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Students often have difficulty with the minutiae of program construction. We introduce the idea
of ‘Programming by Numbers’, which breaks some of the programming process down into smaller
steps, giving such students a way into the process of Programming in the Small. Programming by
Numbers does not add intellectual difficulty to learning programming, as it does not require the
student to learn additional tools or theory. In fact it can be done with pencil and paper or the
normal editor, and only requires the student to remember (and understand) seven simple steps.
Programming by Numbers works best with languages that offer pattern matching, such as ML, or

data-directed dispatching, such as Java.
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1. INTRODUCTION

Programming in the Small is easy for experienced
programmers. First they think about how to do it (The Idea),
and then they write the solution down in the language of their
choice. This step from a solution in some form, to a solution
in a form acceptable as input to a computer is an essential
part of the expert’s problem-solving skills.

Many of our students are inexperienced programmers,
who often have difficulty [1]. They confuse The Idea
with the program, and consequently have difficulty in
constructing the program. Even if the students have been
taught enough of the syntax and semantics of the language
to be able to read and understand the solution when it
is presented to them, they are unable to conceive of the
solution. Students stare at a blank piece of paper and become
frustrated.

The problem arises because there are too many issues
involved. The student is unsure of where to focus, and
does not have the discipline to consider only those parts
of the process that are relevant at a given time, ignoring
those that are not. Breaking down any process into a
number of well-defined steps is the standard way of coping
with such problems. We should therefore do the same
with programming. A particular problem is that students
may worry about the complexities of the problem before
completing the simplicities; our method will require them
to complete the simplicities before thinking about the
complexities.

Programming by Numbers works best with a program-
ming language that offers pattern matching, or data-directed
dispatching. We have used Programming by Numbers in
two different first programming courses: the first course
is based on ML [2] and the second is based on Java [3].
In the ML-based course Programming by Numbers is used

right from the start, because recursion is so fundamental to
programming in a functional language. In the Java-based
course Programming by Numbers is introduced later, when
discussing recursion in connection with abstract classes,
sub-classing and data-directed dispatching.

Programming by Numbers is intended to help the student
get started on a problem. It is not a substitute for
techniques such as step-wise refinement, structured design,
or for learning about algorithms and data structures. In
fact Programming by Numbers is complementary to such
techniques and learning activities: it naturally leads into
step-wise refinement, and it encourages the student to learn
more about data structures and algorithms.

Programming by Numbers reduces the complexity of
the programming task by breaking it into a number of
smaller steps. Alternative approaches include plan-based
programming [4], using schemata [5], or using skeletons [6].
Each of these requires the student to choose a ‘template’ and
then to complete it in some way. This has two disadvantages.

� The students must choose the appropriate template
before the problem is sufficiently well understood, or
else they must change the template along the way.
Templates can thus be too rigid.

� Templates generally do not help the students decide
which steps must be carried out first.

Programming by Numbers is different in both respects:
it provides step by step guidance, and at the same time
allows flexibility in the structure of the solution to a problem.
We believe that Programming by Numbers provides a better
match to the creative process of programming than the
alternative template-based approaches.

The underlying ideas of Programming by Numbers are not
new. In fact the basic idea is so obvious that we expect many
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colleagues implicitly to use similar ideas. However, to our
knowledge no reports exist in the literature that document a
clear series of identifiable steps. Our contribution therefore
is to provide careful documentation of the process, and to
evaluate it by reporting on the responses of our students to
the process.

Like other, similar processes (e.g. painting by numbers),
Programming by Numbers has a somewhat mechanistic feel,
which is not appreciated by some students. We found using
Programming by Numbers most effective during lectures
and laboratories, where it provides a framework for dis-
cussion. Programming by Numbers functions as an agreed
and recognisable process for introducing new elements of
learning and study. Each time the lecturer introduces a
progressively more challenging example, there is a largely
mechanistic process but also a new element. This new
element appears almost automatically when we follow the
steps. Once the new element has been identified, we are then
able to discuss possible solutions, showing the students new
data structures, algorithms, program-design techniques etc.

Finally we give our reasons for calling the method
Programming by Numbers. These are:

� to elevate an important aspect of the programming
process by naming the steps. It is easier to focus on a
particular aspect of an intellectual process when it has
been given a name;

� to order the steps. This helps to guide the student
through the process;

� to facilitate memorizing the steps. People being taught
complex tasks are frequently introduced to the steps by
numbers (e.g. the way raw recruits are often taught gun
drill).

The next section introduces Programming by Numbers
using ML. Appendix A presents a number of further, graded
examples, showing that a wide range of problems is covered
by the method. Section 3 shows how Programming by
Numbers is used with Java. An evaluation of the method
on the basis of various forms of student feedback over the
past three years is given in Section 4. Appendix B presents a
discussion of how Programming by Numbers can be used
with Z, Prolog and Pizza. Section 5 discusses the next
step in the learning process and the last section presents our
conclusions.

2. PROGRAMMING BY NUMBERS

Given an Idea for a function, we can provide the seven steps
that a student must take to write the function.

1. Name the function.
2. Write down its type.
3. Enumerate all cases.
4. Deal with any simple case(s).
5. List the ingredients in preparation for the complex

case(s).
6. Deal with the complex case(s), where some inspiration

is required.
7. Think about the result.

2.1. An example

Before discussing each of the steps in more detail, we
provide here as an example the construction of the
factorial function. The student is given the assignment
below. This is not the first problem a student would be asked
to solve but is suitable to allow us to explain the method.

Problem:Write a function that takes a numbern, and returns
its factorial (i.e.1� 2� � � � � n).

1. Name the function

factorial

This follows directly from the statement.
2. Write down its type

int -> int

ML, like most other programming languages, offers
two numeric types:int andreal. The latter is clearly
inappropriate in this case.

3. Enumerate all cases

fun factorial 0 = refine

| factorial n = refine

The identification of the cases follows directly from
steps 1 and 2. For every argument type there is a
standard set of cases for the initial solution attempt.
For the typeint, the usual cases are0 andn, where
the latter stands for non-zero. The right-hand sides
have been annotated with ‘refine’, as a reminder for the
refinement in the following steps.

4. Deal with any simple case(s)

fun factorial 0 = 1

| factorial n = refine

This requires a little thought, but is usually an appeal
to the statement or knowledge of the problem. In this
case the student has realized that 1 is the identity of
multiplication. The second case has been identified as
the complex case and it is still marked as ‘refine’.

5. List the ingredients
The ‘ingredients’ available to the complex case are:
the function name (factorial), the argument (n),
constants of the same type as the domain and range
of the function (such as1), and built-in functions over
those types (such as* and-). From those ingredients
we can construct promising expressions such asn-1

andfactorial (n-1).
6. Deal with the complex case(s)

fun factorial 0 = 1

| factorial n = n * factorial(n-1) ;

The ‘difficult bit’.
7. Think about the result

Careful examination reveals that we should be satisfied
with the function defined.

The reader may wonder why we do not appeal to
the theories (e.g. recursive-function theory) behind the
practical method. We have experienced that it is best to
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avoid introducing the method from a theoretical perspective
because our students are more motivated by practical issues.

2.2. A closer look

We now look at each of the steps in more detail.

2.2.1. Name the function
This may be a simple activity, but it is important
nevertheless. Students have a tendency to underestimate
the importance of choosing good names, and identifying the
choice of name as an important step is useful.

2.2.2. Write down its type
This step takes intellectual activity because it is a formal
statement of what has been informally mentioned in the
question. The student is required to think about the concrete
type that represents the domain of the function as indicated
in the question. The example problem above indicates
that the domain of the factorial function isN. In the
implementation language available, the only suitable type
is int. The student also knows that values of typeint lie
betweenminint andmaxint. Students can consequently
be concerned that the factorial of negative numbers is not
defined, and that the factorial of large numbers cannot be
computed in the given range. The end result will thus be a
partial function.

Writing down the type of a function exposes the student
to the limitations of the function they are implementing,
and the way it can be used sensibly. Students will find
identifying the domain of a function difficult, but the
process of Programming by Numbers helps them to focus
on the question of identifying the domain. Mapping the
domain to an appropriate concrete type is a problem in any
programming language, and we believe that the focus on this
issue provided by step 2 is helpful.

The statement of the type can be used as guidance in the
remaining steps. Writing down the type also provides a
method of double-checking the function when it is finally
implemented. The current sub-problem of writing down the
type can be solved using knowledge of the well-defined sub-
language of types, thus helping the students to concentrate
on one particular aspect of the solution.

2.2.3. Enumerate all cases
This step follows directly from step 2, and it requires the
choice of appropriate names. In the case of built-in types,
the base and general cases are promising:

int 0

non-zero (e.g.n)
bool true

false

string ""

non-empty (e.g.s)
list []

non-empty (e.g.(a::x))

During the early stages of the learning process we do
not expect the students to create user-defined data types.

Instead non-standard types are given by the lecturer. In the
case of suchlecturer-defined data types, the cases can be
ascertained directly by reference to the constructors from
the data-type definition. For example, it can be seen that
the data type below has two patterns, one forEmpty and one
for Push(...,...).

datatype 'a stack = Empty

| Push of ('a * 'a stack);

Where a function has more than one argument, the starting
set of patterns is found by listing all combinations of
the cases for the individual arguments, even though the
number of cases grows exponentially with the number of
arguments. The reason is that Programming by Numbers
is aimed at students who do not yet have the confidence
or the experience to be able to decide which cases may
be combined and which may not. Having to list all
combinations first and then solving the corresponding sub-
problems has three advantages. Listing all cases:

� gives the student a starting point;
� gives students of all abilities the incentive to think

carefully about relevant cases, and cases that can be
combined;

� gives students a handle on testing their functions.
A comprehensive set of test cases should at least
include all combinations of the individual cases of the
arguments.

Confident students see the listing of all cases as a pointless
exercise. This is a disadvantage. In practice functions with
more than two arguments are rare. For example out of 29
functions discussed in the first chapter on functions from
the textbook we use [2, Chapter 3], 15 functions have one
argument, 12 have two arguments, and only one has three
arguments. These counts exclude functions that are only
used as an exercise in deriving types.

2.2.4. Deal with any simple case(s)
Some thought is required here, but with discipline this can
be minimized. The important thing is to insist on only
solving the case under consideration. Concern about any
other cases must be avoided. The worry about other cases
is often what students find hard. It is in fact the provision
of an environment where students focus on a case by case
construction that motivates the Programming by Numbers
method.

The simple cases are those that the student can solve with
relative ease. The simple case does not have to be a base
case of the recursion; we encourage the students to decide
which are the simple and the complex cases.

Often the domain of the function to be written and
the range of values provided by the type chosen for the
implementation do not match exactly. It may then be
necessary to introduce further cases. For example, the
last_element function, which gives the last element of a
list, is not defined for the empty list. This makes it necessary
to introduce the case for a single-element list as the simple
case.
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Conversely, sometimes it turns out that simple cases can
be discarded, for example when the argument concerned is
not used in the function, either because it is passed directly
somewhere else or because it is ignored. As experience
grows, such cases can be identified in step three, but such
advanced techniques should not be attempted until the basic
steps are well understood.

Some students may have difficulty deciding which cases
are the complex cases and which are the simple cases. In
such a case it often helps to think about sample test cases
for the function. For example all students would know
thatfactorial 0 should produce 1, thus recognizing this
as a simple case. In addition they might also earmark
factorial 1 as a simple case, which while redundant
is certainly correct. Most students would probably then
considerfactorial n as the complex case.

2.2.5. List the ingredients
Listing all elements that may be used to construct the
complex case complements the information that is available
about the structure of the function as a whole. For some
problems, it might be sufficient to think about available built-
in functions and constants. For other problems it might
be necessary to postulate auxiliary functions, to reduce the
difficulty of actually doing the complex case. Again an
appeal to the type of the function gives guidance. For
example in step 5 of our factorial problem we included1 and
- as ingredients, because they are clearly associated with the
typeint.

As a general rule we recommend the students consider:

� the name of the function under construction (i.e. do we
need to make a recursive call?);

� the names of the function arguments, and the identifiers
bound by patterns for the individual cases (i.e. how are
we going to use the data available to us?);

� constants and operators over the data types of the
arguments and the function result;

� in some cases auxiliary functions may be needed. The
name and functionality of such auxiliary functions
should be postulated. This is just an instance of step-
wise refinement, which shows how Programming by
Numbers leads into rather than attempts to replace tried
and tested methods.

It is often useful to consider which elements are not
ingredients, so as to delimit the scope of the problem.
Factorial is so simple that it does not provide good examples
of ‘non-ingredients’. We give some examples and a
discussion in the next section.

2.2.6. Deal with the complex case(s)
Solving the complex case(s) can be difficult, but even here
it is possible to apply some heuristics. Either there is a
relatively simple answer, or we need to divide the solution
(i.e. the right-hand side) into some sub-problems.

In turn, the identification of sub-problems can be hard, but
the important thing is that a sub-problem should be smaller

in some sense than the original problem. In the case of a
function over a list, for example, we expect the solution to
contain some computation on the tail of the list. In the case
of integers, as in factorial above, we expect the solution to
contain some computation on a smaller number (one less
usually), such asfactorial (n-1) above.

Having identified and solved a suitable sub-problem, the
next step is to place the solution in an expression such
that the equality constraint is satisfied. To achieve this
for factorial, we need to use it as the right operand in
n * factorial (n-1).

For a large set of problems, the only step that a student
who is applying the method with discipline will find
challenging is the current step. In fact this step is the
nub of any algorithm, and so the student is required to
concentrate on the important part of the function without
being distracted by all the book-keeping. Programming
by Numbers has successfully broken a problem down
into smaller sub-problems. One should now appeal to
the student’s understanding of the problem, knowledge of
algorithms and data structures, and skills in applying step-
wise refinement.

2.2.7. Think about the result
Finally we need to review the function written to satisfy
ourselves that it is what we want. This step is sometimes
null, as with factorial. Normally we recommend our students
to consider the following issues:

� Functions are static objects, which can sometimes be
usefully simplified. The most common simplification is
to realize that some of the special cases are not in fact
special, and are also covered by more complex cases.
Making such a simplification leads to a better insight
into the original problem.

� Checks should be made, verifying that the type of the
function is the same as, or a generalization of, the type
from step 2. Finding type generalization often goes
hand in hand with removing redundant cases.

� It is useful at this stage to write some test cases for the
function to exercise the simple and complex cases.

� Frequently the simplifications, checks and tests per-
formed at this stage lead to new insights which
cause the student to reconsider earlier steps, making
Programming by Numbers an iterative process.

3. USING JAVA

Programming by Numbers emphasizes case analysis, which
works well in programming languages like ML. To show
how Programming by Numbers works in object-oriented
languages like Java consider the following problem.

Problem: Write a method to sum the leaves of a binary
tree, where the tree has been defined (by the lecturer) as an
abstract classTree with sub-classesLeaf andBranch.

1. Lecturer-defined data type

public abstract class Tree {

refine methods
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}

public class Leaf extends Tree {

public Leaf() {

}

refine methods
}

public class Branch extends Tree {

private Tree left, right;

private int data;

public Branch(Tree left, int data

Tree right) {

this.left = left;

this.data = data;

this.right = right;

}

refine methods
}

The lecturer-defined data type describes the data structure,
complete with fields and initializers. The student is asked to
provide the definition of the appropriate method(s). Here is
how the process would be executed.

1. Name the function(method)

sum

A good name for the method issum.
2. Write down its type

public abstract class Tree {

abstract int sum();

}

The student is unlikely to definesum as a function with
a Tree argument because it is more befitting of a Java
program to use a method. The method does not need
arguments. Given that the values contained in our tree
are integers, the return type for the method isint.

3. Enumerate all cases

public class Leaf extends Tree {

// initialiser omitted

public int sum() {

refine body
}

}

public class Branch extends Tree {

// initialiser and fields omitted

public int sum() {

refine body
}

}

Where we relied on pattern matching in the ML
example, we now use Java’s data directed dispatching
to identify the two relevant cases: one to handle aLeaf

and one to deal with aBranch. It suffices to write each
case in the appropriate class.

4. Deal with any simple case(s)

public class Leaf extends Tree {

// initialiser omitted

public int sum() {

return 0 ;

}

}

Most students would identify theLeaf as the simple
case, because all that needs to be done here is to return
0. Students who chooseBranch as the simple case will
probably find it difficult to complete this step and are
likely to revisit their earlier, incorrect decision.

5. List the ingredients

sum, +, left, data, andright

It is necessary to think carefully about the list of
ingredients for the complex case. Using the listed
ingredients, the student may form such expressions
as left.sum(), and right.sum() which would
contribute to finding a solution at step 6.
We encourage students to explore further alternatives,
for exampleleft.left, and ask them whether such
expressions make sense under all circumstances, a test
which the expressionleft.left does not pass.

6. Deal with the complex case(s)

public class Branch extends Tree {

// initialiser and fields omitted

public int sum() {

return left.sum() + data + right.sum();

}

}

Having given the list of ingredients sufficient thought,
most students would not find it difficult to complete
the complex case. The complete solution consisting of
three classes is then as shown below.

7. Think about the result

public abstract class Tree {

abstract int sum();

}

public class Leaf extends Tree {

public Leaf() {

}

public int sum() {

return 0 ;

}

}

public class Branch extends Tree {

private Tree left, right;

private int data;

public Branch(Tree left, int data,

Tree right) {

this.left = left;

this.data = data;

this.right = right;

}

public int sum() {

return left.sum() + data + right.sum();

}

}
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We have taken the liberty here of varying the method
slightly by using step 7 to assemble the elements
created in steps 4 and 6.
After giving some thought to the solution we cannot
come up with improvements. However we can think of
various interesting test cases for thesum()method. We
will not show them here.

It is interesting to compare our solution above to what one
would encounter in a typical text book. Deitel and Deitel [7,
Section 17.7] use a single classTreeNode, with three fields,
to represent a binary search tree:

class TreeNode {

TreeNode left;

int data;

TreeNode right;

methods
}

A leaf node is represented by an instance ofTreeNode

with the fieldsleft andright set tonull. The approach
of Deitel and Deitel has two problems:

� The implementation of theTreeNode is exposed and is
thus not an abstract data type.

� It is not possible to distinguish between accessing an
uninitialized reference (usually a programming error)
and an empty (sub-) tree.

Deitel and Deitel’s solution is probably easier for the
students to understand, but with the help of Programming by
Numbers we believe the students will appreciate our solution
as the better one.

4. EVALUATION

Programming by Numbers has been used for the last
eight years in two different first courses on Programming
Principles for Computer Science students at the University
of Southampton [8]. This year the course is based on Java,
using the text book by Arnow and Weiss [3]; previously the
course was based on standard ML, using Ullman [2].

Southampton attracts a growing number of Computer
Science students, presently numbering about 160 per year.
The Programming principles course is assessed on the basis
of 50% examination and 50% course work. Fewer than 10%
of the students who complete the year are required to resit
the examination in September.

To evaluate Programming by Numbers, ideally we would
design an experiment with two equivalent, randomly chosen
groups of students. One group would be taught using
Programming by Numbers and the control group would
receive the same tuition without using Programming by
Numbers. However, the costs of such an experiment are
prohibitive, not least because of the need to isolate the two
groups of students from each other. In addition there are
serious ethical issues of large-scale experimentation on such
an important part of the students’ degree. Consequently
we have attempted to evaluate the method by canvassing
the opinions of the students. We have done so using

two different methods of evaluation: an observational
investigation [9] in 1999/2000 and exam-based surveys in
1997/1998 and 1998/1999.

4.1. Observational investigation

To explore the utility of Programming by Numbers we con-
ducted a formal test where we observed students attempting
to solve a programming problem using Programming by
Numbers and Java. Eight students (5% of the class) were
chosen at random from the entire cohort. An observation
lasted at most 30 minutes; some students completed their
task in less time. The students had all been new to Java
at the start of the course, and some had been new to
computer programming. The students were all studying
Computer Science but from the perspectives of different
degree courses. Some were more mathematically oriented
while some were more oriented towards electronics. The
students were presented with Programming by Numbers in a
single lecture which explained the method and finished with
an example: constructing a Java method to sum the elements
of a list.

For the observed experiments the students had to construct
the Java method to sum the leaves of a binary tree as in
Section 3, using Programming by Numbers. During the
exercise an observer noted the actions of the student, noted
the student’s use of Programming by Numbers and examined
the resulting program. The observer behaved according to
the formal guidelines defined in Nielsen [9]. The rigorous
conduct of such an exercise requires the observer to ensure
the subject understands the problem and the role of the
method but then refrains from intervening while the subject
uses the method. After the observation a less formal session
allows further discussion and clarification of events.

The formal observations revealed that all the students but
one used Programming by Numbers in the recommended
way. All students who used Programming by Numbers
produced acceptable Java methods and appeared to have
understood and explored abstract classes and data directed
dispatching by the end of the exercise. The less experienced
students used Programming by Numbers in conjunction
with referring back to simpler examples of Java programs.
The more experienced students referred back to example
Java programs less and took less time to complete the
exercise. During the final stages of each student’s session
the observer noted that generally the students appeared
pleasantly surprised that the program they had written
seemed to work. One student said he was ‘shocked’ at the
successful outcome of his Programming by Numbers. The
method had led the students to the correct solution of a non-
trivial programming task in easy stages.

During the observational investigation a case arose which
provided a valuable control situation for our experiment.
One student when presented with the programming task and
Programming by Numbers attempted the task but refrained
from using the method, preferring to attempt the task in
his own way. His reasons were unclear to the observer
who thought they may have stemmed from over-confidence.
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The student solved the programming problem to his own
apparent satisfaction but the Java method he wrote was an
entirely inappropriate solution to the problem. Also the
student failed to learn the programming lessons implicit in
the programming task and so derived little benefit compared
to the students who did use Programming by Numbers.

At the close of each observed session the observer had an
informal discussion with the student to clarify the outcome
and gauge the student’s reaction. Also at the end of
the whole observational investigation the students gathered
in an informal panel to discuss the purpose, results and
conclusions of the investigation. The students praised
Programming by Numbers and reported finding it very
useful in teaching them aspects of Java. They commented
that Programming by Numbers reflects the problem-solving
method they use intuitively and it is a useful clarification
and formalization of that method. The students agreed with
our description of Programming by Numbers as limited in
its scope. They said they would welcome a replication
and an extension of Programming by Numbers to cover
other aspects of program design and development. Some
were optimistic that Programming by Numbers would ease
their difficulties in comprehending and learning large-scale
programming as it had helped them during the observational
investigation.

Finally, the students suggested an addition to step 4,
which has now been incorporated in the method. The
addition consists of writing down some test cases for the
function/method being developed, to help decide which are
the simple and the complex cases, and to provide further
insights while dealing with the cases.

4.2. Exam-based surveys

We embedded a question on Programming by Numbers
in the 1997/1998 and 1998/1999 examinations, thereby
ensuring that this captive audience were all encouraged to
give their views. The two editions of the course were the
same; both were based on standard ML. In 1997/1998 we
asked the following question:

(i) Give the different steps of Programming by
Numbers (5%).

(ii) Write a short essay (no more than one page)
to explain and defend one of the following
points of view (20%):

(a) Programming by Numbers helps you get
started with a programming problem;

(b) Programming by Numbers does not help
you get started with a programming
problem.

Marks will be awarded only for the effective
defence of the chosen point of view.

The 1997/1998 question was answered by 28 out of 104
students; 27 of those argued case (a) and one student argued
case (b). We attach no significance to these numbers because
they clearly reflect the student’s inclination to please their

lecturers. Instead we scrutinized the exam scripts to identify
positive and negative remarks about the method (below).

Given the overwhelmingly positive reaction to our
1997/1998 Programming by Numbers question we decided
to ask for the disadvantages in 1998/1999:

(i) Give the different steps of Programming by
Numbers (5%).

(ii) Discuss with the aid of examples the short-
comings and disadvantages of Programming
by Numbers. Your answer should be concise
– one page maximum (20%).

This resulted in 44 out of 127 students giving their views
in 1998/1999.

4.2.1. Positive reactions in 1997/1998
Students commented that the process as a whole helped them
to

� create manageable sub-tasks,
� give structure to the programming activity,
� experience a gradual progression from easy to difficult,
� put syntax and semantics into practice, and
� have ‘peace of mind’. One student wrote ‘you don’t

have to look at a blank piece of paper for ages’. Another
student wrote that ‘even if you can’t solve a problem
you can still write some code’.

These comments indicate that Programming by Numbers
indeed helps to avoid the frustration of staring at a blank
piece of paper.

One student gave us a new insight when he/she wrote that
programs are split into separate entities (functions) so it is
natural to also split functions into separate entities.

Students found having to write the type of the function
helpful in various ways. They said that

� it helps you understand the problem,
� it helps you write code that someone else is able to read

more easily, and
� the practice of writing down the types as a separate step

can be transferred to other languages.

Enumerating all the cases was found useful ‘because you
are less likely to forget special cases’.

By far the most frequent comment was that doing the
simple case(s) helps doing the complex case(s). Some
students noted that doing the simple case(s) first also
gave them the opportunity to think about termination of a
recursive function.

The final step was generally quoted as useful to eliminate
redundant cases, but also as an opportunity to rethink the
whole development process.

4.2.2. Negative reactions in 1997/1998
One student, whilst arguing case (a) noted that it may take
longer writing functions using Programming by Numbers,
and he/she also wrote ‘why would it exist if it was not
useful?’.
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The identification of the cases is meant to give students a
handle on the tests to be applied during white-box testing.
However we found that because of this emphasis on white-
box testing the students are less likely to also apply black-
box testing.

In a sense the most interesting reaction is that of
the student who chose to argue case (b) of the exam
question. The point made was basically that Programming
by Numbers does not scale up. It does not help to write a
large program. Of course the student is absolutely right, and
in retrospect we should have brought this point out during
the course.

4.2.3. Negative reactions in 1998/1999
About half the students noted that Programming by Numbers
can be time-consuming because of the need to write down
all those cases. We would argue that comprehensive testing
requires writing down all the cases anyway.

About 40% of the students noted that Programming by
Numbers has a limited scope because solving the difficult
cases is sometimes too difficult, and it requires what students
call Programming by Numbers within Programming by
Numbers (step-wise refinement).

Some 30% claimed that Programming by Numbers can
only be used with functional programming because it relies
on pattern matching.

About 25% of the students were concerned about
Programming by Numbers being restrictive and inhibiting
creativity because ‘people do not think in a prescribed
order’. A majority of these students were especially
concerned with the fact that Programming by Numbers does
not necessarily lead to the most efficient solution: it is no
substitute for knowledge of algorithms and data structures.

Finally three students noted that Programming by
Numbers is so obvious and natural that it is not worth
learning it!

5. THE NEXT STEP IN THE LEARNING PROCESS

In our standard ML-based Programming Principles course,
the early assignments are relatively simple, like the factorial
problem. We follow this up in the second phase of the course
using assignments that allow the students to develop some
of the standard higher order functions, and to use ‘student’-
defined data types (as opposed to ‘lecturer’-defined data
types). The purpose of this second stage is threefold:

� to provide further opportunity to practice programming
in the small;

� to allow students to discover the utility of standard
idioms as exemplified bymap (See Appendix A.9) and
filter;

� to practise abstraction over functions (yielding higher-
order functions) and abstraction over types (yielding
polymorphic functions).

The third and last phase of the Programming Principles
course revisits the above, but uses C instead of ML [10]. The
students feel confident that they understand the algorithms

and data structures involved; the new challenge is to express
these using a different, lower-level, programming language.

Programming by Numbers helps students to become
advanced beginners[1]. Once the students are comfortable
with writing single functions over familiar domains they
are presented with more challenging problems. These
would typically require a level of decomposition into sub-
problems that can be solved directly using Programming
by Numbers. It is at this stage in the learning process,
when progressing from advanced beginner tocompetence,
that classical problem-solving methods such as Jackson
Structured Programming [11] would be appropriate for use.
Such methods support the student in analysing the problem,
which in turn helps the student to pick out the elements
that can be solved using Programming by Numbers. It is
our experience that the classical methods require the student
to be able to manipulate the elementary programming
constructs with a greater degree of skill than students
possess. Programming by Numbers provides a method to
fill this gap.

5.1. Java

In the Java-based Programming Principles course Program-
ming by Numbers has a different role than in the standard
ML-based course. The text book used [3] follows a classical
approach towards imperative programming, emphasizing
loops and arrays. Abstract classes, data-directed dispatching
and also recursion play a minor role. However, we
believe these are fundamental and important concepts, the
discussion of which is continued in the two following
courses: Advanced Programming and Algorithms and Data
Structures.

6. CONCLUSIONS

Based on our experience of teaching programming, where
we observe that students have difficulty with recursion and
case analysis, we set out to develop a method specifically to
help students with these problems.

Programming by Numbers is a method that gives the
student a series of well-defined steps to provide the
discipline for creating the smallest components of functions.
The method identifies separate activities and orders them
such that the student is able to progress from an empty
sheet of paper to a worked solution by following the steps.
The student is encouraged to direct creativity at the sub-
problems. The student does not have to worry about
everything at the same time.

We are aware that our insistence on following the steps,
even to the point where many different cases are generated,
might hinder students’ creativity. Our response is that
Programming by Numbers is to be used as a guide for class-
room discussions. Our work provides a vehicle that the lec-
turer can use to discuss important issues such as ‘how many
cases shall we consider and why?’. We have found this ques-
tion to be extremely useful in our lectures over many years.

Student feedback on the use of the method is largely
positive. We gained some new insights from the students’
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comments, which we interpret as an indication that the
students do appreciate the help provided by the method.

The method naturally leads students to think about
programming idioms once they progress beyond a certain
point.

The method was developed with functional programming
in mind but it can be applied to any language that supports
a form of case analysis. We have shown how to use
Programming by Numbers with Java. The appendices show
how to use Programming by Numbers with the specification
language Z, the logic language Prolog, and the Java super-set
Pizza.
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APPENDIX A. GRADED EXAMPLES

We begin each example with a formulation of the problem,
as one might find it in a typical course assignment. We then
present the seven steps and comment on some of the salient
features of the method and the example.

After the initial, simple functions, the rest of the examples
are of recursive functions, because that is the only class of
‘interesting’ functions that can be discussed during the first
few weeks of a first programming course.

The example problems have been chosen mainly because
they appear to pose problems for the method.

A.1. A logical operation

Problem:Write a function to provide the logical negation of
its argument.

1. Name the function
not

2. Write down its type
bool -> bool

3. Enumerate all cases

fun not true = refine

| not false = refine
4. Deal with any simple case(s)

fun not true = false

| not false = true ;

7. Think about the result

This problem does not have complex cases, so steps 5 and
6 can be skipped. We do insist that students explicitly make
step 7 even though, as in this case, it does not give rise to
new insights.
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A.2. An arithmetic operation

Problem:Write a function to provide the arithmetic negation
of its argument.

1. Name the function
negative_of

2. Write down its type
int -> int

3. Enumerate all cases

fun negative_of 0 = refine

| negative_of n = refine
4. Deal with any simple case(s)

fun negative_of 0 = 0

| negative_of n = refine
5. List the ingredients

negative_of andn
6. Deal with the complex case(s)

fun negative_of 0 = 0

| negative_of n = ~n ;

7. Think about the result
fun negative_of n = ~n ;

When thinking about the function, the student realizes that
the special case is covered by the complex case, because
~0=0 for the integers. (Unary minus in ML is~.) This
example shows that the student who does not think of such
an identity will still be able to produce a working function.
We believe that it is important that the method should work
for students of all abilities.

A.3. A list function

Problem: Write a function to return a string that has a
number of copies (first argument) of its (second) argument,
a string.

1. Name the function
copies

2. Write down its type
int -> string -> string

3. Enumerate all cases

fun copies 0 "" = refine

| copies n "" = refine

| copies 0 str = refine

| copies n str = refine
4. Deal with any simple case(s)

fun copies 0 "" = ""

| copies n "" = ""

| copies 0 str = ""

| copies n str = refine
5. List the ingredients

copies, n, andstr
6. Deal with the complex case(s)

fun copies 0 "" = ""

| copies n "" = ""

| copies 0 str = ""

| copies n str =

str ^ (copies (n-1) str) ;

7. Think about the result
fun copies 0 str = ""

| copies n str =

str ^ (copies (n-1) str) ;

Here^ is string concatenation.

For this function, we see that in general for two-argument
functions we must enumerate all possible combinations of
arguments. It is better, as here, to enumerate all the argument
pairs and then remove those redundant cases we wish in step
7, rather than risk getting it wrong by removing them earlier.
This is in contrast to a common student difficulty where the
attempt to ‘optimize’ during the construction process causes
serious problems.

A.4. A list function with a problem

Problem:Write a function to return the last element of a list.

1. Name the function
last_element

2. Write down its type
'a list -> 'a

3. Enumerate all cases

fun last_element [] = refine

| last_element (a::x) = refine
4. Deal with any simple case(s)

fun last_element [] = problem

| last_element (a::[]) = a

| last_element (a::x) = refine
5. List the ingredients

last_element, a, andx
6. Deal with the complex case(s)

fun last_element (a::[]) = a

| last_element (a::x) = last_element x ;

7. Think about the result

We know that the domain of thelast_element function
is all non-empty lists. However, the only reasonable concrete
type for the implementation is the standard list type, as
indicated in the problem. The concrete type does not match
exactly the domain of the function. Hence a new case must
be introduced to deal with the singleton list. The student
who does realize that the mismatch exists, will introduce a
case at step 3. Those that do not realize that the mismatch
exists will discover the problem at step 4 as above, when
trying to think of a value to be returned when the argument
is the empty list.

We could raise an exception, but at this stage we will
assume the function will be used correctly, and rely on the
system to raise an exception if it is not. This is achieved
simply by omitting the case of the empty list from the
program. The exercise has, however, ensured that we are
aware of the potential danger when using this function.
The method has almost insisted that the student notices the
function is partial. The student is encouraged to focus on the
reasons and is isolated from the complexities of the whole
function.

The student might also try the alternative approach shown
below. This solution acknowledges the fact that pattern
matching has limitations. Sometimes conditionals are
needed to deal with cases that pattern matching has difficulty
with. We would argue that this is not a limitation of
Programming by Numbers, but it is more due to the lack
of guards in ML. Examples such as this one would be dealt
with in a more natural way in Haskell [12] and Miranda [13]
which do offer guards in addition to pattern matching. We
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give further examples of using conditionals in subsequent
sections.

4. Deal with any simple case(s)

fun last_element [] = problem

| last_element (a::x) =

if null x

then a

else refine
5. List the ingredients

last_element, a, andx
6. Deal with the complex case(s)

fun last_element (a::x) =

if null x

then a

else last_element x ;

7. Think about the result

A.5. A function of two lists

Problem: Write a function to add the elements of two lists
together, for example the result of adding the lists[1,2,3]

and[4,5,6] should be the list[5,7,9].

1. Name the function
add_lists

2. Write down its type
int list -> int list -> int list

3. Enumerate all cases

fun add_lists [] [] = refine

| add_lists [] (a::x) = refine

| add_lists (a::x) [] = refine

| add_lists (a1::x1) (a2::x2) = refine
4. Deal with any simple case(s)

fun add_lists [] [] = []

| add_lists [] (a::x) = problem

| add_lists (a::x) [] = problem

| add_lists (a1::x1) (a2::x2) = refine
5. List the ingredients

add_lists, a1, x1, a2, x2
6. Deal with the complex case(s)

fun add_lists [] [] = []

| add_lists (a1::x1) (a2::x2) =

(a1+a2) :: (add_lists x1 x2) ;

7. Think about the result

At step 4 the student realizes that the problem statement
is unclear, because it does not specify what to do with lists
of unequal length. It is good that this difficulty does not
arise at the same time as when we are thinking about the
complex step. In the example we leaveadd_lists as a
partial function.

A.6. A three-argument function

Problem:Write a function to return a list that has an element
(first argument) inserted into thenth position (second
argument) of a list (third argument).

1. Name the function
insert

2. Write down its type
'a -> int -> 'a list -> 'a list

3. Enumerate all cases

fun insert item 0 [] = refine

| insert item 0 (a::x) = refine

| insert item n [] = refine

| insert item n (a::x) = refine
4. Deal with any simple case(s)

fun insert item 0 [] = item :: []

| insert item 0 (a::x) = item :: (a::x)

| insert item n [] = problem

| insert item n (a::x) = refine
5. List the ingredients

insert, item, n, a, x
6. Deal with the complex case(s)

fun insert item 0 [] = item :: []

| insert item 0 (a::x) = item :: (a::x)

| insert item n (a::x) =

a :: (insert item (n-1) x) ;

7. Think about the result
fun insert item 0 lst = item :: lst

| insert item n (a::x) =

a :: (insert item (n-1) x) ;

In the case of a three-argument function, there is a
potentially large number of cases. Fortunately, in writing
the type of the first argument as polymorphic, the student
is encouraged to realize that there is no need (or even a
possibility) of identifying different cases for that argument.

A.7. More challenging—sorting

Problem:Write a function to return the sorted version of its
argument list (we will consider integers in this example).

For such a function we really need an Idea. In this case
the Idea is that we take the first element and then divide the
list into elements which areless_than it (putting those at
the front), and those that arenot_less_than (putting those
afterwards).

1. Name the function
sort

2. Write down its type
int list -> int list

3. Enumerate all cases

fun sort [] = refine

| sort (a::x) = refine
4. Deal with any simple case(s)

fun sort [] = []

| sort (a::x) = refine
5. List the ingredients

sort, a, x, and
postulateless_than andnot_less_than

6. Deal with the complex case(s)
fun sort [] = []

| sort (a::x) = sort (less_than a x)

@ [a]

@ sort (not_less_than a x) ;

7. Think about the result

Here@ is the concatenation operator on lists.
Now the new functions must be defined. We will only

define one, as the other is similar.

1. Name the function
less_than

2. Write down its type
int -> int list -> int list
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3. Enumerate all cases

fun less_than 0 [] = refine

| less_than 0 (a::x) = refine

| less_than pivot [] = refine

| less_than pivot (a::x) = refine
4. Deal with any simple case(s)

fun less_than 0 [] = []

| less_than 0 (a::x) = refine
| less_than pivot [] = []

| less_than pivot (a::x) = refine
5. List the ingredients

less_than, 0, pivot, a, x
6. Deal with the complex case(s)

fun less_than 0 [] = []

| less_than 0 (a::x) =

if a < 0

then a :: (less_than 0 x)

else (less_than 0 x)

| less_than pivot [] = []

| less_than pivot (a::x) =

if a < pivot

then a :: (less_than pivot x)

else (less_than pivot x) ;

7. Think about the result
fun less_than pivot [] = []

| less_than pivot (a::x) =

if a < pivot

then a :: (less_than pivot x)

else (less_than pivot x) ;

A.8. User-defined types

Non-recursive ‘lecturer’-defined types are quite straightfor-
ward. Recursive types can be dealt with as before.

Problem:Write a function to sum the leaves of a tree, where
the tree has been defined by the lecturer as follows.

0. Lecturer-defined data type
datatype tree = Leaf

| Branch of (tree * int * tree)

1. Name the function
sum

2. Write down its type
tree -> int

3. Enumerate all cases

fun sum (Leaf) = refine

| sum (Branch(left,data,right)) = refine
4. Deal with any simple case(s)

fun sum (Leaf) = 0

| sum (Branch(left,data,right)) = refine
5. List the ingredients

sum, +, left, data, andright
6. Deal with the complex case(s)

fun sum (Leaf) = 0

| sum (Branch(left,data,right)) =

(sum left) + data + (sum right) ;

7. Think about the result

A.9. Mapping a function over a list

Problem: Given a functioninc : int -> int, write a
new function to increment each element of an integer list.

1. Name the function
inc_list

2. Write down its type
int list -> int list

3. Enumerate all cases

fun inc_list [] = refine

| inc_list (a::x) = refine
4. Deal with any simple case(s)

fun inc_list [] = []

| inc_list (a::x) = refine
5. List the ingredients

inc, inc_list, a, x
6. Deal with the complex case(s)

fun inc_list [] = []

| inc_list (a::x) = inc a :: inc_list x ;

7. Think about the result

The less experienced programmer will go through all the
seven steps, and produce the correct function above. A more
experienced programmer would recognize an idiom at some
stage, and if necessary retrace some of the steps to come up
with this solution:

1. Name the function
inc_list

2. Write down its type
int list -> int list

3. Enumerate all cases

fun inc_list x = refine
4. Deal with any simple case(s)

fun inc_list x = map inc x;

7. Think about the result
val inc_list = map inc;

Programming by Numbers is designed to help students
get started. This example shows that the method helps to
develop the skills required to recognize and use standard
idioms.

A.10. Fibonacci

Problem:Write a function to compute thenth element from
the Fibonacci sequence0; 1; 1; 2; 3; 5; 8; : : : ; in which each
number is the sum of the previous two.

1. Name the function
fib

2. Write down its type
int->int

3. Enumerate all cases

fun fib 0 = refine

| fib n = refine
4. Deal with any simple case(s)

fun fib 0 = 0

| fib 1 = 1

| fib n = refine
5. List the ingredients

fib, n
6. Deal with the complex case(s)

fun fib 0 = 0

| fib 1 = 1

| fib n = fib (n-1) + fib (n-2);

7. Think about the result

At step 4 some students realize that in order to compute
a number in the Fibonacci sequence, the previous two must
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be given. Therefore, there must be at least two simple cases,
one for0 and one for1. Other students will discover that
there is a problem when they think about the function, and
others may only realize the problem when they test a solution
that has insufficient base cases.

Some students will realize that the resulting function
has an exponential complexity. This problem can only be
solved by using a better algorithm, which computes the next
Fibonacci number given the previous two. This problem
can be solved by using an auxiliary functiontwofib that
returns the current as well as the previous Fibonacci number.
Once that has been decided, there is no difficulty in applying
Programming by Numbers again to the new programming
problem. Here we show the auxiliary functiontwofib.

1. Name the function
twofib

2. Write down its type
int->(int*int)

3. Enumerate all cases

fun twofib 0 = refine

| twofib n = refine
4. Deal with any simple case(s)

fun twofib 0 = (0,1)

| twofib n = refine
5. List the ingredients

twofib, n
6. Deal with the complex case(s)

fun twofib 0 = (0,1)

| twofib n = let val (a,b) = twofib (n-1)

in (b,a+b) end;

7. Think about the result

A.11. Ascending sequence of integers

Problem: Write a function to compute an ascending
sequence of integersn, n + 1, : : : ; m. The statement of
the problem suggests that the cases to be considered should
include numbers at thebeginningof the range as well as the
end of the range. Here we encounter a limitation, not so
much of Programming by Numbers, but more of ML, which
does not allow non-linear patterns (Miranda for example
does allow such patterns). To cope with cases involving
comparisons we need to use a conditional.

1. Name the function
range

2. Write down its type
int -> int -> int list

3. Enumerate all cases
fun range n m =

refine, wheren < m

refine, wheren = m

refine, wheren > m
4. Deal with any simple case(s)

fun range n m =

refine, wheren < m

[n] wheren = m

[] wheren > m
5. List the ingredients

range, n m

6. Deal with the complex case(s)
fun range n m =

n :: range (n+1) m wheren < m

[n] wheren = m

[] wheren > m
7. Think about the result

fun range n m =

if n <= m then n :: range (n+1) m

else []

APPENDIX B. USING Z, PROLOG AND PIZZA

We now show how Programming by Numbers can be applied
with the specification language Z, the logic-programming
language Prolog, and the object-oriented-programming
language Pizza.

None of these three languages are mainstream first
programming languages. However, Z and Prolog [14] are
used in the courses on discrete mathematics that often run in
parallel with the first programming course. We include Pizza
in our selection of languages because we feel that it would be
an interesting alternative to Java as a first language [15, 16].
No reports are available as yet on the use of Pizza as the
first programming language but we have heard reports from
various institutions contemplating this step.

B.1. Z

The specification language Z [17] is used in many
institutions to teach formal methods to first-year students.
Full Z is not normally used to introduce programming but
various executable subsets of Z have been created for the
purpose of animating specifications [18]. Here we consider
how Programming by Numbers might be adapted to teach
programming in a ‘functional’ sub-set of Z. This style of
specification is not mainstream Z. However, there are reports
in the literature where this particular style of specification is
used extensively [19].

Problem:Write a function to sum the leaves of a binary tree,
which has been defined using the free-type notation of Z as
follows:

tree ::= Leaf
j Branchhhtree� N � treeii

The seven steps are conveniently expressed using an
axiom schema:

1. Name the function

sum

2. Write down its type

sum: tree! N

3. Enumerate all cases

sum: tree! N

sum(Leaf) = refine

sum(Branch(left; data; right)) = refine
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4. Deal with any simple case(s)

sum: tree! N

sum(Leaf) = 0 ^

sum(Branch(left; data; right)) = refine
5. List the ingredients

sum, Branch, left, data, andright
6. Deal with the complex case(s)

sum: tree! N

sum(Leaf) = 0 ^

sum(Branch(left; data; right)) =

(sum left) + data+ (sum right)
7. Think about the result

To form a proper axiom schema, universal quantifiers
would have to be used to introduce the variables. We have
chosen to omit these and to rely on appropriate tools [20] to
insert the quantifiers and infer the types of the variables.

B.2. Prolog

It is becoming more common for Prolog programmers to
explicitly write the types of their predicates. For example
Sterling and Shapiro [21, p. 242] write that ‘Types are
emerging as important in Prolog programs’. Modern
commercial implementations, e.g. Visual Prolog [22] and
research languages, such as Mercury [23], are also typed.
We borrow the notation for types of Mercury to support
Programming by Numbers with Prolog.

Problem: Write a predicate to sum the leaves of a binary
tree, which has been defined as follows.

0. Lecturer-defined data type
:- type tree ---> leaf

; node(tree,int,tree) .

The mode declaration below is also written using the
Mercury notation but the predicatesum is written in Prolog.

1. Name the function(predicate)
sum

2. Write down its type(mode)
:- pred sum(tree::in,int::out).

3. Enumerate all cases

sum(leaf, refine ) :-

refine .

sum(node(Left,Data,Right), refine ) :-

refine .

4. Deal with any simple case(s)
sum(leaf,0) .

sum(node(Left,Data,Right), refine ) :-

refine .

5. List the ingredients
sum, +, Left, Data, andRight

6. Deal with the complex case(s)
sum(leaf,0) .

sum(node(Left,Data,Right),Total) :-

sum(Left,SumLeft),

sum(Right,SumRight),

Total is SumLeft+Data,SumRight.

7. Think about the result

The predicatesum has two arguments. The first unifies
with a tree and the second with a number. The mode
declaration asserts that the tree must be input, and that a
number will be delivered as output. Because of the non-
reversibility of theis operator, this is the only acceptable
moding.

B.3. Pizza

Pizza is essentially Java extended with pattern matching,
parametric polymorphism and higher-order methods. Pizza
is a proper superset of Java, implemented by a pre-processor.
Pizza classes interwork smoothly with Java classes, and thus
give all the benefits of working with Java.

Problem:Write a method to sum the leaves of a binary tree,
where the tree has been defined as a classTree with two
constructorsLeaf andBranch:

public class Tree {

case Leaf;

case Branch(Tree left, int data, Tree right);

refine methods
}

The methodsum is able to perform case analysis on
the tree, using Pizza’s extended notion of switch and case
statements:

1. Name the function(method)
sum

2. Write down its type
int sum() {

refine body

}

3. Enumerate all cases
switch (this) {

case Leaf :

refine
case Branch(Tree left, int data, Tree right) :

refine
}

4. Deal with any simple case(s)
case Leaf :

return 0 ;

5. List the ingredients
sum, +, left, data, andright

6. Deal with the complex case(s)
case Branch(Tree left, int data, Tree right):

return left.sum() + data + right.sum() ;

7. Think about the result
int sum() {

switch (this) {

case Leaf :

return 0 ;

case Branch(Tree left, int data, Tree right):

return left.sum() + data + right.sum() ;

}

}

As with the Java example, we varied the method slightly
by using step 7 to assemble the elements created in steps 4
and 6.
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