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Stability conditions for a class of 2D continuous-discrete linear systems with dynamic boundary

conditions

S. E. BENTON, E. ROGERS{* and D. H. OWENS}

Repetitive processes are a distinct class of 2D systems of both practical and theoretical interest. Their essential char-
acteristic is repeated sweeps, termed passes, through a set of dynamics defined over a finite duration with explicit
interaction between the outputs, or pass profiles, produced as the process evolves. Experience has shown that these
processes cannot be studied/controlled by direct application of existing theory (in all but a few very restrictive special
cases). This fact, and the growing list of applications areas, has prompted an on-going research programme into the
development of a ‘mature’ systems theory for these processes for onward translation into reliable generally applicable
controller design algorithms. This paper develops stability tests for a sub-class of so-called differential linear repetitive
processes in the presence of a general set of initial conditions, where it is known that the structure of these conditions is

critical to their stability properties.

1. Introduction

The essential unique characteristic of a repetitive, or
multipass, process can be illustrated by considering
machining operations where the material or workpiece
involved is processed by a sequence of passes of the
processing tool. Assuming that the pass length « (i.e.
the duration of a pass of the processing tool) is finite
and constant, the output, or pass profile, y.(¢),
0 <t < « (t being the independent spatial or temporal
variable) produced on pass k acts as a forcing func-
tion on the next pass and hence contributes to the
dynamics of the new pass profile y;,(7), 0 < 1t < q,
k>0.

Industrial examples of repetitive processes include
long-wall coal cutting and metal rolling operations
(Edwards 1974, Smyth 1992, Benton 2000). Also cases
exist where adopting a repetitive process setting for
analysis has major advantages over alternatives—so-
called algorithmic examples. This is especially true for
classes of iterative learning control schemes (Amann
et al. 1998) and iterative solution algorithms for non-
linear dynamic optimal control problems based on the
maximum principle (Roberts 2000).

Repetitive processes clearly have a two-dimensional,
or 2D, structure, i.e. information propagation occurs
along a given pass (¢ direction) and from pass to pass
(k direction). They are distinct from, in particular, the
extensively studied 2D linear systems described by
the Roesser (1975) and Fornasini and Marchesini
(1978) state space models and other classes of so-called
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2D continuous-discrete linear systems (see, for example,
Kaczorek 1996) by the fact that information propaga-
tion along the pass only occurs over a finite and fixed
interval—the pass length a.

The basic unique control problem for repetitive
processes is that the output sequence of pass profiles
can contain oscillations that increase in amplitude in
the pass to pass direction (i.e. in the k-direction in the
notation for variables used here). Early approaches to
stability analysis and controller design for (linear single-
input single-output (SISO)) repetitive processes and, in
particular, long-wall coal cutting (Edwards 1974) was
based on first converting the underlying dynamics into
those of a so-called infinite-length single-pass process.
This resulted, for example, in a scalar algebraic/delay
system to which standard scalar inverse-Nyquist stab-
ility criteria then applied.

In general, however, it was soon established that this
approach to stability analysis and controller design
would, except in a few very restrictive special cases,
lead to incorrect conclusions (Owens 1977). The basic
reason for this is that such an approach effectively
neglects their finite pass length repeatable nature and
the effects of resetting the initial conditions before the
start of each pass. To remove these difficulties, a rigor-
ous stability theory has been developed (Rogers and
Owens 1992, Rogers et al. 2002) based on an abstract
model in a Banach space setting which includes all linear
dynamics constant pass length processes as special cases.

Use of this theory confirms that the initial conditions
at the start of each pass, termed the boundary con-
ditions here, have a critical role in determining the stab-
ility properties of a given example. In Owens and Rogers
(1999), a stability analysis for so-called differential linear
repetitive processes, a sub-class of major interest in
terms of both physical and algorithmic applications,
was given in the presence of a general set of boundary
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conditions. This paper develops this work further in one
particular case to produce conditions which can (in prin-
ciple at least) be tested. These conditions are developed
using a so-called 1D Lyapunov equation and, as an
alternative, the so-called strictly bounded real lemma
(Anderson and Vongpanitlerd 1973). We begin in the
next section by giving the necessary background results.

2. Background

The state space model of the sub-class of differential
linear repetitive processes considered here has the
following form over 0 < ¢t < a, k > 0

Vier1 (1) = Ay (1) + Bug (1) + Byyi (1) (1)

Here on pass k, y,(¢) is the n x 1 pass profile vector, and
ui(t) is the / x 1 vector of control inputs. To complete
the process description it is necessary to specify the
initial conditions, termed the boundary conditions
here, i.e. the state initial vector on each pass and the
initial pass profile. The simplest possible form for
these is

yk+1(0) = dk—Ha k>0
(2)

yolt) = y(1), 0<t<a

where the n x 1 vector d)_; has constant entries and the
entries in the n x 1 vector y(z) are known functions of ¢.

In certain cases, for examples see Smyth (1992), the
boundary conditions of (2) and, in particular, the form
of y;11(0),k > 0, is simply not strong enough to ‘ade-
quately model’ (even for initial control related studies)
the process dynamics. The most general form of bound-
ary conditions for (1) are obtained by replacing (2) with

M
Vir1(0) = diyy + Z Ky (), k>0 .
J=1 3

0<t<a«o

where 0 < #; <, <+ <ty < « are M sample points
along the previous pass profile, and K;, 1 <j < M, are
n X n matrices with constant entries. In this paper we
will focus on the case when M =1 and ¢, =« and
K, = I, which is of particular interest in terms of links
with delay differential systems and also repetitive con-
trol schemes.

The stability theory for linear constant pass length
repetitive processes is based on the following abstract
model of the underlying dynamics where E, is a suitably

chosen Banach space with norm || - || and W, is a linear
subspace of E,,
Vir1 = Loyi + by, k>0 (4)

In this model y, is the pass profile on pass k and L, is a
bounded linear operator mapping E, into itself. The

term L,y, represents the contribution from pass k to
pass k4 1 and b, represents known initial conditions,
disturbances and control input effects. We denote this
model by S.

In the case of (1) and (3) we choose E, =
L3]0, o] N L [0, ] and it is routine to show that

t
(Loy)() = e +j B y(r)dr,  0<i<a
0
(5)
where
M
p= Kpt) (6)
j=1
and

t
bk—H = eAZd,H_] + J CA(I_T)BUIH_] (T) dT, 0 S t S a,k Z 0
0

()

The linear repetitive process S is said to be asymp-
totically stable (Rogers and Owens 1992, Rogers et al.
2002) if 3 a real scalar 6 > 0 such that, given any initial
profile y, and any disturbance sequence {b;},., C W,
bounded in norm (i.e. ||b|| < ¢, for some real constant
¢; > 0 and Vk > 1), the output sequence generated by
the perturbed process

Vi1 = (Lo + )y + by, k>0 (8)

is bounded in norm whenever ||v|| < 6.

This definition is easily shown to be equivalent to the
requirement that 3 finite real scalars M, >0 and
Ao € (0,1) such that

LG < MoXe, k>0 (9)

)

(where || - || is also used to denote the induced operator
norm).

A necessary and sufficient condition (Rogers and
Owens 1992, Rogers et al. 2002) for (9) to hold is that
the spectral radius, r(L,), of L, satisfies

r(L,) <1 (10)
Introduce
M .
M(z) =Y Kt (11)
j=1
where
Aiz)=A+z"'By, z#0 (12)

Then the following result, proved in Owens and
Rogers (1999), characterizes the spectral radius of L,
in the case considered here.
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Theorem 1: Suppose that the pair {A, By} is controll-
able. Then the linear repetitive process S generated by
(1) and (3) has operator L, with spectral radius

r(L,) = max{0,sup{|z| : z#£ 0 & |z], — M(z)] = 0}} < 1
(13)

Corollary 1: The linear repetitive process S generated
by (1) and (3) is asymptotically stable if, and only if, all
solutions of

|zI, — M(z)| =0 (14)
have modulus strictly less than unity.

Consider now the case when the boundary con-
ditions are of the simple form (2). Then we have the
‘counter-intuitive’ result that asymptotic stability is
essentially independent of the process dynamics and,
in particular, the eigenvalues of the matrix 4. This is
due entirely to the fact that the pass length « is finite
and of constant value for all passes. This situation will
change drastically if (as below) we let @ — + oc.

In general, Theorem 1 shows that the property of
asymptotic stability for differential linear repetitive pro-
cesses is critically dependent on the structure of
Vi+1(0),k > 0. Suppose also that this sequence is incor-
rectly modelled as in (2) instead of a special case of the
form given in (3). Then the process could well be inter-
preted as asymptotically stable when in actual fact it is
asymptotically unstable!

The above analysis provides necessary and sufficient
conditions for asymptotic stability but no really “useful’
information concerning transient behaviour and, in par-
ticular, about the behaviour of the output sequence of
pass profiles as the process evolves from pass to pass (i.e.
in the k direction). The limit profile provides a charac-
terization of process behaviour after a ‘large number’ of
passes have elapsed.

Suppose that the abstract model S is asymptotically
stable and let {b;},~, be a disturbance sequence that
converges strongly to a disturbance b,,. Then the strong
limit

Voo 1= lim y (15)
k—-+00
is termed the limit profile corresponding to this disturb-
ance sequence. Also, it can be shown (Rogers and
Owens 1992, Rogers et al. 2002) that y., is uniquely
given by

Voo = (]_La)_lboc (16)

Note also that (16) can be obtained from (4) (which
describes the dynamics of S) by replacing all variables
by their strong limits.

In the case considered here, the limit profile is
described by the following result.

Proposition 1: In the case when S described by (1) and
(3) is asymptotically stable, the resulting limit profile is

Yoo() = (A + By)yoo (1) + B (1)

yoc(o) = (In

where d., is the strong limit of {dy};~, and the matrix
inverse exists by asymptotic stability.

(17)
- M(1)"d,,

Asymptotic stability of processes described by (1)
and (3) guarantees the existence of a limit profile
which is described by a standard, or 1D, linear systems
state space model. Hence, in effect, if the process under
consideration is asymptotically stable, then its repetitive
dynamics can, after a ‘sufficiently large’ number of
passes, be replaced by those of a 1D linear time-
invariant system. This result has obvious implications
in terms of the design of control schemes for these
processes.

Owing to the finite pass length (over which duration
even an unstable 1D linear system can only produce a
bounded output), asymptotic stability cannot guarantee
that the resulting limit profile has ‘acceptable’ along the
pass dynamics, where in this case the basic requirement
is stability as a 1D linear system. As a simple example to
demonstrate this fact, consider the case of 4 = —1,
B=1,By=1403,y,,1(0) =0,k >0, where >0 is a
real scalar. Then the resulting limit profile dynamics
are described by the unstable 1D linear system

Vooll) = Byoc(t) + (1), 0<t1<a  (18)

The natural definition of stability along the pass for
the above example is to ask that the limit profile is stable
in the sense that 3 < 0 if we let the pass length « become
infinite. This intuitively appealing idea is, however, not
applicable to cases where the limit profile resulting from
asymptotic stability is not described by a 1D linear
systems state-space model. Consequently stability
along the pass for the general model S has been defined
in terms of the rate of approach to the limit profile as the
pass length « becomes infinitely large. One of several
equivalent formulations of this property is that S is
said to be stable along the pass if, and only if, 3 real
numbers M >0 and A € (0,1) which are indepen-
dent of « and satisfy

LS < M NS, Ya>0,  Vk>0 (19

Necessary and sufficient conditions (Rogers and
Owens 1992, Rogers et al. 2002) for (19) are that
Foo :=8up r(L,) < 1 (20)
az0
and
Mg :=sup sup ||(z1 = L) '[| < 400 (21)
az0 |z|>\

for some real number \ € (r,,1).
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In the case of S generated by (1) and (3), there are
two possible cases which could be considered. The first
of these is that as o — +oo, we allow M — +o0o and
t; — +o0, and the second is that as a — +oo we keep
M and ¢; fixed. Given that a — +o0 is a mathematical
requirement, only the second of these cases is physically
relevant. Hence as o — 400, we assume that M and
{#;}1<j<y remain unchanged.

The following result, established in Owens and
Rogers (1999), gives the necessary and sufficient con-
ditions for stability along the pass.

Theorem 2: Suppose that {A, By} is controllable and
that all eigenvalues of the matrix A have strictly nega-
tive real parts. Then the linear repetitive process S gen-
erated by (1) and (3) is stable along the pass if, and

only if,
(a) Corollary 1 holds Voo > 0, and
(b)
sup r(G(iw)) < 1 (22)
w>0
where
G(s) == (sI, — A)"'B, (23)

3. 1D Lyapunov equation stability tests

In terms of applying Theorem 2 to a given example,
first note that it is only condition (a) which cannot be
tested by direct application of 1D linear systems tests. In
this section, we develop a so-called 1D Lyapunov equa-
tion based interpretation of this condition in one case of
practical interest. The designation of the Lyapunov
equation used as 1D is to highlight the fact that the
structure of this equation is identical to its well
known counterpart for 1D differential linear systems
but here the defining matrices are functions of a complex
variable.

The case of (3) treated here is when M = 1,¢ = «,
and K; =1, i.e.

Vir1(0) = dyyy + yi(a),

In this case, condition (a) of Theorem 2 requires that all
solutions of

k>0 (24)

|Z] _ e(A—O—z"Bﬂ)a| -0 (25)

n

have modulus strictly less than unity Voo > 0. Now write
z =¢", and hence (25) reduces to the requirement that
all solutions of

|s1, — F(s)] =0 (26)
have strictly negative real parts where
F(s)=A+ Bye** (27)

Also it can be shown, using results in Kamen (1980),
that (26) reduces to the requirement that

|sI, — F(e )| #£0, VRe(s)>0, Vwec]0,2n]

(28)

The following result now expresses the condition of
(28) in terms of a so-called 1D Lyapunov equation (see
Brierley et al. (1982) for a similar approach for a class of
differential linear systems with commensurate time
delays).

Theorem 3: The condition of (28) holds if, and only if,
for a given positive definite Hermitian, denoted PDH
from this point onwards, matrix Q(e™), Yw € [0, 27|, the
solution, P(e™), of the 1D matrix Lyapunov equation

—0(™)  (29)

is PDH Yw € [0, 27], where * denotes the complex conju-
gate transpose operation.

Proof: To show sufficiency, first note that for any
fixed w, € [0,27], the matrix F(e) is an n X n matrix
with complex elements. Also let A\, be an eigenvalue of
this matrix and x, the corresponding -eigenvector.
Then

F*(eiw)P(eiw) + P(eiw)F(eiw) _

F(e"™)x,

|
>

%o (30)

XEF*(e™) =X, X (31)
where the bar denotes the complex conjugate operation.
Now pre-multiply (29) by x} and then post-multiply this
same equation by x, to yield

Xo0(e")x, = —x(F"(e") P(e™") + P(e"")F(e""))x,

_(Xo + )‘o)x:P(ewo)xo

(32)

Now if Q(e™) and P(e™) are PDH for Vw € [0, 27], it
follows that

1 — 1 /x"Q(e")x
Re(A)==(A+ X)) = 3 (x*P(e”’)x) <0 (33)
where now ) is any eigenvalue of F(e®) and x is the
corresponding eigenvector. Hence condition (a) of
Theorem 2 holds.

To show necessity, consider (29) with an arbitrary
PDH matrix Q(e™) on [0,2x]. Then if (28) holds, it
can be shown (Kamen 1980) that all eigenvalues of the
matrix F(e™) have strictly negative real parts
Yw € [0,27]. Now define

P(e™) = J eF*(eiW‘)’Q(e’w)eF(eM)’dl (34)
0
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which is well defined since the eigenvalues of F(e") (and
F *(ef“’)) are in the left-half of the complex plane. Also
P*(e") = P(e"),Vw € [0,27] and

F*(e)P(e") + P(e™)F(e¥)

7t o) oF (€)1 i oF (€)1
(F*(e%)e 0(e™)e
0

+ eF*(e’”)tQ(eiw)eF(e“)tF(eiw)) dt

o0 d e ) i
— JO ((EeF (e )I>Q(elw)eF(e )t
+ eF*(e“‘)zQ(em) ieF(e“‘)z dt
dt

_ rc%(eF*(e“th(em)eF(e“jz)dl
0

= —0(c) (35)

where this last equality follows from the fact that
e 0, and e ™" — 0, as t — + 0o. To complete
the proof, we now have that

F*(e“)P(e™) + P(e“)F(e") = —Q(e™), Yw € [0, 27]
(36)
and P*(e™) = P(e"),Vw € [0, 27].
Now define
F(2)]._e = Fi(w) + iF>(w) (37)

where F(w) and F,(w) are real n x n matrices. Also
for a fixed w, € [0,27], F(e"*) is an n x n matrix with
complex entries which can be written as

F(e*") = Fy(w,) + iFy(w,) (38)
The system y = F(e)y can be rewritten as
yr+lyl:(Fl(wo)+lF2(wo))(yr+lyl) (39)

where y, and y; denote the real and imaginary parts of y
respectively, and separating (39) into real and imaginary
parts now yields the equivalent expression

yr Fl(wo) _FZ(W(J) Yr . Yr
A [
Vi Vi Vi

FZ (wo) Fl (wo)
(40)
Now consider the SISO case and write
. filw) —f(w)
F(w) = (41)
Hw)  filw)

Then in this case a necessary and sufficient condition for
condition (a) of Theorem 2 to hold (i.e. corollary 1) is
that f|(iw) < 0 Vw € [0,2x], i.e. 1D stability of the real
part of F(e™). This follows immediately from

det(s] — F(w)) = 5> = 2f;(w)s + 2 (w) + fF(w)  (42)

As an example to illustrate this last result, consider
the following unforced process

0 1 0 0
Vi (1) = Va1 (1) + (1) (43)
—a —b —c
where a, b, and ¢ are positive real numbers. Then in this
case
0 1 4
F(z) = , z=¢e" (44)
—a —b—cz

The solution of the Lyapunov equation (29) with Q = I,
is

1 | 1b+ezP +a(a+1) b+cz
P(z) =—
ay b+cz a+1 (45)

y=2(b+ ccosw)
and
btz +(a+1)
ay’
Hence P(e™) is PDH Vw € [0,27] if, and only if, y > 0,
ie.

det(P(2)) (46)

b+ ccosw >0, Yw € [0,27] (47)

and therefore (43) satisfies (a) of Theorem 2 if, and only
if, b > c.

Finally, note that it is easy to generate examples
which demonstrate that a generalization of these last
results for the SISO case is not possible. One such pro-
cess is that with

-1 —1]
4 -1

-1 0

) B() =
0 -1

where both 4 and B, are 1D stable but 4 + iB,, does not

satisfy (a) of Theorem 2.

A=

4. Strict positive realness based tests

In this section, we use results from the theory of
strict bounded realness to develop equivalent formula-
tions of the stability along the pass conditions consid-
ered in this paper. This will lead to Riccati equation
based conditions which can be checked numerically.
Prior to this, however, it is useful to consider the devel-
opment of conditions based on the Hermite matrix
approach from ‘classical’ root clustering theory.

First note that (28) is equivalent, on setting z = ¢,
to

A(s,z) = det(sl, — F(z)) #0, Re(s) >0 |z =1

(48)

)
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or

A(s,e") # 0,

This is an equation with complex coefficients which are
polynomials in ™ and it is required that all of its roots
should lie in the open-left half of the s-plane. Using
‘classical’ root clustering theory, the condition for this
(see, e.g. Jury 1973 and the relevant cited references) is
that the Hermite matrix obtained from the coefficients in
A(s,e™) is positive definite or, alternatively, the inner-
wise matrix obtained from the coefficients must be posi-
tive inner-wise.
Consider the complex polynomial

Re(s) >0, wel0,2r] (49)

B(s)=> b (50)
i=0
Then the associated Hermite matrix, H, is obtained as
H = {h/w}’ hyg =y, (51)
where
. P
g = p v/ Z —1)Re(b, j— 1D p—gi)
p+q = even, P<q
. P
g = p - Z (—=1)Im(b, j— 1D p—gi)
ptg=odd, p<gq
(52)

(where Re and Im denote the real and imaginary parts
of a complex number respectively). Also it can be
shown that the requirement that H is positive definite
Yw e [0,27] (or [e¥| € [~1,1]) is equivalent to the
conditions

=H(l)>0 (53)
det(H(e™)) > 0,

To establish (53) and (54) (which are, in fact, well
known results), first note that if H(e™) is positive defi-
nite Vw € [0,27] then these two conditions obviously
hold. Conversely, if (53) and (54) hold then by (54) all
eigenvalues of H(e™) are non-zero Vw € [0,2n]. These
are real continuous functions of w which are positive
at w =0 by (53) and hence positive Vw € [0,27].)

The checking of (53) is straightforward and to check
the more difficult condition of (54) it is possible to use a
positivity test. This is based on the fact that det(H (e))
is a function of cosw,cos2w,... and on setting x =
cosw, det(H(e™)) becomes a function of x and its
powers. Hence (54) becomes

Yw € [0,27] (54)

det(H(e™)) = E(x) > 0,

This last condition holds provided E(x) has no real
roots in the interval [—1,1]. Also introduce the change
of variable (a bilinear transform)

el-1,1] (55)

u—1
= 56
u+1 (56)
into (55) to yield the equivalent condition that
E (u) >0, u € [0,00] (57)

This condition can be checked computationally using
any of the computational positivity tests (see, for
example, Jury 1973 and the relevant cited references).

In the remainder of this section we develop a com-
putationally more feasible alternative to the approach
just presented. The starting point is to note that the
condition to be tested here can be expressed as the
requirement that a two variable polynomial of the
general form

r=1 q
a(s,z) =" + Za (58)
j=0 i=0
should satisfy
a(s,z) #0, Re(s) > 0, |z] <1 (59)

Next we describe how to reduce (59) to a one-dimen-
sional problem by showing that this condition is equiva-
lent to positive realness of a certain 1D rational transfer
function matrix. This leads to a numerically efficient
testing algorithm and requires, as background, the
results summarized next relating to the so-called strictly
bounded real lemma (Anderson and Vongpanitlerd
1973).

Definition 1: A real rational transfer function matrix
G(s) = Cy(sI — A;)"' By is termed strictly bounded real
if, and only if, the matrix A4; is Hurwitz (i.e. all its
eigenvalues have strictly negative real parts) and

I -G (—iw)G(iw) >0, VYwelR (60)

The well known strictly bounded real lemma takes the
following form here.

Definition 2: Suppose that G(s) is a proper rational
transfer  function matrix. Suppose also that
{4,,B,,Cy,D,} is an associated minimal realization.
Then this transfer function matrix is strictly bounded
real if, and only if, 3 a real symmetric positive definite
matrix P such that

ATP+ P4, +CfC, PB,+ClD,
M = <0 (61)
(PB, 4+ CID))T DID, —1

One characterization of this strictly bounded real prop-
erty (for the proof see, e.g. Gu and Lee 1989) is that G(s)
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has this property if, and only if, for any given real
symmetric matrix Q > 0, 3e > 0 such that:
(a) I—DID, >0

(b) the algebraic Riccati equation

ATP 4+ PA, + (PB, + CID,)(I —DID,)"!
x(BIP+DIC))+CIC,+eQ =0 (62)

has a positive definite solution P.

Also the requirement for a minimal realization
can be relaxed by the following result (also
proved in Gu and Lee 1989).

Lemma 1: Suppose that G(s) is strictly proper and let
{4,,B,,C\} be a state space realization with the pair
{41, B} controllable. Then G(s) is strictly bounded real
if, and only if, for any given real symmetric matrix
0 >0, 3 a scalar € > 0 such that the algebraic Riccati
equation

ATP+ PA, + PBBIP+CIC 40 =0 (63)

has a positive definite solution P.

Note: If (63) has a solution P > 0 for ¢ > 0 then for
any ¢ € [0,¢*], this equation admits at least one posi-
tive definite solution.

If G(s) is not strictly proper, the following result
(again from Gu and Lee 1989) can be used.

Lemma 2: Suppose that {A, B, Cy,D\} is a minimal
realization of G(s). Then G(s) is strictly bounded real if,
and only if, G, (s) is strictly bounded real where G,,(s)
is realized by {A,,, B, C,,} where

A, = A, +B,(I-DID,)"'D]C,
Bm = BI(I - DTDI)_I/z (64)

Cm = (1 - DIDT)_I/zDTCICI

The key point here is that if 4; is Hurwitz then this
implies that 4,, is Hurwitz and also the controllability
of {4,, B,} implies the controllability of {4,,, B,,}.

To apply these results, first note the following result
(proved in Gu and Lee 1986).

Lemma 3: Consider the two variable polynomial a(s, z)
and suppose that a(0,z) # 0, V|z| = 1. Then (59) holds
if, and only if:

(a) a(s,0) is Hurwitz, and

(b)
a(s,z) #0,

Clearly it is the second of these last conditions which is
the most difficult to test. In what follows we develop a
numerically efficient test based on treating a(s,z) as a

Re(s)=0, |<1  (65)

polynomial, denoted a,(z), in z with coefficients which
are polynomials in s with s taking values on the extended
imaginary axis of the complex plane.

The key point to note now is that (65) is true if, and
only if, a,(z) has all its roots outside the unit circle for all
s on the imaginary axis. Hence we can apply a 1D stab-
ility test to this condition using a point-wise approach,
and here we use the Schur—Cohn test expressed in the
following form (from Ptak and Young 1980).

Lemma 4: Let a(z)=ay+aiz+ -+ a,2", ay#0,
a, #0, be a polynomial with complex coefficients

ap,k=0,1,...,n. Define also the triangular Toeplitz
matrices
[Gy @ 0 Guy Ty
0 7, a a, >
D= (66)
0 a q
L0 0 0 qy |
and
[a, @,y 0 @ ap
0 ay ay—q ay
N = (67)
0 e e al’l al’l—l
L 0 0 e e ap

Then a(z) # 0,V|z| <1, if, and only if, the Hermitian
matrix

®=D*D— N*N (68)

is strictly positive (where again * denotes the complex
conjugate transpose operation) .

Note also that if ay # 0 then if ¢ is PDH < the
matrix G = ND~! is a strict contraction.

In the case under consideration here, the coefficient
a, is a polynomial in s, s = iw. Hence @, = ay(—s),
k=0,1,... n Also the triangular Toeplitz matrices D
and N of (66) and (67) respectively can be constructed
for this case. Similarly, define

@(s) = DY (—s5)D(s) — NT(—=s)N(s) (69)
and
G(s) = N(s)D~'(s) (70)

Then a simple controllable realization for G(—s) is
defined as
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—A, -4, —A4; —4,
I, 0 0 0
4=1 0 I, 0 0
I 0o I, 0 | (71)
F 7
q .
@]
0
B=| |, =]
AT
L0 ©
where
[ao; aj ay o dgy]
0 ay ay -
/ip—./ = (72)
0 a
L0 O 0 ay |
[ag  ag1; aqs ay ]
0 ay agy ay
Coy=CD e o (73)
0 o ay agy
| 0 0 o 00 ay
are upper triangular Toeplitz matrices with a; real as

defined in (58).

The next stage is to show that the conditions of
Lemma 3 are equivalent to G(—s) being bounded real.
To do this, first take G(s) = C(sI — A)"'B as defined
by (72). Then (a) of Lemma 3 implies that
det(sI — A)) = det(D(—s)) = (a(s,0))? is Hurwitz and
hence G(—s) is stable. Using (b) of Lemma 3 we now
have that @(iw) is PDH Vw € R and this, in turn, is
equivalent to G(—iw) being a strict contraction for
each w € R. Hence G(—s) is strictly bounded real.

Suppose now that G(—s) is strictly bounded real.
Then det(s/ — A) is Hurwitz and hence (a) of Lemma
3 holds. Also since G(—iw) is a strict contraction for
each w implies, by the Schur—Cohn test, that (b) of
Lemma 3 holds.

The arguments just given establish the following
result.

Theorem 4: Consider the two-variable polynomial
a(s,z) defined by (58) and G(—s) defined by the state
space matrices of (71). Suppose also that a(0,z) # 0,
Y|z| = 1. Then this polynomial satisfies (59) if, and only
if, G(—s) is strictly bounded real.

This leads immediately to the following algorithm
for testing (59).
(1) Input p,q and a; as defined in (58).
(2) Test if a(s,0) is Hurwitz and if not then stop
since (59) does not hold (and hence the example
under consideration is not stable along the pass).

(3) Construct the matrices A4, B,C and choose a
positive-definite matrix Q and a positive real
scalar ¢ to solve the algebraic Riccati equation
(63) applied to this data set, i.e.

A"P+PA+PBB'P+C"C+cQ=0  (74)

If this equation has a solution then (59) holds. In
which case proceed to test the other conditions
for stability along the pass.

Note that the realization defined by (71) may not be
minimal and hence there could be numerical problems in
solving the algebraic Riccati equation if the product pg
is large. Hence an input normal realization (see Moore
1981) should be used to obtain a minimal realization
prior to testing G(—s) for the strictly bounded realness
property.

It is possible to avoid computing the solution of the
algebraic Riccati equation here. This is based on the
fact that since G(—s) is strictly proper, it is guaranteed
to be strictly bounded real if det(I — GT(—s)G(s)) # 0,
VYRe(s) = 0 or, equivalently, det(®(s)) # 0,VRe(s) =0.
Hence this transfer function matrix is strictly bounded
real if, and only if, the Hamiltonian matrix

H,:= (75)

has no purely imaginary eigenvalues. Note that the
dimensions of this matrix are 2pg X 2pg and hence if
pq is ‘large’ then the eigenvalue computation cannot
be expected to produce ‘high accuracy’ results.

As an example, suppose that

a(s,z) =s+vy+ (84 \s)z (76)

where |y| # |3] and v > 0. In this case, (59) clearly only
holds if, and only if

G(—s) =220 ()
S+
is strictly bounded real. Now set
BA = B =\
A B, =1 = 78
m 1 _ )\2 I m ) m 1 _ )\2 ( )
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(as per (64)) and hence strict bounded realness of G(—s)
implies 4,, < 0. Also let P be the solution of (74) with

N m

Q =1 and then

P’ 424, P+ Ci+e=0 (79)

Now we have that P >0 requires that 42, > C2 + ¢

which holds if, and only if, v > |3| (since 4,, <0,
~ > 0). Hence we have stability when

Al <1,y>|8]>0 (80)

5. Conclusions

Previous work had shown that the stability of differ-
ential linear repetitive processes is critically dependent
on the structure of the boundary conditions and, in par-
ticular, on the structure of the pass state initial vector
sequence. This was established by defining a general set
of such boundary conditions and then applying the stab-
ility theory based on the abstract model in a Banach
space setting. In this paper the problem of testing
these conditions has been addressed in one case of par-
ticular interest.

The results given here have resulted in tests based on
a so-called 1D Lyapunov equation and on the well
known concept of a real rational strictly bounded real
transfer function matrix. Of these, the tests based on the
latter approach are more suited to numerical computa-
tion whereas the 1D Lyapunov equation based tests
offer the potential of developing performance bounds.
Note that such performance bounds have already been
reported for the simplest possible set of pass state initial
vectors. Work is proceeding in this and related areas and
will be reported on in due course.
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