not have our richness of commitment and penalty
types to enable the agents to overcome this shortcoming.

7. CONCLUSIONS

This paper has developed a decision theoretic framework
that enables agents to coordinate in a flexible manner. In
particular, we have focused on the issues of variable com-
mitment levels between agents and of different penalty sanc-
tions for reneging on contracts. Our empirical results have
highlighted the fact that flexibility with respect to commit-
ment levels can improve the effectiveness of coordination.
We showed that a certain degree of loyalty to existing con-
tracts leads to better overall performance than continually
jumping to new opportunities as they arise. For penalty
sanctions, we showed that setting them based on the pre-
vailing context also improves coordination.

For the future, we aim to incorporate our empirical find-
ings into the agent’s decision procedures so they can select
the level of commitment and penalty sanction for themselves
according to their prevailing circumstances. To account for
more heterogeneous agent populations, we also intend to al-
low agents to adapt their decision making to reflect their
experiences of the individual agents in the system. This will
enable agents to make more realistic predictions about the
aims and behaviour of their potential collaborators.
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