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Abstract. We consider sample-by-sample adaptive training of two-

class neural network classi�ers. Speci�c applications that we have

in mind are communication channel equalization and code-division

multiple-access (CDMA) multiuser detection. Typically, training

of such neural network classi�ers is done using some stochastic

gradient algorithm that tries to minimize the mean square error

(MSE). Since the goal should really be minimizing the error prob-

ability, the MSE is a \wrong" criterion to use and may lead to

a poor performance. We propose a stochastic gradient adaptive

minimum error rate (MER) algorithm called the least error rate

(LER) for training neural network classi�ers.

INTRODUCTION

We study the class of neural network classi�ers where pattern vectors are
drawn from a �nite set and corrupted by an additive noise. Speci�c examples
include neural network equalizers and multiuser detectors [1]-[6]. We assume
that a sample-by-sample adaptation is necessary to meet real-time compu-

tational constraints. In such applications, the training of neural network
classi�ers is usually done using some stochastic gradient algorithm based on

the MSE criterion, and a classical example is the least mean square (LMS) al-
gorithm. However, the real goal is to minimize the error probability. The bias
in favour of the MSE criterion is perhaps rooted in adaptive linear �ltering.

For linear classi�ers, such as linear equalizers and multiuser detectors,
there exists some relationship between the MSE and error probability. A
small MSE is usually associated with a small error rate. However, even in

the linear case, the minimum MSE (MMSE) solution in general is not the
MER one. It is now well-known that the error rate gap between the MMSE

solution and MER one can be large in certain situations. This has motivated
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the recent research in linear adaptive MER algorithms [7]-[13]. For nonlinear
classi�ers, there is no relationship between the MSE and error rate, and
the MMSE solution may not correspond to a small error rate. In e�ect,

standard adaptive algorithms for training nonlinear classi�ers, such as the
LMS algorithm, is based on a criterion that is irrelevant to the problem.

We adopt the MER criterion and develop a stochastic gradient adaptive

MER algorithm for training neural network classi�ers. We employ an adap-

tive strategy that is very similar to the one used for deriving the LMS. The
MMSE solution requires ensemble averages, which are not available in gen-

eral. Sample time averages can in practice be used to provide estimates of the
required statistics. Taking to extreme, using one-sample estimate leads to the

LMS adaptation. The error probability of a classi�er is an integration of the
probability density function (p.d.f.) of the classi�er decision variable, which
is generally unavailable. However a sample time average of the p.d.f., called
the kernel density estimate [14],[15], can be constructed. When a one-sample
kernel density estimate is used, an instantaneous or stochastic gradient adap-
tive algorithm is derived. This approach has successfully been applied in our
previous works on linear adaptive MER algorithms [9],[10].

The proposed LER algorithm is applied to equalization and multiuser
detection using a radial basis function (RBF) network. The simulation results

obtained show that the LER algorithm has a reasonable convergence speed
and a small RBF network trained by the LER algorithm can closely match

the optimal performance. The simulation study also con�rms that the MSE
criterion is irrelevant to this kind of applications and the RBF network trained
by the LMS algorithm, although converging well in the MSE, can produce a
poor error rate performance.

PROBLEM FORMULATION

We consider the class of nonlinear classi�ers that are de�ned by

ĉ(k) = sgn(y(k)) with y(k) = f(r(k);w) (1)

where r(k) is an M -dimensional pattern vector with its associated class label
c(k) 2 f�1g, the vector w consists of all the adjustable parameters of the

classi�er f , and ĉ(k) is the estimated class label for r(k). Any soft sgn

function employed by a classi�er is included in the function form f . The
pattern vector r(k) is assumed to take the form: r(k) = �r(k) + n(k), where

the clean part �r(k) takes values from a �nite set with equal probability

�r(k) 2 frj ; 1 � j � Nbg (2)

and the noise vector n(k) is Gaussian with covariance matrix E[n(k)nT (k)] =
�
2
nI. Each rj has an associated class label c(j) 2 f�1g.
Classically, adaptive training of such a nonlinear classi�er is done by ad-

justing w so that the MSE, E[(c(k)� y(k))2], is minimized, and is typically
implemented using the LMS algorithm which has a simple form:
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y(k) = f(r(k);w(k � 1))

w(k) = w(k � 1) + �(c(k)� y(k))@f(r(k);w(k�1))
@w

�
(3)

where � is an adaptive gain. However, the true performance criterion should

be the error rate. We consider how to construct an adaptive training algo-
rithm based on the MER criterion. Note that the MER is with respect to
the chosen classi�er structure.

ADAPTIVE MINIMUM ERROR RATE TRAINING

The error probability of the classi�er (1) is

PE(w) = Probfsgn(c(k))y(k) < 0g (4)

De�ne the signed variable ys(k) = sgn(c(k))y(k) and its p.d.f. py(ys). Then

PE(w) =

Z 0

�1
py(ys) dys (5)

By linearizing the classi�er around �r(k), it can be approximated as

y(k) = f(�r(k)+n(k);w) � f(�r(k);w)+

�
@f(�r(k);w)

@r

�T
n(k) = f(�r(k);w)+e(k)

(6)
where e(k) is Gaussian with zero mean and variance

�
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�
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�
@f(�r(k);w)

@r
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#
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�
2
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Nb
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j=1
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@f(rj ;w)
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�T
@f(rj ;w)

@r

(7)

Thus, the classi�er is approximated as an additive Gaussian noise model
y(k) � �y(k) + e(k), with �y(k) taking values from the �nite set

�y(k) 2 fyj = f(rj ;w); 1 � j � Nbg (8)

The p.d.f. of ys(k) can then be approximated by

py(ys) �
1

Nb

p
2��

NbX
j=1

exp

�
� (ys � sgn(c(j))yj)

2

2�2

�
(9)

and the error probability of the classi�er is approximately

PE(w) �
1

Nb

p
2�

NbX
j=1

Z 1

gj(w)

exp

 
�
x
2
j

2

!
dxj =

1

Nb

NbX
j=1

Q(gj(w)) (10)

where

Q(x) =
1p
2�

Z 1

x

exp

�
�y

2

2

�
dy (11)
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and

gj(w) =
sgn(c(j))yj

�
=

sgn(c(j))f(rj ;w)

�
(12)

Approximate minimum error rate solution

If the set (2) is known, an approximate MER solution can be obtained by

minimizing the error rate expression (10). Noting the gradient of PE(w)

rPE(w) � � 1

Nb

p
2�

NbX
j=1

exp

 
�

y
2
j

2�2

!
@gj(w)

@w

= � 1

Nb

p
2��

NbX
j=1

exp

 
�

y
2
j

2�2

!
sgn(c(j))

@f(rj ;w)

@w
(13)

the following iterative gradient algorithm can be used to arrive at an approx-
imate MER solution. Given an initial w(0), at lth iteration:

yj(l) = f(rj ;w(l � 1)); 1 � j � Nb

rPE(w(l)) = � 1

Nb

p
2��

PNb

j=1 exp
�
�y2j (l)

2�2

�
sgn(c(j))

@f(rj ;w(l�1))
@w

w(l) = w(l � 1)� �rPE(w(l))

9>=
>; (14)

Notice that the variance �2 could iteratively be calculated using (7). How-

ever, for numerical and convergence considerations, it is preferred to �x �
2

to an appropriately chosen constant, that is, to consider �2 as an algorithm

parameter that requires tuning. If the classi�er (1) is linear, all the approxi-
mations becomes exact, and we arrive at the exact MER solution [9],[10].

Block-data gradient adaptive algorithm

We will adopting a sample time average for estimating the p.d.f.. This is
known as kernel density estimation [14],[15]. Given a block of K training
samples fr(k); c(k)g, a kernel density estimate of py(ys) is

p̂y(ys) =
1

K
p
2��

KX
k=1

exp

�
� (ys � sgn(c(k))y(k))2

2�2

�
(15)

From the estimated error probability

P̂E(w) =

Z 0

�1
p̂y(ys) dys (16)

rP̂E(w) can be calculated

rP̂E(w) = � 1

K
p
2��

KX
k=1

exp

�
�y

2(k)

2�2

�
sgn(c(k))

@f(r(k);w)

@w
(17)

Thus a block adaptive gradient algorithm similar to (14) can be derived.
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Stochastic gradient adaptive algorithm

To derive the LER algorithm, consider a single-sample estimate of py(ys):

p̂y(ys; k) =
1p
2��

exp

�
� (ys � sgn(c(k))y(k))2

2�2

�
(18)

Using the instantaneous or stochastic gradient

rP̂E(k;w) = � 1p
2��

exp

�
�y

2(k)

2�2

�
sgn(c(k))

@f(r(k);w)

@w
(19)

a stochastic gradient algorithm is given by

y(k) = f(r(k);w(k � 1))

w(k) = w(k � 1) + �p
2��

exp
�
�y2(k)

2�2

�
sgn(c(k))@f(r(k);w(k�1))

@w

)
(20)

where � and � are the adaptive gain and width parameter.

APPLICATIONS

The �rst application considers equalization in the presence of channel inter-
symbol interference (ISI), co-channel interference and additive white Gaus-

sian noise. For simpli�cation, it is assumed that there exists only one inter-
fering co-channel, and the received signal at sample k is given by

r(k) = �r(k) + n(k) =

n0�1X
i=0

a0;ib0(k � i) +

n1�1X
i=0

a1;ib1(k � i) + n(k) (21)

where n(k) is a Gaussian white noise with variance �2n, a0;i are the channel
taps and a1;i the co-channel taps, the desired and interfering data b0(k) and
b1(k) take value from the set f�1g, and they are uncorrelated. The equalizer
uses the received signal vector, r(k) = [r(k) r(k � 1) � � � r(k �M + 1)]T , to
produce an estimate of b0(k�d). Thus, b0(k�d) serves as the class label, and
the number of states is Nb = 22M+n0+n1�2. The optimal equaliser, known
as the Bayesian equaliser, is given in [16]. A RBF network with nc Gaussian
kernels is used as the adaptive equalizer. The weight vector of the equalizer
thus consists of all the RBF weights, centers and widths.

In the simulation, the channel and co-channel are respectively A0(z) =
0:5 + 1:0z�1 and A1(z) = �(1:0 + 0:5z�1), with � set to give a signal to

interference ratio SIR = 12 dB. The equalizer order is set to M = 2 and
the decision delay d = 1. The number of states is Nb = 64. The �rst
nc=2 data points that belong to the class +1 and the �rst nc=2 data points

that belong to the class �1 are used as initial centers. The initial weights
are set to � 1

nc(2��2n)
M=2 accordingly. All the widths are initially set to 8�2n.

Given signal to noise ratio SNR = 20 dB (signal to interference and noise
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ratio SINR = 11:36 dB), RBF equalizers with 4 and 6 centers are trained
by the LMS and LER algorithms, respectively. Fig. 1 (a) shows the learning
rates in terms of the estimated bit error rate (BER) for the four adaptive

RBF equalizers, where the results are averaged over 100 runs. For the LMS
training, the learning rates in terms of the MSE are depicted in Fig. 1 (b).
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Figure 1: Convergence rates in terms of (a) the estimated BER for various adaptive

RBF equalizers, and (b) the MSE for LMS adaptive RBF equalizers. The results

are averaged over 100 runs.
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Figure 2: Comparison of the optimal decision boundary with that of the 6-center

LER RBF equalizer (thin solid: RBF, thick solid: optimal). SNR = 20 dB and

SIR = 12 dB. The dots indicate the noise-free states and stars the �nal centers.

It can be seen that, although the LMS RBF equalizers converge well in

the MSE, they have poor BER performance. Typical decision boundary of

the 6-center LER RBF equalizer is compared with the optimal boundary in
Fig. 2. The true BERs of the 4-center LER RBF equalizer together with those
of the linear MMSE and optimal Bayesian equalizers are depicted in Fig. 3
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as functions of SNRs. The BERs of the 6-center LER RBF equalizer are not
shown, as they are almost indistinguishable from the optimal performance.
The BERs of the 6-center LMS RBF equalizer, not shown, are not better

than those of the linear MMSE equaliser.
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Figure 3: Performance comparison of three equalizers in terms of BER versus SNR.

SIR = 12 dB. The adaptive LER RBF equalizer has 4 centers.

The second application considers the multiuser detection for the syn-
chronous CDMA downlink with N users and M chips per symbol. The bit
vector of N users is b(k) = [b1(k) � � � bN (k)]T , with bi(k) 2 f�1g denoting
the kth symbol of user i, the unit-length signature code sequence for user i is
�si = [�si;1 � � � �si;M ]T , and the channel (at chip rate) is H(z) =

Pnh�1
i=0 hiz

�i.
It can be shown that the received signal vector sampled at chip rate, r(k) =
[r1(k) � � � rM (k)]T , is:

r(k) = P

2
6664

b(k)
b(k � 1)

...
b(k � L+ 1)

3
7775+ n(k) = �r(k) + n(k) (22)

where �r(k) denotes the noise-free received signal, the Gaussian noise vector
n(k) = [n1(k) � � �nM (k)]T with E[n(k)nT (k)] = �

2
nI, the M � LN system

matrix P is given by

P = H

2
66664

�SA 0 � � � 0

0 �SA
. . .

...
...

. . .
. . . 0

0 � � � 0 �SA

3
77775 (23)

the M � LM channel matrix H has the form

H =

2
6664

h0 h1 � � � hnh�1
h0 h1 � � � hnh�1

. . .
. . . � � � . . .

h0 h1 � � � hnh�1

3
7775 (24)
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the user signature sequence matrix �S = [�s1 � � ��sN ], and the diagonal user
signal amplitude matrix A = diagfA1 � � �ANg. The channel ISI span L

depends on the channel length, nh, related to the chip length, M . L = 1 for

nh = 1, L = 2 for 1 < nh � M , L = 3 for M < nh � 2M , and so on. The
detector at the receiver for user i detects the transmitted bit bi(k) based on
the received signal r(k). Thus bi(k) serves as class label, and the number of

states is Nb = 2LN . The optimal detector, called the Bayesian detector, is

given in [6]. Adaptive detector employed is a RBF network with nc Gaussian
kernel functions.
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Figure 4: Convergence rates in terms of (a) the estimated BER for various user-3

adaptive RBF detectors and (b) the MSE for user-3 LMS RBF detectors. The

results are averaged over 100 runs.

A 3-user system with 8 chips per symbol is used in the simulation. The
chip codes for the three users are (+1;+1;+1;+1;�1;�1;�1;�1), (+1;�1;
+1;�1;�1;+1;�1;+1) and (+1;�1;�1;+1;�1;+1;+1;�1), respectively,
and the channel is H(z) = 0:8+0:6z�1+0:5z�2. The three users have equal
signal power. For this example, the number of states isNb = 64. The detector
for user 3 is considered. Weights, centers and widths of RBF detectors are
initialized in a similar manner as for the previous equalization application.
Given SNR for user 3 SNR3 = 15 dB (SINR for user 3 is SINR3 = �3:08 dB),
RBF detectors with 16 and 64 centers are trained by the LMS and LER
algorithms, respectively. The learning rates in terms of the estimated BER
are depicted in Fig. 4 (a) for the 4 adaptive RBF detectors. Fig. 4 (b) shows
the learning rates in terms of the MSE for the 2 LMS RBF detectors. It can
be seen that the LER algorithm produces consistent results and, in particular,
the 64-center LER RBF detector is able to achieve the optimal performance.
For the LMS training, the algorithm converges very well in the MSE and

there is an almost 30 dB reduction in the MSE, as can be seen in Fig. 4 (b).
However, the BERs of the two LMS RBF detectors both approach to 0.5. In
fact, on average, the initial 16-center RBF detector has a BER= 0:2 and the
initial 64-center RBF detector has a BER= 0:008. Yet, after training using

the LMS, both yield almost 1 in 2 errors. This is nothing to do with local

minima. As far as the LMS algorithm is concerned, it does a good job in
what it supposes to do: getting the MSE down. The BERs of the 16-center

LER RBF detector are compared with the optimal detector in Fig. 5 for a
range of SNR, where it can be seen that its performance is very close to the
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Bayesian detector of 64 states.
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Figure 5: Performance comparison of three detectors for user 3. SNRi, 1 � i � 3,

are identical. The adaptive RBF detector has 16 centers and is trained by the LER

algorithm.

CONCLUSIONS

Adaptive or sample-by-sample training of nonlinear classi�ers is classically
done using some stochastic gradient algorithms, such as the LMS, that are
linked to the MMSE criterion. This is despite the fact that the MMSE crite-
rion bears no relationship to the MER criterion. It is widely acknowledged
that adaptive training of neural network classi�ers often encounters diÆcul-
ties. These diÆculties are typically attributed to \local minima". Rarely
a more fundamental question is asked: whether the underlying criterion
adopted, the MMSE, is a relevant one for the problem.

The main contribution of this paper is to derive an adaptive MER algo-
rithm called the LER for training a class of neural network classi�ers that
include adaptive nonlinear equalisers and multiuser detectors. Our approach
has been motivated from a kernel density estimation of the error rate as a
smooth function of the training data and an adoption of stochastic gradient

of the estimated error probability. This LER algorithm has been applied to
channel equalization and CDMA multiuser detection using a RBF network.

Simulation results have demonstrated that the LER algorithm performs con-

sistently and the algorithm has a good convergence speed. A small-size
RBF network trained by the LER algorithm can closely match the opti-

mal Bayesian performance. The results also con�rms that the standard LMS
algorithm performs poorly in terms of error rate.
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