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LEARNING SYNFIRE CHAINS: TURNING NOISE INTO SIGNAL
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We develop a model of cortical coding of stimuli by the sequences of activation patterns that they ignite

in an initially random network. Hebbian learning then stabilizes these sequences, making them attractors

of the dynamics. There is a competition between the capacity of the network and the stability of the
sequences; for small stability parameter � (the strength of the mean stabilizing PSP in the neurons in a

learned sequence) the capacity is proportional to 1=�2. For � of the order of or less than the PSPs of the

untrained network, the capacity exceeds that for sequences learned from tabula rasa.

1. Introduction

This contribution deals with the problem of the neu-

ral code: how is perceptual and cognitive activity

coded in the activity of neurons? There are many

aspects to this problem, but the level we wish to

focus on can be illustrated by an analogy with a

computer.1 What would we regard as the really fun-

damental answer to the question, \How does a com-

puter work?" If we take the cover o� and �nd where

the disk drive cables are connected, etc., we have an-

swered the question at one level. Another relevant

level is that of the software, studied independent of

the machine itself. It is important to understand the

system at both of these levels, especially if does not

work and we want to �x it. However, in the view we

take here, the really basic answer would be: There is

a CPU chip which does boolean computations using

transistors in integrated circuits. In these compu-

tations, all information is represented as bit strings

which are acted on by the instruction set of the

processor.

We want to pose and answer the correspond-

ing question about the brain. Unfortunately, we do

not even know how to ask the question correctly,

though we are beginning to be able to formulate

the problem. We believe that cortical neurons com-

municate with each other by spike trains, but we

do not know the code. It has long been a work-

ing assumption among neurophysiologists that the

precise timing of the spikes does not carry informa-
tion; the relevant quantity is simply the total num-

ber of spikes received by a neuron within a period

of the order of its membrane time constant (about
10{20 ms). A careful investigation in visual cortical

neurons of macaque monkeys lends support to this
hypothesis, at least insofar as information about vi-

sual stimuli is concerned.2;3 However, a growing body

of evidence4{6 suggests that in areas of frontal cortex
involved in cognitive processing, the timing of spikes

at the millisecond level may be important. The �nd-

ing of these studies is that the same spike sequences
occur frequently in repeated trials for a given be-

havioral state, and that just which sequences occur

depends on this state. While spike timing is only one
feature of this problem, it is a fundamental one, and

we cannot deal with other aspects of neural coding
until it is resolved.

What sort of computational principles lie be-

hind the occurrence of precisely-timed spike se-
quences? Abeles and his co-workers have suggested

that they re
ect a pattern of spatiotemporal activ-

ity in which speci�c pools of neurons �re in rapid
succession. They argue that if there are strong ex-

citatory synapses between successive pools, the dy-

namics of integrate-and-�re neurons acts to stabilize
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�ring patterns in which the neurons within a single

pool become highly synchronized, thereby stabiliz-

ing the overall timing of the spatiotemporal activity

pattern, which they call a \syn�re chain". Their

simulations of small systems support this picture,

and in previous work7 we carried out a simple model

analysis of the stability of syn�re chain propagation

against both extrinsic noise and synaptic crosstalk

with other chains or other links in the same chain.

A similar theoretical analysis was carried out by

Bienenstock.8

If syn�re chains are found in real brains, the

strong synaptic connections between successive pools

must develop through some form of unsupervised

learning. In this work we develop a simple model

for how this can happen, based on a Hebbian al-

gorithm. The scenario starts with a network of

random asymmetric connections, which give rise to

chaotic spontaneous activity. An external stimulus

activates a particular pool of neurons at t = 0, set-

ting o� a particular activity trajectory determined

by the random couplings. The excitatory synapses

between successively-excited pools of neurons in this

trajectory are then strengthened by Hebbian learn-

ing, so that the next time the same stimulus is pre-

sented (i.e. the network is started from the same

initial condition) the evolution of the system will

follow the same trajectory, even in the presence of

some noise. Thus it becomes an attractor of the

network dynamics, and further presentations of the

stimulus can make it more stable. The same can

be done for a number of di�erent stimuli. In this

way each stimulus is encoded by such an attractor

sequence.

We focus our attention on the capacity problem

for this system: how many stimuli can be encoded in

this way in a network of a given size? Note that this

is a di�erent problem from the conventional capac-

ity problem we studied in our previous work. There

one asks to store sequences in which every step in

the trajectory is speci�ed. Here we only ask that

some locally stable trajectory starting from each ini-

tial condition exist; no condition is placed on the

trajectories except that they avoid each other.

There is a natural tradeo� between the encoding

capacity and the stability of the trajectories, which

is determined by the learning strength. Greater sta-

bility means larger basins of attraction, leaving room

for fewer trajectories in the state space. The focus

of this paper is to investigate this tradeo� and its

consequences for the way a brain that works using

the syn�re mechanism.

2. Model

We work with a simple model of N binary neu-

rons with �ring states Si = 1 (�ring) or 0 (not �r-

ing). They are connected by synapses of strength Jij
which we take to be initially random with unit vari-

ance. We adopt n-winner-take-all (nWTA) discete-

time dynamics with no memory of the postsynaptic

potential from one time step to the next (the limit

of small membrane time constant). The equations of

motion are

Si(t+ 1) = �

0
@X

j

JijSj(t)� �(t)

1
A ; (1)

where the threshold �(t) is chosen such that exactly

n of the neurons �re. Later we will add extrinsic

noise of variance B to the postsynaptic potential,

but we restrict ourselves to the noiseless case for now.

Call the threshold for this case �0. Since the initial

couplings J0ij are random and N is large, the distri-

bution of postsynaptic potentials hi is Gaussian, and

to make the right number �re, �0 must be chosen so

that

n

N
� f =

Z
1

�0

dhp
2�

e�h
2=2 � H(�0) : (2)

We suppose further that the fraction of active neu-

rons is very small: f = O(1=n). (This means that

n = O
p
N .) It is then legitimate to use the asymp-

totic form (x� 1)

H(x) � 1p
2�x

e�x
2=2 ; (3)

which leads to

�0 �
r
log

1

f2
: (4)

Before any learning takes place, this network has

chaotic dynamics, with the length of its attractors

exponential in N .

We will suppose that what a stimulus does is to

turn on a particular set of n neurons, prescribing

an initial condition for the dynamics. For each such

initial condition, the network will evolve through a
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di�erent trajectory. Each trajectory can then be seen

as the network's encoding of the stimulus that initi-

ated it, provided that it

1. can be made su�ciently stable against noise

and,

2. does not enter the basin of attraction of a tra-

jectory initiated by another stimulus we also

wish to encode.

We are interested in following the dynamics for

some number of time steps, T , for a stimulus set of

some sizeM , i.e. in stabilizingM trajectories, each of

length T . The total number of steps is MT , and we

will measure the capacity as the ratio of this number

to the network size:

� =
MT

N
: (5)

We will suppose (for reasons of convenience

rather than realism) that the system does \batch"

learning. That is, the network is run through all M

trajectories and then synaptic strengths are changed.

We use a Hebb rule with a one-step delay between

pre- and postsynaptic activity:

�Jij =
�

n
Si(t)Sj(t� 1) : (6)

One cycle of learning then leads to synapses

Jij = J0ij +
�

n

TX
�=1

MX
m=1

Smi (� + 1)Smj (� ) : (7)

where Smi (t) gives the �ring state of neuron i at time

t after the untrained network was started out in the

con�guration fSmi (0)g by stimulus number m.

So far we have supposed that just one of the tra-

jectories is activated at any given time. However,

such sparse patterns as we are considering can prop-

agate essentially independently of each other if the

constraint in the n-WTA dynamics allows several of

them to be initiated. Thus we will also consider the

case where the number of active neurons is equal to

pn, with p an integer. In this case the dynamics

should better be called \np-winner-take-all".

3. Learning

It is helpful in studying the e�ect of the learning to

study the PSP distribution at a given time for

1. the neurons that �red at this time during the

�rst evolution of the network from the initial

state imposed by one stimulus, and

2. the rest of the neurons.

By de�nition, these are the portions of the initial

Gaussian above and below �0:

P 0
+(h) =

�(h � �0)p
2�f

e�h
2=2 ; (8)

P 0
�
(h) =

�(�0 � h)p
2�(1� f)

e�h
2=2 : (9)

Let us look at the learning from the frame of ref-

erence of a particular time step t0 in the evolution of

one of the trajectories, m0. The n2 synapses connect-

ing the neurons active at the previous step with those

active at the present step are strengthened by �=n as

a result of this step in this trajectory. The PSP on

the sites active at the present step are thereby in-

creased by �, pushing the distribution P+(h) up by

�. In addition, the terms in Eq. (7) from m 6= m0

and t 6= t0 give rise to a Gaussian random contribu-

tion to h for all neurons. Its mean is irrelevant, since

a uniform shift of PSPs does not a�ect the n-WTA

dynamics. Its variance is [see Ref. 7, Eq. (11)]

�2A = �2�fp(1 + nfp) : (10)

The resulting PSP distributions are thus obtained

by convolving Eq. (8), shifted upward by �, and

Eq. (9) with Gaussians of this variance:

P+(h)=
1

f

Z
1

�1

dh0p
2�

e�
1

2
h02 1p

2��2A
e�

(h���h0 )2

2�2A ;

(11)

P�(h)=
1

1�f

Z �1

1

dh0p
2�

e�
1

2
h02 1p

2��2A
e�

(h�h0 )2

2�2A :

(12)

The n-WTA dynamics impose the condition

f =

Z �1

�1

[(1� f)P�(h) + fP+(h)]dh ; (13)

to �x the new threshold �1. Then the probability

that a neuron which should �re at t (a neuron for

which Smi (t) = 1) does so is

m1 =

Z
1

�

P+(h)dh = 1�
Z �

�1

P+(h)dh : (14)
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For small enough �, the second Gaussian factors

in Eqs. (11) and (12) will be much narrower than the

�rst ones, so

P+(h) �
e��

2
0=2

f
p
2�

H

�
�0 + �� h

�
p
A

�

� �0H

�
�0 + �� h

�
p
A

�
(15)

and

P�(h) �
e��

2
0=2

(1� f)
p
2�

H

�
�0 � h

�
p
A

�

� f�0

1� f
H

�
�0 � h

�
p
A

�
; (16)

where we have again used the asymptotic form

[Eq. (3)] to relate �0 and f in the inital factors.

From Eq. (13) we �nd immediately that the shift

in threshold is exactly �=2, so the probability of a

neuron which should �re failing to do so is

1�m1 = �0�
p
A

Z
1

1

2
p
A

duH(u) : (17)

This is the error rate for one pool, assuming that

there was no error at the preceding step (i.e. the

error at the �rst step after a re-presentation of a

stimulus resets the initial state of the network for a

post-learning run). After many steps in this run, the

error will approach a limit m� which we can obtain

by repeating the above argument with the upward

shift of P+(h) equal to �m� instead of �. The thresh-

old shift is then reduced correspondingly to �m�=2,

and in place of Eq. (16) we �nd

1�m� = �0�
p
A

Z
1

m
�

2
p
A

duH(u) : (18)

Whenever � is small enough to permit the above

approximations, the solution of Eq. (16) always gives

a �xed point value of 1�m� � 1. This means that

the system will follow almost exactly the same tra-

jectory as before the learning. This is not surprising.

We have not introduced any noise, so the system

would follow the same trajectory even without the

weight changes, which only serve to stabilize the tra-

jectory against possible noise.

If one cycle of learning works this well, why not

try another cycle? If we do this, the system will prop-

agate through the same sequence of states and the

same weight changes as before, will be made. The

result will be the same as if � were twice as large.

We can perform many learning cycles (or, essentially

equivalently, learn from scratch with a stronger �)

until � is so large that our approximations no longer

hold. This happens when the second Gaussian fac-

tors in Eqs. (11) and (12) no longer vary rapidly

relative to the �rst ones, which is when

�2A = �2fp�(1 + nfp) � 1

�2
0

=
1

log(1=f2)
: (19)

But this equation without the factor of �2 is just

the condition for the critical capacity �0c for storing

speci�ed sequences (tabula rasa learning)7:

fp�0c(1 + nfp) log(1=f2) = 1 : (20)

Thus, when the net learning strength � reaches unity,

the capacity is limited by �0c. For smaller � we have

�c(�) =
�0c
�2

: (21)

Thus we can store syn�re sequences at well above

the capacity limit for speci�ed sequences, provided

the normalized learning strength is less than unity,

i.e. that the shifts in PSPs arising from the synaptic

changes during learning are smaller than the PSP's

before learning. The capacity at � = 0 (before learn-

ing) is in�nite by construction; learning serves to sta-

bilize the trajectories at the cost of reducing the ca-

pacity to a �nite value.

Near the capacity limit, the performance of the

network is extremely sensitive to noise. The e�ect

of noise in the model is to add an extrinsic term

B (the variance of the added noise) to the intrinsic

(\crosstalk") noise of Eq. (10). Then the factors of

�2A that appear in the above development become

�2A = �2�fp(1 + nfp) +B : (22)

There is a critical value of B, found by using this

�2A in the condition of Eq. (19),

Bc =
1� �=�c(�)

log(1=f2)
; (23)

beyond which the trajectories lose stability. Even

in the most favorable case, where the load is very

small (� � �c(�)), the noise has to be smaller than

1= log(1=f2), and as one approaches the capacity

limit � = �c(�), the sensitivity to noise diverges.
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4. Simulation

To test the capacity calculation we performed sim-

ulations. In these we draw couplings J0ij, from a

Gaussian distribution with zero mean. We then nor-

malized the couplings on each neuron so that

1

N

NX
j=1

(J0ij)
2 =

1

n
: (24)

This reduces �nite size 
uctuation e�ects. We per-

formed learning in batch mode for T steps using the

update rule

�Jij =
�

n
Si(t)

�
Sj(t� 1)� 1

n
hi(t� 1)Jij

�
: (25)

The second term ensures that Jij remains approx-

imately normalized. We then compared the �ring

sequence Si(t) and S0i(t) generated by the original

couplings J0ij and the new set of couplings Jij for

T time steps. We de�ne the critical capacity, Tc as

the average length of sequence we can learn such that

the �ring sequences overlap by at least 50% for all Tc
time steps. In Fig. 1 we show Tc versus the learning

strength � for systems of size N = 100 and N = 200

with f = n=N of 5%. The �nite size e�ects are

very considerable. In particular, the storage capac-

Fig. 1. The capacity Tc is shown as a function of the

learning rate � for systems of size N = 100, (�), and

N = 200, (2), with f = n=N of 5%. Each data point was

averaged over 100 di�erent random matrices. The tabula

rasa critical storage capacity is 13:4� 1 for N = 100 and
18:5� 2 for N = 200.

ity is an order of magnitude smaller than that for the

asymptotic regime N !1 and f ! 0. Nevertheless

it is clear that as the strength of learning increases

the capacity falls asymptotically toward its value for

tabula rasa learning.

5. Discussion

The theme of this conference is the role of noise in

biological systems, particularly the brain. In this

contribution we have sketched a picture of cortical

computation in which the distinction between signal

and noise is subtle. The network acts as a very crude

model of a cortical column, which we can think of

as one processor in the brain's multiprocessor archi-

tecture. It encodes a�erent signals by the random

temporal activity patterns evoked by those inputs.

By virtue of Hebbian learning, these patterns acquire

stability, allowing them to become signal rather than

noise for parts of the brain which receive signals from

this local network. Thus we have a case of noise ac-

quiring reproducibility and thereby the potential to

become signal as a result of a microscopically simple

self-organization process.

Although it is di�cult to apply our simple model

calculations directly to real brains, some qualitative

conclusions about the nature of learning in such sys-

tems can be expected to be robust. Too-weak learn-

ing will not be robust against noise, but too-strong

learning will unnecessarily limit capacity. It can be

of interest to study how the brain balances these two

priorities in real learning situations.

In our previous investigation we estimated the ca-

pacity of a network of 104{105 neurons (the size of

a typical cortical column), starting with the tabula

rasa formula of Eq. (20) and reducing it with es-

timates of �nite-size corrections and the e�ects of

�nite membrane time constant and synaptic dilu-

tion. The result was a total capacity of perhaps

10 sequences of length 1 second. This number is

just barely on the edge of plausibility, given the ex-

perimental observation6 that at least this many se-

quences can be active simultaneously. We would like

the size of the repertoire of messages that a column

can use, to be larger than this so that it can convey

information in the set that is active. The extra 1=�2

factor that we �nd here could easily enhance the ca-

pacity by an order of magnitude or more, making

room for this necessary degree of freedom.
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