Programming by Numbers: A
Programming Method for Novices

HUGH GLASER, PIETER H. HARTEL AND PAauUL W. GARRATT

Department of Electronics and Computer Science, University of Southampton, S017 1BJ Southampton,
UK

Email: hg@ecs.soton.ac.uk

Students often have difficulty with the minutiae of program construction. We introduce the idea
of ‘Programming by Numbers’, which breaks some of the programming process down into smaller
steps, giving such students a way into the process of Programming in the Small. Programming by
Numbers does not add intellectual difficulty to learning programming, as it does not require the
student to learn additional tools or theory. In fact it can be done with pencil and paper or the
normal editor, and only requires the student to remember (and understand) seven simple steps.
Programming by Numbers works best with languages that offer pattern matching, such as ML, or
data-directed dispatching, such as Java.

Received 24 August, 1998; revised 22 June, 2000

1. INTRODUCTION right from the start, because recursion is so fundamental to

_ . .) programming in a functional language. In the Java-based
Programming in the Small is easy for experienced ., se programming by Numbers is introduced later, when
programmers. First they think abouthow to do it (The Idea), gigcyssing recursion in connection with abstract classes,
and then they write the solution down in the language of their sub-classing and data-directed dispatching.

_choice. This step from a s_olution in some form, toa solutiop Programming by Numbers is intended to help the student
in a form acceptable as input to a computer is an essentlalget started on a problem. It is not a substitute for

part of the expert's problem-solving skills. techniques such as step-wise refinement, structured design,
Many of our students are inexperienced programmers, o ¢or jearing about algorithms and data structures. In
who often have difficulty [1]. They confuse The Idea ;¢ programming by Numbers is complementary to such
with the program, and consequently have difficulty in ochniques and learning activities: it naturally leads into
constructing the program. Even if the students have beengioy \yise refinement, and it encourages the student to learn
taught enough of the syntax and semantics of the language,,ore about data structures and algorithms.
to be able to read and understand the solution when it Programming by Numbers reduces the complexity of
is presented to them, they are unable to conceive of thethe programming task by breaking it into a number of
solution. Students stare at a blank piece of paper and becom%ma”er steps. Alternative approaches include plan-based
frustrated. . . programming [4], using schemata [5], or using skeletons [6].
The problem arises because there are (00 many iSSUE4ch of these requires the student to choose a ‘template’ and

involved. The student is unsure of where to focus, and yhen, tg complete itin some way. This has two disadvantages.
does not have the discipline to consider only those parts

of the process that are relevant at a given time, ignoring ¢ The students must choose the appropriate template

those that are not. Breaking down any process into a before the problem is sufficiently well understood, or
number of well-defined steps is the standard way of coping else they must change the template along the way.
with such problems. We should therefore do the same Templates can thus be too rigid.

with programming. A particular problem is that students o Templates generally do not help the students decide
may worry about the complexities of the problem before which steps must be carried out first.

completing the simplicities; our method will require them

to complete the simplicities before thinking about the Programming by Numbers is different in both respects:

complexities. it provides step by step guidance, and at the same time
Programming by Numbers works best with a program- allows flexibility in the structure of the solution to a problem.

ming language that offers pattern matching, or data-directedWe believe that Programming by Numbers provides a better

dispatching. We have used Programming by Numbers in match to the creative process of programming than the

two different first programming courses: the first course alternative template-based approaches.

is based on ML [2] and the second is based on Java [3]. The underlying ideas of Programming by Numbers are not

In the ML-based course Programming by Numbers is used new. In fact the basic idea is so obvious that we expect many

THE COMPUTERJOURNAL, Wol.43, No.4, 2000

PROGRAMMING BY NUMBERS

253

colleagues implicitly to use similar ideas. However, to our 2.1. An example

knowledge no reports exist in the literature that document a
clear series of identifiable steps. Our contribution therefore
is to provide careful documentation of the process, and to
evaluate it by reporting on the responses of our students to
the process.

Like other, similar processes (e.g. painting by numbers),
Programming by Numbers has a somewhat mechanistic feel
which is not appreciated by some students. We found using
Programming by Numbers most effective during lectures
and laboratories, where it provides a framework for dis-

cussion. Programming by Numbers functions as an agreed ™

and recognisable process for introducing new elements of
learning and study. Each time the lecturer introduces a

progressively more challenging example, there is a largely 2.

mechanistic process but also a new element. This new
element appears almost automatically when we follow the
steps. Once the new element has been identified, we are then
able to discuss possible solutions, showing the students new
data structures, algorithms, program-design techniques etc.

Finally we give our reasons for calling the method
Programming by Numbers. These are:

e to elevate an important aspect of the programming
process by naming the steps. It is easier to focus on a
particular aspect of an intellectual process when it has
been given a name;

e to order the steps.
through the process;

e to facilitate memorizing the steps. People being taught
complex tasks are frequently introduced to the steps by
numbers (e.g. the way raw recruits are often taught gun
drill).

The next section introduces Programming by Numbers
using ML. Appendix A presents a number of further, graded
examples, showing that a wide range of problems is covered
by the method. Section 3 shows how Programming by
Numbers is used with Java. An evaluation of the method
on the basis of various forms of student feedback over the

This helps to guide the student

past three years is given in Section 4. Appendix B presents a =

discussion of how Programming by Numbers can be used
with Z, Prolog and Pizza. Section 5 discusses the next
step in the learning process and the last section presents our
conclusions.

2. PROGRAMMING BY NUMBERS

Given an Idea for a function, we can provide the seven steps 6.

that a student must take to write the function.

Name the function.
Write down its type.

Deal with any simple case(s).
List the ingredients in preparation for the complex
case(s).

6. Deal with the complex case(s), where some inspiration
is required.

7. Think about the result.

1
2.
3. Enumerate all cases. 7.
4
5

Before discussing each of the steps in more detail, we
provide here as an example the construction of the
factorial function. The student is given the assignment
below. This is not the first problem a student would be asked
to solve but is suitable to allow us to explain the method.

'Problem: Write a function that takes a numberand returns
its factorial (i.e.l x 2 x --- x n).

Name the function
factorial

This follows directly from the statement.
Write down its type

int -> int
ML, like most other programming languages, offers
two numeric typesint andreal. The latter is clearly

inappropriate in this case.
Enumerate all cases

fun factorial 0 = refine
| factorial n = refine

The identification of the cases follows directly from
steps 1 and 2. For every argument type there is a
standard set of cases for the initial solution attempt.
For the typeint, the usual cases ateandn, where

the latter stands for non-zero. The right-hand sides
have been annotated with ‘refine’, as a reminder for the
refinement in the following steps.

Deal with any simple case(s)

fun factorial 0 =1
| factorial n = refine

This requires a little thought, but is usually an appeal
to the statement or knowledge of the problem. In this
case the student has realized that 1 is the identity of
multiplication. The second case has been identified as
the complex case and it is still marked as ‘refine’.

List the ingredients

The ‘ingredients’ available to the complex case are:
the function name flactorial), the argumentx),
constants of the same type as the domain and range
of the function (such as), and built-in functions over
those types (such asand-). From those ingredients
we can construct promising expressions such-as
andfactorial (n-1).

Deal with the complex case(s)

fun factorial 0 =1

| factorial n = n * factorial(n-1) ;

The ‘difficult bit’.

Think about the result

Careful examination reveals that we should be satisfied
with the function defined.

The reader may wonder why we do not appeal to
the theories (e.g. recursive-function theory) behind the
practical method. We have experienced that it is best to

THE COMPUTER JOURNAL,

\ol. 43, No. 4, 2000

254 H. GQ.ASER, P. H. HARTEL AND P. W. GARRATT

avoid introducing the method from a theoretical perspective Instead non-standard types are given by the lecturer. In the
because our students are more motivated by practical issuescase of sucHecturer-defined data typeshe cases can be
ascertained directly by reference to the constructors from

2.2, Acloser look the data-type definition. For example, it can be seen that
We now look at each of the steps in more detail.]Eg?:ati(type beIO\)/v has two pafterns, onefgsty and one
ush(...,...).

2.2.1. Name the function datatype ’a stack = Empty

This may be a simple activity, but it is important | Push of (’a * ’a stack);
nevertheless. Students have a tendency to underestimate
the importance of choosing good names, and identifying the
choice of name as an important step is useful.

Where a function has more than one argument, the starting
set of patterns is found by listing all combinations of

the cases for the individual arguments, even though the
2.2.2. Write down its type number of cases grows exponentially with the number of

This step takes intellectual activity because it is a formal &rguments. The reason is that Programming by Numbers
statement of what has been informally mentioned in the IS @imed at students who do not yet have the confidence
question. The student is required to think about the concrete®' the experience to be able to decide which cases may
type that represents the domain of the function as indicated®® combined and which may not. Having to list all
in the question. The example problem above indicates combinations first and then solvmg t_he corresponding sub-
that the domain of the factorial function i. In the Problems has three advantages. Listing all cases:
implementation language available, the only suitable type gives the student a starting point;

is int. The student also knows that values of type lie e gives students of all abilities the incentive to think

betweemminint andmaxint. Students can consequently carefully about relevant cases, and cases that can be
be concerned that the factorial of negative numbers is not combined:

defined, and that the factorial of large numbers cannot be ¢ gives students a handle on testing their functions.
computed in the given range. The end result will thus be a A comprehensive set of test cases should at least

partial function. include all combinations of the individual cases of the
Writing down the type of a function exposes the student arguments.

to the limitations of the function they are implementing,) o .

and the way it can be used sensibly. Students will find Cor_1f|dent gtu_dents: see the listing of allcgses asqpomtlgss

identifying the domain of a function difficult, but the €Xercise. This is a disadvantage. In practice functions with

process of Programming by Numbers helps them to focus MOre than two arguments are rare. For example out of 29

on the question of identifying the domain. Mapping the functions discussed in the first chapter on fgnctlons from

domain to an appropriate concrete type is a problem in anythe textbook we use [2, Chapter 3], 15 functions have one

programming language, and we believe that the focus on this2rgument, 12 have two arguments, and only one has three

issue provided by step 2 is helpful. arguments. The;e gount; .exclude functions that are only
The statement of the type can be used as guidance in th¢/S€d as an exercise in deriving types.

remaining steps. Writing down the type also provides a

method of double-checking the function when it is finally 2.2.4. Deal with any simple case(s)

implemented. The current sub-problem of writing down the Some thought is required here, but with discipline this can

type can be solved using knowledge of the well-defined sub- P& minimized. The important thing is to insist on only

language of types, thus helping the students to concentratesolving the case under consideration. Concern about any

on one particular aspect of the solution. other cases must be avoided. The worry about other cases
is often what students find hard. It is in fact the provision
2.2.3. Enumerate all cases of an environment where students focus on a case by case

This step follows directly from step 2, and it requires the construction that motivates the Programming by Numbers
choice of appropriate names. In the case of built-in types, method.

the base and general cases are promising: The simple cases are those that the student can solve with
relative ease. The simple case does not have to be a base

int 0 case of the recursion; we encourage the students to decide
non-z€ro (©.gn) which are the simple and the complex cases.

bool true Often the domain of the function to be written and

string fﬁlse the range of values provided by the type chosen for the

implementation do not match exactly. It may then be
necessary to introduce further cases. For example, the
last_element function, which gives the last element of a
list, is not defined for the empty list. This makes it necessary

During the early stages of the learning process we do to introduce the case for a single-element list as the simple
not expect the students to create user-defined data typescase.

non-empty (e.gs)
list]
non-empty (e.g(a::x))

THE COMPUTERJOURNAL, Wol.43, No.4, 2000

PROGRAMMING BY NUMBERS 255

Conversely, sometimes it turns out that simple cases canin some sense than the original problem. In the case of a
be discarded, for example when the argument concerned isfunction over a list, for example, we expect the solution to
not used in the function, either because it is passed directly contain some computation on the tail of the list. In the case
somewhere else or because it is ignored. As experienceof integers, as in factorial above, we expect the solution to
grows, such cases can be identified in step three, but suctcontain some computation on a smaller number (one less
advanced techniques should not be attempted until the basiaisually), such asactorial (n-1) above.
steps are well understood. Having identified and solved a suitable sub-problem, the

Some students may have difficulty deciding which cases next step is to place the solution in an expression such
are the complex cases and which are the simple cases. Irthat the equality constraint is satisfied. To achieve this
such a case it often helps to think about sample test casedor factorial, we need to use it as the right operand in
for the function. For example all students would know n * factorial (n-1).
thatfactorial 0 should produce 1, thus recognizing this For a large set of problems, the only step that a student
as a simple case. In addition they might also earmark who is applying the method with discipline will find
factorial 1 as a simple case, which while redundant challenging is the current step. In fact this step is the
is certainly correct. Most students would probably then nub of any algorithm, and so the student is required to

considerfactorial n as the complex case. concentrate on the important part of the function without
being distracted by all the book-keeping. Programming
2.2.5. List the ingredients by Numbers has successfully broken a problem down

Listing all elements that may be used to construct the iNto smaller sub-problems. One should now appeal to
complex case complements the information that is available the student's understanding of the problem, knowledge of
about the structure of the function as a whole. For some algorithms and data structures, and skills in applying step-
problems, it might be sufficient to think about available built- Wise refinement.

in functions and constants. For other problems it might

be necessary to postulate auxiliary functions, to reduce the2-2.7. Think about the result

difficulty of actually doing the complex case. Again an Finally we need to review the function written to satisfy
appeal to the type of the function gives guidance. For ourselves that it is what we want. This step is sometimes
example in step 5 of our factorial problem we includeshd null, as with factorial. Normally we recommend our students
- as ingredients, because they are clearly associated with thd0 consider the following issues:

typeint. e Functions are static objects, which can sometimes be
As a general rule we recommend the students consider: usefully simplified. The most common simplification is
to realize that some of the special cases are not in fact
special, and are also covered by more complex cases.
Making such a simplification leads to a better insight
into the original problem.
Checks should be made, verifying that the type of the
function is the same as, or a generalization of, the type
from step 2. Finding type generalization often goes
hand in hand with removing redundant cases.
It is useful at this stage to write some test cases for the
function to exercise the simple and complex cases.
Frequently the simplifications, checks and tests per-
formed at this stage lead to new insights which
cause the student to reconsider earlier steps, making
Programming by Numbers an iterative process.

e the name of the function under construction (i.e. do we
need to make a recursive call?);

e the names of the function arguments, and the identifiers
bound by patterns for the individual cases (i.e. how are .
we going to use the data available to us?);

e constants and operators over the data types of the
arguments and the function result;

e in some cases auxiliary functions may be needed. The .
name and functionality of such auxiliary functions
should be postulated. This is just an instance of step- .
wise refinement, which shows how Programming by
Numbers leads into rather than attempts to replace tried
and tested methods.

It is often useful to consider which elements are not
ingredients, so as to delimit the scope of the problem. 3. USING JAVA

Factorial is so simple that it does not provide good examples programming by Numbers emphasizes case analysis, which

of ‘non-ingredients’. ~ We give some examples and a orks well in programming languages like ML. To show

discussion in the next section. how Programming by Numbers works in object-oriented
languages like Java consider the following problem.

2.2.6. Deal with the complex case(s) Problem: Write a method to sum the leaves of a binary

Solving the complex case(s) can be difficult, but even here yqq \yhere the tree has been defined (by the lecturer) as an
it is possible to apply some heuristics. Either there is a jpqtract clasgree with sub-classekeaf andBranch.
relatively simple answer, or we need to divide the solution

(i.e. the right-hand side) into some sub-problems. 1. Lecturer-defined data type
In turn, the identification of sub-problems can be hard, but public abstract class Tree {
the important thing is that a sub-problem should be smaller refine methods

THE COMPUTERJOURNAL, Wol.43, No.4, 2000

256

H. GQ.ASER, P. H. HARTEL AND P. W. GARRATT

}

public class Leaf extends Tree {
public Leaf() {
}
refine methods
}

public class Branch extends Tree {

private Tree left, right;

private int data;

public Branch(Tree left, int data

Tree right) {

this.left left;
this.data = data;
this.right = right;

}
refine methods
}

The lecturer-defined data type describes the data structure,
complete with fields and initializers. The student is asked to
provide the definition of the appropriate method(s). Here is
how the process would be executed.

1. Name the function(method)
sum

A good name for the method ¢sim.
2. Write down its type

public abstract class Tree {
abstract int sum();

}

The student is unlikely to defireum as a function with
aTree argument because it is more befitting of a Java 5
program to use a method. The method does not need
arguments. Given that the values contained in our tree
are integers, the return type for the methodiris.

3. Enumerate all cases

public class Leaf extends Tree {
// initialiser omitted
public int sum() {
refine body
}
}

public class Branch extends Tree {
// initialiser and fields omitted
public int sum() {
refine body
}
}

Where we relied on pattern matching in the ML
example, we now use Java’s data directed dispatching
to identify the two relevant cases: one to handieaf
and one to deal with Branch. It suffices to write each
case in the appropriate class.

4. Deal with any simple case(s)

public class Leaf extends Tree {

// initialiser omitted

6.

public int sum() {
return 0 ;
}
}

Most students would identify theeaf as the simple
case, because all that needs to be done here is to return
0. Students who choo®sanch as the simple case will
probably find it difficult to complete this step and are
likely to revisit their earlier, incorrect decision.

List the ingredients

sum, +, left, data, andright

It is necessary to think carefully about the list of
ingredients for the complex case. Using the listed
ingredients, the student may form such expressions
as left.sum(), and right.sum() which would
contribute to finding a solution at step 6.

We encourage students to explore further alternatives,
for exampleleft.left, and ask them whether such
expressions make sense under all circumstances, a test
which the expressiobeft . left does not pass.

Deal with the complex case(s)

public class Branch extends Tree {
// initialiser and fields omitted
public int sum() {
return left.sum() + data + right.sum();
}
}

Having given the list of ingredients sufficient thought,
most students would not find it difficult to complete
the complex case. The complete solution consisting of
three classes is then as shown below.

Think about the result

public abstract class Tree {
abstract int sum();

}

public class Leaf extends Tree {
public Leaf() {
}
public int sum() {
return O ;

}
}

public class Branch extends Tree {
private Tree left, right;
private int data;
public Branch(Tree left, int data,
Tree right) {
this.left = left;
this.data = data;
this.right = right;
}
public int sum() {
return left.sum() + data + right.sum();

}

THE COMPUTER JOURNAL,

\ol. 43, No. 4, 2000

PROGRAMMING BY NUMBERS 257

We have taken the liberty here of varying the method two different methods of evaluation: an observational
slightly by using step 7 to assemble the elements investigation [9] in 1999/2000 and exam-based surveys in
created in steps 4 and 6. 1997/1998 and 1998/1999.
After giving some thought to the solution we cannot
come up with improvements. However we can thinkof 4 1 opservational investigation
various interesting test cases for then () method. We
will not show them here. To explore the utility of Programming by Numbers we con-
ducted a formal test where we observed students attempting
Itis interesting to compare our solution above to what one 5 solve a programming problem using Programming by
would encounter in a typical text book. Deitel and Deitel [7, Numbers and Java. Eight students (5% of the class) were
Section 17.7] use a single claBseeNode, with three fields, cnosen at random from the entire cohort. An observation

to represent a binary search tree: lasted at most 30 minutes; some students completed their
class Treelode { task in less time. The students had all been new to Java
Treellode left; at the start of the course, and some had been new to

int data;

computer programming. The students were all studying

Treelode right; Computer Science but from the perspectives of different

methods . .
) degree courses. Some were more mathematically oriented
while some were more oriented towards electronics. The
A leaf node is represented by an instanceTpéeNode students were presented with Programming by Numbers in a
with the fieldsleft andright set tonull. The approach single lecture which explained the method and finished with
of Deitel and Deitel has two problems: an example: constructing a Java method to sum the elements

of a list.

For the observed experiments the students had to construct
the Java method to sum the leaves of a binary tree as in
Section 3, using Programming by Numbers. During the
exercise an observer noted the actions of the student, noted
the student’s use of Programming by Numbers and examined

students to understand, but with the help of Programming by the formal guidelines defined in Nielsen [9]. The rigorous

Numbers we believe the students will appreciate our solution cOnduct of such an exercise requires the observer to ensure
as the better one. the subject understands the problem and the role of the

method but then refrains from intervening while the subject

uses the method. After the observation a less formal session

allows further discussion and clarification of events.
Programming by Numbers has been used for the last The formal observations revealed that all the students but
eight years in two different first courses on Programming one used Programming by Numbers in the recommended
Principles for Computer Science students at the University way. All students who used Programming by Numbers
of Southampton [8]. This year the course is based on Java,produced acceptable Java methods and appeared to have
using the text book by Arnow and Weiss [3]; previously the understood and explored abstract classes and data directed
course was based on standard ML, using Ullman [2]. dispatching by the end of the exercise. The less experienced

Southampton attracts a growing number of Computer students used Programming by Numbers in conjunction
Science students, presently numbering about 160 per yearwith referring back to simpler examples of Java programs.
The Programming principles course is assessed on the basi¥he more experienced students referred back to example
of 50% examination and 50% course work. Fewer than 10% Java programs less and took less time to complete the
of the students who complete the year are required to resitexercise. During the final stages of each student’s session
the examination in September. the observer noted that generally the students appeared
To evaluate Programming by Numbers, ideally we would pleasantly surprised that the program they had written

design an experiment with two equivalent, randomly chosen seemed to work. One student said he was ‘shocked’ at the
groups of students. One group would be taught using successful outcome of his Programming by Numbers. The
Programming by Numbers and the control group would method had led the students to the correct solution of a non-
receive the same tuition without using Programming by trivial programming task in easy stages.
Numbers. However, the costs of such an experiment are During the observational investigation a case arose which
prohibitive, not least because of the need to isolate the two provided a valuable control situation for our experiment.
groups of students from each other. In addition there are One student when presented with the programming task and
serious ethical issues of large-scale experimentation on sucHProgramming by Numbers attempted the task but refrained
an important part of the students’ degree. Consequentlyfrom using the method, preferring to attempt the task in
we have attempted to evaluate the method by canvassinghis own way. His reasons were unclear to the observer
the opinions of the students. We have done so usingwho thought they may have stemmed from over-confidence.

e The implementation of thereeNode is exposed and is
thus not an abstract data type.

e It is not possible to distinguish between accessing an
uninitialized reference (usually a programming error)
and an empty (sub-) tree.

4. EVALUATION

THE COMPUTERJOURNAL, Wol.43, No.4, 2000

258 H. GQ.ASER, P. H. HARTEL

AND P. W. GARRATT

The student solved the programming problem to his own

lecturers. Instead we scrutinized the exam scripts to identify

apparent satisfaction but the Java method he wrote was arpositive and negative remarks about the method (below).

entirely inappropriate solution to the problem. Also the
student failed to learn the programming lessons implicit in
the programming task and so derived little benefit compared
to the students who did use Programming by Numbers.

At the close of each observed session the observer had an

informal discussion with the student to clarify the outcome
and gauge the student’s reaction. Also at the end of

the whole observational investigation the students gathered

in an informal panel to discuss the purpose, results and
conclusions of the investigation. The students praised
Programming by Numbers and reported finding it very

useful in teaching them aspects of Java. They commented.

that Programming by Numbers reflects the problem-solving
method they use intuitively and it is a useful clarification
and formalization of that method. The students agreed with
our description of Programming by Numbers as limited in
its scope.
and an extension of Programming by Numbers to cover

other aspects of program design and development. Somes

were optimistic that Programming by Numbers would ease
their difficulties in comprehending and learning large-scale
programming as it had helped them during the observational
investigation.

Finally, the students suggested an addition to step 4,
which has now been incorporated in the method. The
addition consists of writing down some test cases for the
function/method being developed, to help decide which are
the simple and the complex cases, and to provide further
insights while dealing with the cases.

4.2. Exam-based surveys

We embedded a question on Programming by Numbers
in the 1997/1998 and 1998/1999 examinations, thereby
ensuring that this captive audience were all encouraged to

give their views. The two editions of the course were the *®

same; both were based on standard ML. In 1997/1998 we
asked the following question:

(i) Give the different steps of Programming by
Numbers (5%).

(i) Write a short essay (no more than one page)
to explain and defend one of the following
points of view (20%):

(a) Programming by Numbers helps you get
started with a programming problem;

(b) Programming by Numbers does not help
you get started with a programming
problem.

Marks will be awarded only for the effective
defence of the chosen point of view.

The 1997/1998 question was answered by 28 out of 104

Given the overwhelmingly positive reaction to our
1997/1998 Programming by Numbers question we decided
to ask for the disadvantages in 1998/1999:

() Give the different steps of Programming by
Numbers (5%).

(i) Discuss with the aid of examples the short-
comings and disadvantages of Programming
by Numbers. Your answer should be concise
—one page maximum (20%).

This resulted in 44 out of 127 students giving their views
in 1998/1999.

4.2.1. Positive reactions in 1997/1998

Students commented that the process as a whole helped them

They said they would welcome a replication 0

e create manageable sub-tasks,

give structure to the programming activity,

experience a gradual progression from easy to difficult,
put syntax and semantics into practice, and

have ‘peace of mind’. One student wrote ‘you don'’t
have to look at a blank piece of paper for ages’. Another
student wrote that ‘even if you can't solve a problem

you can still write some code’.

These comments indicate that Programming by Numbers
indeed helps to avoid the frustration of staring at a blank
piece of paper.

One student gave us a new insight when he/she wrote that
programs are split into separate entities (functions) so it is
natural to also split functions into separate entities.

Students found having to write the type of the function
helpful in various ways. They said that

it helps you understand the problem,

it helps you write code that someone else is able to read
more easily, and

the practice of writing down the types as a separate step
can be transferred to other languages.

Enumerating all the cases was found useful ‘because you
are less likely to forget special cases’.

By far the most frequent comment was that doing the
simple case(s) helps doing the complex case(s). Some
students noted that doing the simple case(s) first also
gave them the opportunity to think about termination of a
recursive function.

The final step was generally quoted as useful to eliminate
redundant cases, but also as an opportunity to rethink the
whole development process.

4.2.2. Negative reactions in 1997/1998
One student, whilst arguing case (a) noted that it may take

students; 27 of those argued case (a) and one student argueldnger writing functions using Programming by Numbers,
case (b). We attach no significance to these numbers becausand he/she also wrote ‘why would it exist if it was not

they clearly reflect the student’s inclination to please their

useful?’.

THE COMPUTER JOURNAL,

\ol. 43, No. 4, 2000

PROGRAMMING BY NUMBERS 259

The identification of the cases is meant to give students aand data structures involved; the new challenge is to express
handle on the tests to be applied during white-box testing. these using a different, lower-level, programming language.
However we found that because of this emphasis on white- Programming by Numbers helps students to become
box testing the students are less likely to also apply black- advanced beginnefd]. Once the students are comfortable
box testing. with writing single functions over familiar domains they

In a sense the most interesting reaction is that of are presented with more challenging problems. These
the student who chose to argue case (b) of the examwould typically require a level of decomposition into sub-
guestion. The point made was basically that Programming problems that can be solved directly using Programming
by Numbers does not scale up. It does not help to write a by Numbers. It is at this stage in the learning process,
large program. Of course the student is absolutely right, andwhen progressing from advanced beginnecempetence
in retrospect we should have brought this point out during that classical problem-solving methods such as Jackson

the course. Structured Programming [11] would be appropriate for use.
Such methods support the student in analysing the problem,
4.2.3. Negative reactions in 1998/1999 which in turn helps the student to pick out the elements

About half the students noted that Programming by Numbersthat can be solved using Programming by Numbers. It is

can be time-consuming because of the need to write downour experience that the classical methods require the student

all those cases. We would argue that comprehensive testing® be able to manipulate the elementary programming

requires writing down all the cases anyway. constructs with a greater degree of skill than students
About 40% of the students noted that Programming by possess. Programming by Numbers provides a method to

Numbers has a limited scope because solving the difficult fill this gap.

cases is sometimes too difficult, and it requires what students

call Programming by Numbers within Programming by 5.1. Java

Numbers (sgep-wi.se refinement). _ In the Java-based Programming Principles course Program-
Some 30% claimed that Programming by Numbers can ing by Numbers has a different role than in the standard
only be used with functional programming because it relies \, _pased course. The text book used [3] follows a classical
on pattern m:ltchmg. approach towards imperative programming, emphasizing
About 25% of the students were concerned about |,,hq and arrays. Abstract classes, data-directed dispatching
Programming by Numbers being restrictive and inhibiting and also recursion play a minor role. However, we
creativity because ‘people do not think in a prescribed yqjieve these are fundamental and important concepts, the
order. A majority of these students were especially yiseission of which is continued in the two following

concerned with the fact that Programming by Numbers does . ,rses: Advanced Programming and Algorithms and Data
not necessarily lead to the most efficient solution: it is N0 g ,ctures

substitute for knowledge of algorithms and data structures.
Finally three students noted that Programming by g ~oNCLUSIONS
Numbers is so obvious and natural that it is not worth

learning it! Based on our experience of teaching programming, where
we observe that students have difficulty with recursion and
5 THE NEXT STEP IN THE LEARNING PROCESS case analysis, we set out to develop a method specifically to

help students with these problems.

In our standard ML-based Programming Principles course, Programming by Numbers is a method that gives the
the early assignments are relatively simple, like the factorial stydent a series of well-defined steps to provide the
problem. We follow this up in the second phase of the course gjscipline for creating the smallest components of functions.
using assignments that allow the students to develop somerhe method identifies separate activities and orders them
of the standard higher order functions, and to use ‘student’- g;,ch that the student is able to progress from an empty
defined data types (as opposed to ‘lecturer’-defined datasheet of paper to a worked solution by following the steps.
types). The purpose of this second stage is threefold: The student is encouraged to direct creativity at the sub-
problems. The student does not have to worry about
everything at the same time.

We are aware that our insistence on following the steps,
even to the point where many different cases are generated,
might hinder students’ creativity. Our response is that
Programming by Numbers is to be used as a guide for class-
room discussions. Our work provides a vehicle that the lec-
turer can use to discuss important issues such as ‘how many
cases shall we consider and why?’. We have found this ques-

The third and last phase of the Programming Principles tion to be extremely useful in our lectures over many years.
course revisits the above, but uses C instead of ML [10]. The Student feedback on the use of the method is largely
students feel confident that they understand the algorithmspositive. We gained some new insights from the students’

e to provide further opportunity to practice programming
in the small;

e to allow students to discover the utility of standard
idioms as exemplified byiap (See Appendix A.9) and
filter,

e to practise abstraction over functions (yielding higher-
order functions) and abstraction over types (yielding
polymorphic functions).

THE COMPUTERJOURNAL, Wol.43, No.4, 2000

260

H. GQ.ASER, P. H. HARTEL AND P. W. GARRATT

comments, which we interpret as an indication that the
students do appreciate the help provided by the method.
The method naturally leads students to think about

programming idioms once they progress beyond a certain

point.
The method was developed with functional programming

in mind but it can be applied to any language that supports

a form of case analysis. We have shown how to use

Programming by Numbers with Java. The appendices show

how to use Programming by Numbers with the specification

language Z, the logic language Prolog, and the Java super-set

Pizza.

ACKNOWLEDGEMENTS

The contributions of eight generations of students are
gratefully acknowledged, in particular the students who
were observed in 1999. We thank Michael Butler, Kathryn
Glaser, Andy Gravell, Hugh Davis, Jon Hallett, B&no"

Lanaspre, Denis Nicole, and the four anonymous referees

for their help.

REFERENCES

[1] Winslow, L. E. (1996) Programming pedagogy—a psycho-
logical overview ACM SIGCSE Bul).28, 17-22, 25.

[2] Ullman, J. D. (1994Elements of ML ProgrammingPrentice
Hall, Englewood Cliffs, NJ.

[3] Arnow, D. and Weiss, G. (1999troduction to Programming
Using Java: An Object-Oriented Approach (Java 2 Update)
Addison Wesley Longman Higher Education, Reading, MA.

[4] Hein, J. L. (1993) A declarative laboratory approach for
discrete structures, logic and computabiliyCM SIGCSE
Bull., 25, 19-24.

[5] Bielikova, M. and Nivrat, P. (1998) Use of program schemata
in Lisp programminglnformaticg 9, 5-20.

[6] Sterling, L. and Kirschenbaum, M. (1993) Applying
techniques to skeletons. In J. M. Jacquet (edgnstructing
Logic Programs pp. 127-140. John Wiley & Sons,
Chichester, UK.

[7] Deitel, H. M. and Deitel, P. J. (1998pva—How to Program
(2nd edn). Prentice Hall Int. Inc., Upper Saddle River, NJ.

[8] Glaser, H. and Sivess, V. (1993) Un language fonctionnel pour
le cours d'initiationa’ la programmatiorSpgcif, 93, 14-25.

[9] Nielsen, J. (1994)Jsability Engineering Academic Press,
London.

[10] Hartel, P. H. and Muller, H. L. (199 unctional C Addison
Wesley Longman, Harlow, UK.

[11] Ingevaldsson, L. (1979SP—A Practical Method of Program
Design Jackson Systems Int. Ltd, London.

[12] Hudak, P., Peyton Jones, S. L. and Wadler, P. L. (eds) (1992)
Report on the programming language Haskell—A non-strict
purely functional language, version 1.2ACM SIGPLAN
Notices 27, R1-R162.

[13] Turner, D. A. (1985) Miranda: A non-strict functional

language with polymorphic types. In Jouannaud, J.-P. (ed.),

2nd Intl Conf. Functional Progr. Lang. Comp. Architecture

Nancy, FranceLecture Notes in Computer Scien@91, 1—

16.

Elenbogen, B. C. and O’Kennon, M. R. (1998) Teaching

recursion using fractals in Prolog. In H. L. Dersham (ed.),

[14]

19th Int. Conf. Computer Science Educatidktlanta, GA,
pp. 263-266ACM SIGCSE Bul|.20.

[15] Bosarményi, L. (1998) Why Java is not my favorite first-
course languageSoftware—Concepts and Topl9, 141—
145.

[16] Hosch, F. (1996) Java as a first language: an evalugkicM
SIGCSE Bull.28, 45-50.

[17] Spivey, J. M. (1989)The Z Notation Prentice Hall,
Englewood Cliffs, NJ.

[18] Gravell, A. M. and Henderson, P. (1996) Executing formal

specifications need not be harmf8bftware Eng. J11, 104—

110.

[19] Stepney, S. (1993)ligh Integrity Compilation: A Case Study
Prentice Hall, Hemel Hempstead, UK.

[20] Jia, X. (1995)ZTC: A Type Checker for Z—User’s Guide
Dept. of Comp. and Inf. Sci, DePaul Univ., Chicago,
lllinois. ftp.comlab.ox.ac.uk/ pub/ Zforum/ ZTC-1.3/
guide.ps.Z.

[21] Sterling, L. and Shapiro, E. (1994he Art of Prolog MIT
Press, Cambridge, MA.

[22] PDC (1998) Visual Prolog 5.0 Reference ManuaPro-
log Development Center A/S, Copenhagen, Denmark.
www.visual-prolog.com.

[23] Somogyi, Z., Henderson, F. and Conway, T. (1996) The ex-
ecution algorithm of Mercury: an efficient purely declarative
logic programming languagé. Logic Programming29, 17—
64.

APPENDIX A. GRADED EXAMPLES

We begin each example with a formulation of the problem,
as one might find it in a typical course assignment. We then
present the seven steps and comment on some of the salient
features of the method and the example.

After the initial, simple functions, the rest of the examples
are of recursive functions, because that is the only class of
‘interesting’ functions that can be discussed during the first
few weeks of a first programming course.

The example problems have been chosen mainly because
they appear to pose problems for the method.

A.1. Alogical operation

Problem:Write a function to provide the logical negation of
its argument.

1. Name the function

not

Write down its type

bool -> bool

Enumerate all cases

= refine

| not false = refine
Deal with any simple case(s)
fun not true

2.

fun not true

= false
| not false = true ;

7. Think about the result

This problem does not have complex cases, so steps 5 and
6 can be skipped. We do insist that students explicitly make
step 7 even though, as in this case, it does not give rise to
new insights.

THE COMPUTER JOURNAL,

\ol. 43, No. 4, 2000

PROGRAMMING BY NUMBERS

261

A.2. An arithmetic operation

Problem:Write a function to provide the arithmetic negation
of its argument.

1. Name the function
negative_of

Write down its type

int -> int

Enumerate all cases

fun negative_of 0 =|refine

| negative_of n = refine
Deal with any simple case(s)
fun negative_of 0 =0

| negative_of n = refine
List the ingredients
negative_of andn

Deal with the complex case(s)
fun negative_of 0 =0

| negative_of n
Think about the result
fun negative_of n

2.

“n ;

“n ;

When thinking about the function, the student realizes that
the special case is covered by the complex case, becaus
~0=0 for the integers. (Unary minus in ML i8.) This
example shows that the student who does not think of such
an identity will still be able to produce a working function.
We believe that it is important that the method should work
for students of all abilities.

A.3. Alist function

Problem: Write a function to return a string that has a
number of copies (first argument) of its (second) argument
a string.

1. Name the function

copies

Write down its type

int -> string -> string
Enumerate all cases

fun copies 0 ""

2.

refine
refine

I refine

| copies n str refine
Deal with any simple case(s)
fun copies 0 "" ne

I
I
| copies n str
List the ingredients
copies, n, andstr
Deal with the complex case(s)
fun copies 0
I
I
I

copies n

copies 0 str

copies n

copies 0 str ne

refine

copies =
copies

copies

n
0 str
n str =

str ~ (copies (n-1) str)
Think about the result
fun copies 0 str = ""
| copies n str

str ~ (copies (n-1) str) ;

Here~ is string concatenation.

For this function, we see that in general for two-argument
functions we must enumerate all possible combinations of
arguments. Itis better, as here, to enumerate all the argument
pairs and then remove those redundant cases we wish in step
7, rather than risk getting it wrong by removing them earlier.
This is in contrast to a common student difficulty where the
attempt to ‘optimize’ during the construction process causes
serious problems.

A.4. Alist function with a problem

Problem:Write a function to return the last element of a list.

1. Name the function

last_element

Write down its type

’a list -> ’a

Enumerate all cases

fun last_element [] = refine

| last_element (a::x) = refine
Deal with any simple case(s)

fun last_element [] = problem

| last_element (a::[]) = a

| last_element (a::x) = refine
List the ingredients
last_element, a, andx

Deal with the complex case(s)

fun last_element (a::[]) = a

| last_element (a::x) last_element x ;
Think about the result

2.

e

7.

We know that the domain of theast_element function
is all non-empty lists. However, the only reasonable concrete
type for the implementation is the standard list type, as
indicated in the problem. The concrete type does not match
exactly the domain of the function. Hence a new case must
be introduced to deal with the singleton list. The student
who does realize that the mismatch exists, will introduce a
case at step 3. Those that do not realize that the mismatch
exists will discover the problem at step 4 as above, when
trying to think of a value to be returned when the argument
is the empty list.

We could raise an exception, but at this stage we will
assume the function will be used correctly, and rely on the
system to raise an exception if it is not. This is achieved
simply by omitting the case of the empty list from the
program. The exercise has, however, ensured that we are
aware of the potential danger when using this function.
The method has almost insisted that the student notices the
function is partial. The studentis encouraged to focus on the
reasons and is isolated from the complexities of the whole
function.

The student might also try the alternative approach shown
below. This solution acknowledges the fact that pattern
matching has limitations. Sometimes conditionals are
needed to deal with cases that pattern matching has difficulty
with. We would argue that this is not a limitation of
Programming by Numbers, but it is more due to the lack
of guards in ML. Examples such as this one would be dealt
with in a more natural way in Haskell [12] and Miranda [13]
which do offer guards in addition to pattern matching. We

THE COMPUTER JOURNAL,

\ol. 43, No. 4, 2000

262 H. GQ.ASER, P. H. HARTEL AND P. W. GARRATT

give further examples of using conditionals in subsequent 3 Enumerate all cases

fun insert item 0 [] = refine

sections. .
| insert item 0 (a::x) = refine
4. Deal with any simple case(s) | insert item n [] = refine
fun last_element []1 = problem | insert item n (a::x) = refine
| last_element (a::x) = 4. Deal with any simple case(s)
if null x fun insert item O [] = item :: []
then a | insert item 0 (a::x) = item :: (a::x)
else refine | insert item n [] = problem
5. Listthe ingredients | insert item n (a::x) = refine
last_element, a, andx 5. List the ingredients
6. Deal with the complex case(s) insert, item n, a, x
fun last_element (a::x) = 6. Deal with the complex case(s)
if null x fun insert item O [] = item :: []
then a | insert item 0 (a::x) = item :: (a::x)

else last_element x ; |

. insert item n (a::x) =
7. Think about the result

a :: (insert item (n-1) x) ;
7. Think about the result
A.5. A function of two lists fun insert item 0 1lst = item :: 1lst
| insert item n (a::x) =
Problem: Write a function to add the elements of two lists a :: (insert item (n-1) x) ;
together, for example the result of adding the lits2, 3] In the case of a three-argument function, there is a
and[4,5,6] should be the list5,7,9]. potentially large number of cases. Fortunately, in writing
1 Name the function _the type of the first argument as pol_ymorphic, the student
add_lists is encouraged to realize that there is no need (or even a
2. Write down its type possibility) of identifying different cases for that argument.
int list -> int list -> int list
3. Enumerate all cases A.7. More challenging—sorting

fun add_lists [1 [1 = refine

| add_lists []1 (a::x) = refine

| add_lists (a::x) [1 = refine

| add_lists (al::x1) (a2::x2) = refine

Problem: Write a function to return the sorted version of its
argument list (we will consider integers in this example).
For such a function we really need an Idea. In this case

4. Deal with any simple case(s) the Idea is that we take the first element and then divide the
fun add_lists [1 [1 = [] list into elements which aréess_than it (putting those at
| add_lists [] (a::x) = problem the front), and those that afiet _less_than (putting those
| add_lists (a::x) [] = problem afterwards).
| add_lists (al::x1) (a2::x2) = refine 1. Name the function

5. Listthe ingredients sort
add_lists, al, x1, a2, x2 2. Write down its type

6. Deal with the complex case(s) int list -> int list
fun add_lists [1 [1 = [] 3. Enumerate all cases
| add_lists (al::x1) (a2::x2) = fun sort [1 = refine

(al+a2) :: (add_lists x1 x2) ; | sort (a::x) = refine

7. Think about the result 4. Deal with any simple case(s)

) fun sort [1 = []
At step 4 the student realizes that the problem statement | sort (a::x) =G

is unclear, because it does not specify what to do with lists 5 |jst the ingredients

of unequal length. It is good that this difficulty does not sort, a, x, and
arise at the same time as when we are thinking about the postulateless_than andnot_less_than
complex step. In the example we leawéd_lists as a 6. Deal with the complex case(s)
partial function. fun sort [] = []
| sort (a::x) = sort (less_than a x)
e [a]
A.6. Athree-argument function @ sort (not_less_than a x) ;

7. Think about the result
Problem:Write a function to return a list that has an element

(first argument) inserted into theth position (second
argument) of a list (third argument).

Herea is the concatenation operator on lists.
Now the new functions must be defined. We will only
define one, as the other is similar.

1. Name the function 1. Name the function
insert less_than
2. Write down its type 2. Write down its type
’a -> int -> ’a list -> ’a list int -> int list -> int list

THE COMPUTERJOURNAL, Wol.43, No.4, 2000

PROGRAMMING BY NUMBERS 263

3. Enumerate all cases 1. Name the function
fun less_than 0 [] = refine inc_list
| less_than 0 (a::x) = refine 2. erne qovvnltstype_
| less_than pivot [1 = refine int list -> int list
. : 3. Enumerate all cases
| less_than pivot (a::x) = refine . . fi
4. Deal with any simple case(s) fun inc_list [1 - MR
fun less_than O [] = [] | inc_list (a::x) = refine
| less_than 0 (a::x) = refine 4. Deal with any simple case(s)
| less_than pivot [1 = [] fun ?nc'l?St (=1 .
| less_than pivot (a::x) = refine l_ 1nchlst.(a::x) = refine
5. List the ingredients 5. List the ingredients
less_than, 0, pivot, a, x 1nc,1n?_llst,a,x
6. Deal with the complex case(s) 6. Deal with the complex case(s)
fun less_than O []1 = [] fun ?nc_l?st (=L . . .
| less_than 0 (a::x) = | inc_list (a::x) = inc a :: inc_list x ;
" 7. Think about the result

if a < o0
then a :: (less_than 0 x)
else (less_than 0 x)
| less_than pivot [] = []
| less_than pivot (a::x) =
if a < pivot

The less experienced programmer will go through all the
seven steps, and produce the correct function above. A more
experienced programmer would recognize an idiom at some
stage, and if necessary retrace some of the steps to come up
with this solution:

then a :: (less_than pivot x)
else (less_than pivot x) ; 1. Name the function
7. Think about the result inc_list

fun less_than pivot [1 = [] 2. Write down its type

| less_than pivot (a::x) = int list -> int list
if a < pivot 3. Enumerate all cases
then a :: (less_than pivot x) fun inc_list x = | refine
else (less_than pivot x) ; 4. Deal with any simple case(s)

fun inc_list x = map inc x;
7. Think about the result

A.8. User-defined types

Non-recursive ‘lecturer’-defined types are quite straightfor-

ward. Recursive types can be dealt with as before.

Problem:Write a function to sum the leaves of a tree, where jdioms.
the tree has been defined by the lecturer as follows.

0. Lecturer-defined data type
datatype tree = Leaf
| Branch of (tree * int * tree)
1. Name the function
sum

val inc_list = map inc;

Programming by Numbers is designed to help students
get started. This example shows that the method helps to
develop the skills required to recognize and use standard

A.10. Fibonacci

Problem: Write a function to compute theth element from
the Fibonacci sequencg1,1,2,3,5,8,..., in which each
number is the sum of the previous two.

2. Write down its type 1. Name the function
tree -> int fib
3. Enumerate all cases 2. Write down its type
fun sum (Leaf) = refine int->int
| sum (Branch(left,data,right)) =/ refine 3. Enumerate all cases
4. Deal with any simple case(s) fun fib 0 = refine
fun sum (Leaf) = 0 | fib n = refine
| sum (Branch(left,data,right)) =/ refine 4. Deal with any simple case(s)
5. Listthe ingredients fun fib 0 = 0
sum, +, left, data, andright | fib 1 =1
6. Deal with the complex case(s) | fib n = refine
fun sum (Leaf) =0 5. Listthe ingredients
| sum (Branch(left,data,right)) = fib, n
~ (sum left) + data + (sum right) ; 6. Deal with the complex case(s)
7. Think about the result fun fib 0 = 0
| fib 1 =1
. . . | fib n = fib (n-1) + fib (n-2);
A.9. Mapping a function over a list 7 Think about the result

Problem: Given a functioninc : int -> int, write a
new function to increment each element of an integer list.

At step 4 some students realize that in order to compute
a number in the Fibonacci sequence, the previous two must

THE COMPUTERJOURNAL, Wol.43, No.4, 2000

264 H. GQ.ASER, P. H. HARTEL

AND P. W. GARRATT

be given. Therefore, there must be at least two simple cases
one for0 and one forl. Other students will discover that
there is a problem when they think about the function, and
others may only realize the problem when they test a solution
that has insufficient base cases.

Some students will realize that the resulting function
has an exponential complexity. This problem can only be
solved by using a better algorithm, which computes the next
Fibonacci number given the previous two. This problem
can be solved by using an auxiliary functiemofib that
returns the current as well as the previous Fibonacci number.
Once that has been decided, there is no difficulty in applying
Programming by Numbers again to the new programming
problem. Here we show the auxiliary functienof ib.

1. Name the function
twofib
2. Write down its type
int->(int*int)
3. Enumerate all cases
fun twofib 0 = refine
| twofib n = refine
4. Deal with any simple case(s)
fun twofib 0 = (0,1)
| twofib n = refine
5. Listthe ingredients
twofib, n
6. Deal with the complex case(s)
fun twofib 0 = (0,1)
| twofib n = let val (a,b) = twofib (n-1)
in (b,a+b) end;
7. Think about the result
A.11. Ascending sequence of integers

Problem: Write a function to compute an ascending
sequence of integens, n + 1, ..., m. The statement of
the problem suggests that the cases to be considered shoul
include numbers at thieeginningof the range as well as the
end of the range. Here we encounter a limitation, not so
much of Programming by Numbers, but more of ML, which
does not allow non-linear patterns (Miranda for example
does allow such patterns). To cope with cases involving
comparisons we need to use a conditional.

6.

Deal with the complex case(s)
fun range nm =
range (n+1) m wheren < m
(n] wheren=m
1 wheren>m
Think about the result
fun range nm =
if n <= m then n ::
else []

n ::

range (n+1) m

APPENDIX B. USING Z, PROLOG AND PIZZA

We now show how Programming by Numbers can be applied
with the specification language Z, the logic-programming
language Prolog, and the object-oriented-programming
language Pizza.

None of these three languages are mainstream first
programming languages. However, Z and Prolog [14] are
used in the courses on discrete mathematics that often runin
parallel with the first programming course. We include Pizza
in our selection of languages because we feel that it would be
an interesting alternative to Java as a first language [15, 16].
No reports are available as yet on the use of Pizza as the
first programming language but we have heard reports from
various institutions contemplating this step.

B.1. Z

The specification language Z [17] is used in many
institutions to teach formal methods to first-year students.
Full Z is not normally used to introduce programming but
various executable subsets of Z have been created for the
purpose of animating specifications [18]. Here we consider
how Programming by Numbers might be adapted to teach
programming in a ‘functional’ sub-set of Z. This style of
specification is not mainstream Z. However, there are reports
in the literature where this particular style of specification is
fsed extensively [19].

Problem: Write a function to sum the leaves of a binary tree,
which has been defined using the free-type notation of Z as
follows:

tree::= Leaf
| Branch{(treex N x tree))

1. Name the function
range The seven steps are conveniently expressed using an
2. Write down its type axiom schema:
int -> int -> int list .
3. Enumerate all cases 1. Name the function
fun range nm =
refine, wheren < m sum
refine, wheren = m 2. Write down its type
refine, wheren > m
4. Deal with any simple case(s) sum: tree — N
fun range n n= 3. Enumerate all cases
refine, wheren < m
[n] wheren=m sum: tree -+ N
1 wheren>m :
5. Listthe ingredients sum(Leaf) = refine
range,nm sum(Branch(left, data right)) = refine
THE COMPUTERJOURNAL, Vol.43, No.4, 2000

PROGRAMMING BY NUMBERS 265

4. Dealwith any simple case(s) The predicatesum has two arguments. The first unifies

with a tree and the second with a number. The mode
declaration asserts that the tree must be input, and that a
number will be delivered as output. Because of the non-
reversibility of theis operator, this is the only acceptable

‘ sum: tree - N

sum(Leaf) =0 A
sum(Branch(left, data right)) = refine

5. List the ingredients moding.
sum, Branch, left, data, andright
6. Deal with the complex case(s)
B.3. Pizza

‘ sum: tree — N

Pizza is essentially Java extended with pattern matching,
parametric polymorphism and higher-order methods. Pizza
is a proper superset of Java, implemented by a pre-processor.
Pizza classes interwork smoothly with Java classes, and thus
give all the benefits of working with Java.

sum(Leaf) =0 A
sum(Branchleft, data right)) =
(sum lefy + data+ (sum righ
7. Think about the result

To form a proper axiom schema, universal quantifiers
would have to be used to introduce the variables. We haveProblem:Write a method to sum the leaves of a binary tree,
chosen to omit these and to rely on appropriate tools [20] to where the tree has been defined as a clase with two
insert the quantifiers and infer the types of the variables. ~ constructord.eaf andBranch:
public class Tree {

case Leaf;
case Branch(Tree left, int data, Tree right);

refine methods

B.2. Prolog

It is becoming more common for Prolog programmers to
explicitly write the types of their predicates. For example 3
Sterling and Shapiro [21, p. 242] write that ‘Types are
emerging as important in Prolog programs . Modern the tree, using Pizza’s extended notion of switch and case
commercial implementations, e.g. Visual Prolog [22] and statements:

research languages, such as Mercury [23], are also typed.
We borrow the notation for types of Mercury to support
Programming by Numbers with Prolog.

The methodsum is able to perform case analysis on

Name the function(method)
sum

2. Write down its type
int sum() {

refine body

Problem: Write a predicate to sum the leaves of a binary

tree, which has been defined as follows.

}
Enumerate all cases
switch (this) {

0. Lecturer-defined data type 3
:- type tree ---> leaf '
; node(tree,int,tree) .

case Leaf :
The mode declaration below is also written using the refine
Mercury notation but the predicasam is written in Prolog. case Branch(Tree left, int data, Tree right) :
refine
1. Name the function(predicate) 3
sum 4. Deal with any simple case(s)

2. Write down its type(mode)

:— pred sum(tree::in,int::out).

case Leaf :
return 0 ;

3. Enumerate aII.cases List the ingredients
sum(leaf, [refine) :- sum, +, left, data, andright
refine . Deal with the complex case(s)
sum(node(Left,Data,Right), refine) :- case Branch(Tree left, int data, Tree right):
refine . return left.sum() + data + right.sum() ;
4. Deal with any simple case(s) Think about the result
sum(leaf,0) . int sum() {
sum(node(Left,Data,Right), refine) :- switch (this) {
refine . case Leaf :
5. Listthe ingredients return 0 ;
sum, +, Left, Data, andRight case Branch(Tree left, int data, Tree right):
6. Deal with the complex case(s) return left.sum() + data + right.sum() ;
sum(leaf,0) . 3 }

sum(node(Left,Data,Right) ,Total) :-
sum(Left,SumLeft),

As with the Java example, we varied the method slightly
by using step 7 to assemble the elements created in steps 4
and 6.

sum(Right ,SumRight),
Total is SumLeft+Data,SumRight.
7. Think about the result

THE COMPUTERJOURNAL, Wol.43, No.4, 2000

