
2208 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

Comparative Study of Turbo Decoding Techniques:
An Overview

Jason P. Woodard and Lajos Hanzo

Abstract—In this contribution, we provide an overview of the
novel class of channel codes referred to as turbo codes, which have
been shown to be capable of performing close to the Shannon
Limit. We commence with a brief discussion on turbo encoding,
and then move on to describing the form of the iterative decoder
most commonly used to decode turbo codes. We then elaborate
on various decoding algorithms that can be used in an iterative
decoder, and give an example of the operation of such a decoder
using the so-called Soft Output Viterbi Algorithm (SOVA). Lastly,
the effect of a range of system parameters is investigated in a
systematic fashion, in order to gauge their performance ramifica-
tions.

I. INTRODUCTION

T URBO coding was introduced in 1993 by Berrou, Glav-
ieux, and Thitimajashima [1], [2], who reported extremely

impressive results for a code with a long frame length. Since its
recent invention, turbo coding has evolved at an unprecedented
rate and has reached a state of maturity within just a few years
due to the intensive research efforts of the turbo coding commu-
nity. As a result, turbo coding has also found its way into stan-
dardized systems, such as the recently standardized third-gen-
eration (3G) mobile radio systems [3]. Even more impressive
performance gains can be attained with the aid of turbo coding
in the context of video broadcast systems [4], [5], where the
associated system delay is less critical than in delay-sensitive
interactive systems. Yet, surprisingly, in this area turbo codecs
have not been used in standards at the time of writing. Motivated
by these recent trends, in this contribution we endeavour to pro-
vide an accessible introduction to the field of turbo coding.

In their paper, Berrouet al.[1], [2] used a paralled concatena-
tion of two Recursive Systematic Convolutional (RSC) codes,
with an interleaver between the two encoders. The reason for
using RSC codes will be augmented during our forthcoming
in-depth discourse. Suffice to say at this stage that an iterative
structure using a modified version of the classic minimum bit
error rate (BER) Maximum Aposteriory Algorithm (MAP) due
to Bahl et al. [6] was invoked, in order to decode the codes.
Since then, a large body of work has been carried out in the
area, aiming, for example, to reduce the decoder complexity, as
suggested by Robertsonet al. [7], Berrouet al. [9], as well as

Manuscript received September 16, 1998; revised July 19, 2000. This work
was supported by Motorola ECID, Swindon, U.K. and the European Commis-
sion in the framework of the First and Median projects.

J. P. Woodard is with the Department of Electrical and Computer Science,
University of Southampton, SO17 1BJ, U.K. (e-mail: jpw@ecs.soton.ac.uk,
http://www-mobile.ecs.soton.ac.uk).

L. Hanzo is with the Department of Electrical and Computer Science, Univer-
sity of Southampton, SO17 1BJ, U.K. (e -mail: lh@ecs.soton.ac.uk, http://www-
mobile.ecs.soton.ac.uk).

Publisher Item Identifier S 0018-9545(00)10962-4.

by Battail [8]. Le Goffet al. [10], Wachsmann and Huber [11],
as well as Robertson and Worz [12] suggested to use the codes
in conjunction with bandwidth efficient modulation schemes.
Further advances in understanding the excellent preformance
of the codes are due, for example, to Benedetto and Montorsi
[13], [15], Perezet al. [14]. Hagenaueret al. [16], [17] extend
the concept to use concatenated block codes. Jung and Naßhan
[36], [34] characterized the coded performance under the con-
straints of short transmission frame length, which is character-
istic of speech systems. In collaboration with Blanz, they also
applied turbo codes to a CDMA system using joint detection
and antenna diversity [39]. Barbulescu and Pietrobon addressed
the issues of interleaver design [31]. Due to space limitations
here we have to curtail listing the range of further contributors
in the field, without whose advances this contribution could not
have been written. In this paper, we build on a previous tutorial
paper by Sklar [18] in describing the iterative decoder, and the
component decoders used within it, that are employed to decode
turbo codes. For more general information on turbo codes, the
reader is referred to [18].

The paper is structured as follows. Section II is concerned
with the basic iterative decoder scheme, leading on to a discus-
sion on the MAP decoding algorithm and its underlying theory
in Section III. Section IV justifies the advantages of iterative
decoding, while Section V considers the simplification of the
MAP algorithm, paving the way for introducing the Soft-Output
Virebi Algorithm (SOVA), which is also augmented with exam-
ples in Section VII. Section VIII compares the various decoder
principles, which are then comparatively studied in terms of
their performance in Section IX over Gaussian channels, while
in Section X over Rayleigh channels. We conclude in Section X.

II. I TERATIVE DECODERSTRUCTURE

Let us commence our discourse by considering the general
structure of the iterative turbo decoder shown in Fig. 1. Two
component decoders are linked by interleavers in a structure
similar to that of the encoder. As seen in the figure, each decoder
takes three inputs: 1) the systematically encoded channel output
bits; 2) the parity bits transmitted from the associated compo-
nent encoder; and 3) the information from the other component
decoder about the likely values of the bits concerned. This in-
formation from the other decoder is referred to asa-priori infor-
mation. The component decoders have to exploit both the inputs
from the channel and thisa-priori information. They must also
provide what are known as soft outputs for the decoded bits.
This means that as well as providing the decoded output bit se-
quence, the component decoders must also give the associated
probabilities for each bit that it has been correctly decoded. Two

0018–9545/00$10.00 © 2000 IEEE

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2209

suitable decoders are the so-called SOVA proposed by Hage-
nauer and Hoeher [19] and the MAP [6] algorithm of Bahlet al.
which are described in Sections VI and III, respectively.

The soft outputs from the component decoders are typically
represented in terms of the so-called Log Likelihood Ratios
(LLRs), the magnitude of which gives the sign of the bit, and
the amplitude the probability of a correct decision. The LLRs
are simply, as their name implies, the logarithm of the ratio of
two probabilities. For example, the LLR for the value of
a decoded bit is given by

(1)

where is the probability that the bit , and
similarly for . Notice that the two possible values
of the bit are taken to be 1 and 1, rather than 1 and 0, as
this simplifies the derivations that follow.

The decoder of Fig. 1 operates iteratively, and in the first it-
eration the first component decoder takes channel output values
only, and produces a soft output as its estimate of the data bits.
The soft output from the first encoder is then used as additional
information for the second decoder, which uses this informa-
tion along with the channel outputs to calculate its estimate of
the data bits. Now the second iteration can begin, and the first
decoder decodes the channel outputs again, but now with ad-
ditional information about the value of the input bits provided
by the output of the second decoder in the first iteration. This
additional information allows the first decoder to obtain a more
accurate set of soft outputs, which are then used by the second
decoder asa-priori information. This cycle is repeated, and with
every iteration the BER of the decoded bits tends to fall. How-
ever, the improvement in performance obtained with increasing
numbers of iterations decreases as the number of iterations in-
creases. Hence, for complexity reasons, usually only about eight
iterations are used.

Due to the interleaving used at the encoder, care must be
taken to properly interleave and de-interleave the LLRs which
are used to represent the soft values of the bits, as seen in Fig. 1.
Furthermore, because of the iterative nature of the decoding,
care must be taken not to re-use the same information more
than once at each decoding step. For this reason the concept of
so-called extrinsic and intrinsic information was used in their
seminal paper by Berrouet al.describing iterative decoding of
turbo codes [1]. These concepts and the reason for the subtrac-
tion circles shown in Fig. 1 are described in Section IV. Having
considered the basic decoder structure, let us now focus our at-
tention on the MAP algorithm in the next section.

III. T HE MAXIMUM A-POSTERIORIALGORITHM

A. Introduction and Mathematical Preliminaries

In 1974 ,an algorithm, which has become known as the MAP
algorithm, was proposed by Bahlet al. [6] in order to esti-
mate thea-posterioriprobabilities of the states and the transi-
tions of a Markov source observed in memoryless noise. Bahlet
al.showed how the algorithm could be used to decode both block
and convolutional codes. When used to decode convolutional

Fig. 1. Turbo decoder schematic.

codes, the algorithm is optimal in terms of minimizing the de-
coded BER, unlike the Viterbi algorithm [20], which minimizes
the probability of an incorrect path through the trellis being se-
lected by the decoder. Thus the Viterbi algorithm can be thought
of as minimizing the number ofgroupsof bits associated with
these trellis paths, rather than the actual number of bits, which
are decoded incorrectly. Nevertheless, as stated by Bahlet al. in
[6], in most applications the performance of the two algorithms
will be almost identical. However, the MAP algorithm examines
every possible path through the convolutional decoder trellis and
therefore initially seemed to be unfeasibly complex for applica-
tion in most systems. Hence, it was not widely used before the
discovery of turbo codes.

However, the MAP algorithm provides not only the estimated
bit sequence, but also the probabilities for each bit that it has
been decoded correctly. This is essential for the iterative de-
coding of turbo codes proposed by Berrouet al.[1], and so MAP
decoding was used in this seminal paper. Since then research ef-
forts have been invested in reducing the complexity of the MAP
algorithm to a reasonable level. In this section we describe the
theory behind the MAP algorithm as used for the soft output de-
coding of the component convolutional codes of turbo codes. It
is assumed that binary codes are used.

The MAP algorithm gives, for each decoded bit, the prob-
ability that this bit was 1 or 1, given the received symbol
sequence . This is equivalent to finding thea-posterioriLLR

, where

(2)

If the previous state and the present state
are known in a trellis then the input bit which caused the
transition between these states will be known. This, along with
Bayes’ rule and the fact that the transitions between the previous

the present state in a trellis are mutually exclusive (i.e.,
only one of them could have occured at the encoder), allow us
to rewrite (2) as

(3)

where is the set of transitions from the
previous state to the present state that can
occur if the input bit , and similarly for

. For brevity we shall write as
.

2210 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

We now consider the individual probabilities from
the numerator and denominator of (3). The received sequence
can be split up into three sections: the received codeword associ-
ated with the present transition , the received sequence prior
to the present transition and the received sequence after
the present transition . We can thus write for the individual
probabilities

(4)

Fig. 2, which shows a section of a four state trellis for a
RSC code, shows this split of the received channel sequence. In
this figure solid lines represent transitions as a result of a1
input bit, and dashed lines represent transistion resulting from a

1 input bit. The and symbols shown
represent values, which will be defined shortly, calculated by
the MAP algorithm.

Using a derivation from Bayes’ rule that
and the fact that if we assume that the channel

is memoryless, then the future received sequence will
depend only on the present stateand not on the previous state

or the present and previous received channel sequences
and , we can write

(5)

where

(6)

is the probability that the trellis is in stateat time and the
received channel sequence up to this point is , as visualized
in Fig. 2

(7)

is the probability that given the trellis is in stateat time the
future received channel sequence will be , and lastly

(8)

is the probability that given the trellis was in stateat time ,
it moves to state and the received channel sequence for this
transition is .

Equation (5) shows that the probability , that
the encoder trellis took the transition from state to
state and the received sequence is, can be split into
the product of three terms— and . The
meaning of these three probability terms is shown in Fig. 2, for
the transition to shown by the bold line in this

Fig. 2. MAP decoder trellis forK = 3 RSC code.

figure. From (3) and (5) we can write for the conditional LLR
of , given the received sequence

(9)

The MAP algorithm finds and for all states
throughout the trellis, i.e., for , and
for all possible transitions from state to state ,
again for . These values are then used with (9)
to give the conditional LLRs that the MAP decoder
delivers. These operations are summarized in the flowchart
of Fig. 4. We now describe how the values and

can be calculated.

B. The Forward Recursive Calculation of the Values

Consider first . From the definition of in (6)
we can write

(10)

where in the last line we split the probability into
the sum of joint probabilities over all possible
previous states. Using Bayes’ rule and the assumption that the
channel is memoryless again, we can proceed as follows:

(11)

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2211

Fig. 3. Recursive calculation of� (0) and� (0).

Thus, once the values are known, the values can
be calculated recursively. Assuming that the trellis has the initial
state , the initial conditions for this recursion are

(12)

Fig. 3 shows an example of how one value, for , is
calculated recursively using values of and for
our example RSC code. Notice that, as we are consid-
ering a binary trellis, only two previous states, and

, have paths to the state . Therefore, the sum-
mation in (11) is over only two terms.

C. The Backward Recursive Calculation of the Values

The values of can similarly be calculated recursively.
Using a similar derivation to that for (11) it can be shown that

(13)

Thus, once the values are known, a backward recursion
can be used to calculate the values of from the values
of using (13). Fig. 3 again shows an example of how the

value is calculated recursively using values of
and for our example RSC code.

D. Calculation of the Values

We now consider how the transition probability values
in (5) can be calculated from the received channel

sequence and anya-priori information that is available. Using
the definition of from (8) and the derivation from
Bayes’ rule we have

(14)

where
input bit necessary to cause the transition from state

to state ;
a-priori probability of this bit;
transmitted codeword associated with this transition.

Hence, the transition probability is given by the product
of thea-priori probability of the input bit necessary for the
transisiton, and the probability that given the codewordas-
sociated with the transition was transmitted we received the
channel sequence . Thea-priori probability is derived
in an iterative decoder from the output of the previous compo-
nent decoder, and the conditional received sequence probability

is given, assuming a memoryless Gaussian channel
with BPSK modulation, as

(15)

where
and individual bits within the transmitted and re-

ceived codewords and ;
number of these bits in each codeword;
transmitted energy per bit;
noise variance;
fading amplitude (we have for nonfading
AWGN channels).

E. Summary of the MAP Algorithm

From the description given above, we see that the MAP de-
coding of a received sequenceto give thea-posterioriLLR

can be carried out as follows. As the channel values
are received, they and thea-priori LLRs (which are pro-
vided in an iterative turbo decoder by the other component de-
coder—see Section IV) are used to calculate according
to (14) and (15). As the channel values are received, and
the values are calculated, the forward recursion from
(11) can be used to calculate . Once all the channel
values have been received, and has been calculated for
all , the backward recursion from (13) can be
used to calculate the values. Finally, all the calculated
values of and are used in (9) to calcu-
late the values of . These operations are summarized in
the flowchart of Fig. 4. Care must be taken to avoid numerical
underflow problems in the recursive calculation of and

, but such problems can be avoided by careful normal-
ization of these values. Such normalization cancels out in the
ratio in (9) and so causes no change in the LLRs produced by
the algorithm.

The MAP algorithm is, in the form described in this section,
extremely complex due to the multiplications needed in (11) and
(13) for the recursive calculation of and , the
multiplications and exponential operations required to calculate

using (15), and the multiplication and natural logarithm

2212 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

Fig. 4. Summary of the key operations in the MAP algorithm.

operations required to calculate using (9). However,
much work has been done to reduce this complexity, and the
Log-MAP algorithm [7], which will be described in Section V,
gives the same performance as the MAP algorithm, but at a sig-
nificantly reduced complexity and without the numerical prob-
lems described above. In the next section we will first describe
the principles behind the iterative decoding of turbo codes, and
how the MAP algorithm described in this section can be used in
such a scheme, before detailing the Log-MAP algorithm.

IV. I TERATIVE TURBO DECODING PRINCIPLES

A. Turbo Decoding Mathematical Preliminaries

In this section, we explain the concepts of extrinsic and in-
trinsic information as used by Berrouet al. [1], and highlight
how the MAP algorithm described in the previous section, and
other soft-in soft-out decoders, can be used in the iterative de-
coding of turbo codes.

It can be shown [1] that, for a systematic code such as a RSC
code, the output from the MAP decoder, given by (9), can be
re-written as

(16)

where

(17)

Here, is thea-priori LLR given by (1), and is called
the channel reliability measure and is given by

(18)

is the received version of the transmitted systematic bit
and

(19)

Thus, we can see that thea-posteriori LLR calcu-
lated with the MAP algorithm can be thought of as comprising
of three terms— and . Thea-priori LLR
term comes from in the expression for the branch
transition probability in (14). This probability should
come from an independent source. In most cases we will have no
independent ora-priori knowledge of the likely value of the bit

, and so thea-priori LLR will be zero, corresponding
to ana-priori probability . However, in the case of
an iterative turbo decoder, each component decoder can provide
the other decoder with an estimate of thea-priori LLR ,
as described later.

The second term in (16) is the soft output of the channel
for the systematic bit , which was directly transmitted across
the channel and received as . When the channel signal-to-
noise (SNR) is high, the channel reliability value of (18)
will be high and this systematic bit will have a large influence on
thea-posterioriLLR . Conversely, when the channel is
poor and is low, the soft output of the channel for the received
systematic bit will have less impact on thea-posterioriLLR
delivered by the MAP algorithm.

The final term in (16), , is derived, using the con-
straints imposed by the code used, from thea-priori information
sequence and the received channel information sequence
, excludingthe received systematic bit and thea-priori in-

formation for the bit . Hence, it is called theextrinsic
LLR for the bit . Equation (16) shows that the extrinsic infor-
mation from a MAP decoder can be obtained by subtracting the
a-priori information and the received systematic channel
input from the soft output of the decoder. This
is the reason for the subtraction paths shown in Fig. 1. Equations
similar to (16) can be derived for the other component decoders
which are used in iterative turbo decoding.

We summarize below what is meant by the termsa-priori,
a-posteriori, and extrinsic information which are central
concepts behind the iterative decoding of turbo codes use
throughout this treatise.
a-priori The a-priori information about a bit is infor-

mation known before decoding starts, from a
source other than the received sequence or the
code constraints. It is also sometimes referred
to as intrinsic information to contrast with the
extrinsic information described next.

extrinsic The extrinsic information about a bit is the
information provided by a decoder based on
the received sequence and ona-priori infor-
mation excludingthe received systematic bit

and thea-priori information for
the bit . Typically, the component decoder
provides this information using the constraints
imposed on the transmitted sequence by the
code used. It processes the received bits and
a-priori information surrounding the system-
atic bit , and uses this information and the
code constraints to provide information about
the value of .

a-posteriori Thea-posterioriinformation about a bit is the
information that the decoder gives taking into

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2213

accountall available sources of information
about . It is the a-posteriori LLR, i.e.,

, that the MAP algorithm gives as its
output.

B. Iterative Turbo Decoding

We now describe how the iterative decoding of turbo codes
is carried out. Consider initially the first component decoder in
the first iteration. This decoder receives the channel sequence

containing the received versions of the transmitted sys-
tematic bits , and the parity bits , from the first en-
coder. Usually, to obtain a half rate code, half of these parity bits
will have been punctured at the transmitter, and so the turbo de-
coder must insert zeros in the soft channel output for these
punctured bits. The first component decoder can then process
the soft channel inputs and produce its estimate of
the conditional LLRs of the data bits . In this
notation, the subscript 11 in indicates that this is the
a-posterioriLLR in the first iteration from the first component
decoder. Note that in this first iteration the first component de-
coder will have noa-priori information about the bits, and hence

in (14) giving will be 0.5.
Next, the second component decoder comes into operation.

It receives the channel sequence containing theinterleaved
version of the received systematic bits, and the parity bits
from the second encoder. Again the turbo-decoder will need
to insert zeroes into this sequence if the parity bits generated
by the encoder are punctured before transmission. However,
now, in addition to the received channel sequence, the
decoder can use the conditional LLR provided by
the first component decoder to generatea-priori LLRs
to be used by the second component decoder. Metaphorically
speaking, thesea-priori LLRs —which are related to
bit —would be provided by an “independent conduit of in-
formation, in order to have two independent channel-impaired
opinions” concerning bit . This would provide a “second
channel-impaired opinion” as regards to bit. In an iterative
turbo decoder, the extrinsic information from the other
component decoder is used as thea-priori LLRs, after being
interleaved to arrange the decoded data bitsin the same
order as they were encoded by the second encoder. The second
component decoder thus uses the received channel sequence

and thea-priori LLRs (derived by interleaving
the extrinsic LLRs of the first component decoder) to
produce itsa-posterioriLLRs . This is then the end
of the first iteration.

For the second iteration the first component encoder again
processes its received channel sequence, but now it also
has a-priori LLRs provided by the extrinsic portion

of the a-posteriori LLRs calculated by
the second component encoder, and hence it can produce an
improveda-posteriori LLR . The second iteration
then continues with the second component decoder using the
improveda-posterioriLLRs from the first encoder
to derive, through (16), improveda-priori LLRs which
it uses in conjunction with its received channel sequence
to calculate .

This iterative process continues, and with each iteration
on average the BER of the decoded bits will fall. However,
in [18, Fig. 9], the improvement in performance for each
additional iteration carried out falls as the number of iterations
increases. Hence, for complexity reasons usually only around
six to eight iterations are carried out, as no significant im-
provement in performance is obtained with a higher number of
iterations.

Fig. 5 shows how thea-posteriori LLRs output
from the component decoders in an iterative decoder vary with
the number of iterations used. The output from the second
component decoder is shown after one, two, four, and eight
iterations. The input sequence consisted entirely of1 values,
hence negativea-posteriori LLR values correspond
to a correct hard decision, and positive values to an incorrect
hard decision. The encoded bits were transmitted over an
AWGN channel at a channel SNR of1 dB, and then decoded
using an iterative turbo decoder using the MAP algorithm. It
can be seen that as the number of iterations used increases,
the number of positivea-posterioriLLR values, and
hence the BER, decreases until after eight iterations there are
no incorrectly decoded values. Furthermore, as the number of
iterations increases, the decoders become more certain about
the value of the bits and hence the magnitudes of the LLRs
gradually become larger. The erroneous decisions in the figure
appear in bursts, since deviating from the error-free path trellis
path typically inflicts several bit errors.

When the series of iterations finishes the output from the
turbo decoder is given by the de-interleaveda-posterioriLLRs
of the second component decoder, , where is the
number of iterations used. The sign of thesea-posterioriLLRs
gives the hard decision output, i.e., whether the decoder believes
that the transmitted data bit was 1 or 1, and in some ap-
plications the magnitude of these LLRs, which gives the confi-
dence the decoder has in its decision, may also be useful.

Ideally, for the iterative decoding of turbo codes, thea-priori
information used by a component decoder in the context of bit

should be based on a “conduit of information” independent
from the channel outputs used by that decoder. More explic-
itly, for example, an original systematic information bit and the
parity-related information smeared across a number of bits by
the encoder due to the code constraints imposed are affected
by the channel differently. Hence, even if the original system-
atic information bit was badly corrupted by the channel, the
surrounding parity information may assist the decoder in ob-
taining a high-confidence estimate concerning the channel-im-
paired original systematic bit. However, in turbo decoders the
extrinsic LLR for the bit , as explained above, uses all
the available received parity bits and all the received systematic
bits except the received value associated with the bit . The
same received systematic bits are also used by the other compo-
nent decoder, which uses the interleaved or de-interleaved ver-
sion of as itsa-priori LLRs. Hence, thea-priori LLRs

are not truly independent from the channel outputsused
by the component decoders. However, due to the fact that the
component convolutional codes have a short memory, usually
of only 4 b or less, the extrinsic LLR is only signifi-
cantly affected by the received systematic bits relatively close

2214 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

Fig. 5. Soft outputs from the MAP decoder in an iterative turbo decoder for a transmitted stream of all�1.

to the bit . When this extrinsic LLR is used as the
a-priori LLR by the other component decoder, because of
the interleaving used, the bit and its neighbors will probably
have been well separated. Henc, the dependence of thea-priori
LLRs on the received systematic channel values
which are also used by the other component decoder will have
relatively little effect, and the iterative decoding provides good
results.

Another justification for using the iterative arrangement
described above is how well it has been found to work. In
the limited experiments that have been carried out with op-
timal decoding of turbo codes [21]–[23] it has been found
that optimal decoding performs only a fraction of a decibel
(around 0.35–0.5 dB) better than iterative decoding with the
MAP algorithm. Furthermore, various turbo coding schemes
have been found [23], [24], that approach the Shannonian limit,
which gives the best performance theoretically available, to
a similar fraction of a decibel. Therefore, it seems that, for a
variety of codes, the iterative decoding of turbo codes gives an

almost optimal performance. Hence, it is this iterative decoding
structure, which is almost exclusively used with turbo codes.

Having described how the MAP algorithm can be used in
the iterative decoding of turbo codes, we now proceed to de-
scribe other soft-in soft-out decoders, which are less complex
and can be used instead of the MAP algorithm. In the forth-
coming section, we first describe two related algorithms, the
Max-Log-MAP [25], [26] and the Log-MAP [7], which are de-
rived from the MAP algorithm, and then another, referred to as
the SOVA [8], [9], [19], derived from the Viterbi algorithm.

V. MODIFICATIONS OF THEMAP ALGORITHM

A. Introduction

The MAP algorithm as described in Section III is much more
complex than the Viterbi algorithm and with hard decision out-
puts performs almost identically to it. Therefore, for almost 20
years it was largely ignored. However, its application in turbo
codes renewed interest in the algorithm, and it was realized that

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2215

its complexity can be dramatically reduced without affecting its
performance. Initially the Max-Log-MAP algorithm was pro-
posed by Koch and Baier [25] and Erfanianet al. [26]. This
technique simplified the MAP algorithm by transferring the re-
cursions into the log domain and invoking an approximation to
dramatically reduce the complexity. Because of this approxima-
tion its performance is sub-optimal compared to that of the MAP
algorithm. However, Robertsonet al. [7] in 1995 proposed the
Log-MAP algorithm, which corrected the approximation used
in the Max-Log-MAP algorithm and hence gave a performance
identical to that of the MAP algorithm, but at a fraction of its
complexity. These two algorithms are described in this section.

B. Mathematical Description of the Max-Log-MAP Algorithm

The MAP algorithm calculates thea-posteriori LLRs
using (9). To do this requires the following values:

1) The values, which are calculated in a forward
recursive manner using (11);

2) the values, which are calculated in a backward re-
cursion using (13),; and

3) the branch transition probabilities , which are cal-
culated using (14).

The Max-Log-MAP algorithm simplifies this by transferring
these equations into the log arithmetic domain and then using
the approximation

(20)

where means the maximum value of . Then, with
and defined as follows:

(21)

(22)

and

(23)

we can rewrite (11) as

(24)

Equation (24) implies that for each path in Fig. 2 from the pre-
vious stage in the trellis to the state at the present stage,
the algorithm adds a branch metric term to the previous
value to find a new value for that path. The new
value of according to (24) is then the maximum of the

values of the various paths reaching the state .
This can be thought of as selecting one path as the “survivor”
and discarding any other paths reaching the state. The value of

should give the natural logarithm of the probability that
the trellis is in state at stage , given that the received

channel sequence up to this point has been . However, be-
cause of the approximation of (20) used to derive (24), only the
Maximum Likelihood (ML) path through the state is
considered when calculating this probability. Thus, the value
of in the Max-Log-MAP algorithm actually gives the prob-
ability of the most likely path through the trellis to the state

, rather than the probability ofanypath through the trellis
to state . This approximation is one of the reasons for the
sub-optimal performance of the Max-Log-MAP algorithm com-
pared to the MAP algorithm.

We see from (24) that in the Max-Log-MAP algorithm the
forward recursion used to calculate is exactly the same
as the forward recursion in the Viterbi algorithm—for each pair
of merging paths the survivor is found using two additions and
one comparison. Notice that for binary trellises the summation,
and maximization, over all previous states in (24) will
in fact be over only two states, because there will be only two
previous states with paths to the present state .
For all other values of we will have .

Similarly to (24) for the forward recursion used to calculate
the , we can rewrite (13) as

(25)

giving the backward recursion used to calculate the
values. Again, this is equivalent to the recursion used in the
Viterbi algorithm except it proceed backward rather than for-
waards through the trellis.

Using (14) and (15), we can write the branch metrics
in the above recursive equations for and as

(26)

where does not depend on or on the transmitted codeword
and so can be considered a constant and omitted. Hence,

the branch metric is equivalent to that used in the Viterbi al-
gorithm, with the addition of thea-priori LLR term .
Furthermore, the correlation term is weighted by
the channel reliability value of (18).

Finally, from (9), we can write for thea-posteriori LLRs
which the Max-Log-MAP algorithm calculates

(27)

This means that in the Max-Log-MAP algorithm for each bit
thea-posterioriLLR is calculated by considering

every transition from the trellis stage to the stage .
These transitions are grouped into those that might have occured
if , and those that might have occured if . For

2216 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

both of these groups the transition giving the maximum value of
is found, and thea-posterioriLLR

is calculated based on only these two “best” transitions.
The Max-Log-MAP algorithm can be summarized as follows.

Forward and backward recursions, both similar to the forward
recursion used in the Viterbi algorithm, are invoked to calculate

using (24) and employing (25). The branch metric
is given by (26), where the constant termcan be

omitted. Once both the forward and backward recursions have
been carried out, thea-posterioriLLRs can be calculated using
(27). Thus the complexity of the Max-Log-MAP algorithm is
not significantly higher than that of the Viterbi algorithm—in-
stead of one recursion two are carried out, the branch metric of
(26) has the additionala-priori term term added to it,
and for each bit (27) must be used to give thea-posterioriLLRs.
Viterbi states [27] that the complexity of the Log-MAP-Max al-
gorithm is no greater than three times that of a Viterbi decoder.
Unfortunately the storage requirements are much greater due
to the need to store both the forward and backward recursively
calculated metrics and before the values
can be calculated. However, Viterbi also states [27], [28] that by
increasing the computational load slightly, to four times that of
the Viterbi algorithm, the memory requirements can be dramati-
cally reduced to become essentially equal to those of the Viterbi
decoder.

C. Correcting the Approximation—The Log-MAP Algorithm

The Max-Log-MAP algorithm gives a slight degradation in
performance compared to the MAP algorithm due to the approx-
imation of (20). When used for the iterative decoding of turbo
codes, Robertsonet al. [7] found this degradation to result in a
drop in performance of about 0.35 dB. However, the approxima-
tion of (20) can be made exact by using the Jacobian logarithm

(28)

where can be thought of as a correction term. This is then
the basis of the Log-MAP algorithm proposed by Robertsonet
al. [7]. Similarly to the Max-Log-MAP algorithm, values for

and are calculated
using a forward and a backward recursion. However, the max-
imization in (24) and (25) is complemented by the correction
term in (28). This means that the exact rather than approximate
values of and are calculated. The correction term

need not be computed for every value of, but instead can
be stored in a look-up table. Robertsonet al.[7] found that such
a look-up table need contain only eight values for, ranging be-
tween 0 and 5. This means that the Log-MAP algorithm is only
slightly more complex than the Max-Log-MAP algorithm, but
it gives exactly the same performance as the MAP algorithm.
Therefore, it is a very attractive algorithm to use in the compo-
nent decoders of an iterative turbo decoder.

Having described two techniques based on the MAP algo-
rithm, which exhibited reduced complexity, in the next section
we highlight the principles of an alternative soft-in soft-out de-
coder based on the Viterbi algorithm.

VI. THE SOVA ALGORITHM

A. Mathematical Description of the SOVA Algorithm

In this section, we describe a variation of the Viterbi algo-
rithm, referred to as the SOVA [9], [19]. This algorithm has two
modifications over the classical Viterbi algorithm which allow
it to be used as a component decoder for turbo codes. Firstly
the path metrics used are modified to take account ofa-priori
information when selecting the ML path through the trellis. Sec-
ondly, the algorithm is modified so that it provides a soft output
in the form of thea-posterioriLLR for each decoded
bit.

The first modification is easily accomplished. Consider the
state sequence which gives the states along the surviving path
at state at stage in the trellis. The probability that this
is the correct path through the trellis is given by

(29)

As the probability of the received sequence for transitions
up to and including the th transition is constant for all paths

through the trellis to stage, the probability that the path
is the correct one is proportional to . Therefore,
our metric should be defined so that maximizing the metric will
maximize . The metric should also be easily com-
putable in a recursive manner as we go from the th stage
in the trellis to the th stage. If the path at the th stage has
the path for its first transitions then, assuming a mem-
oryless channel and using the definition of from (8), we
will have

(30)

A suitable metric for the path is therefore , where

(31)

Using (26) and omitting the constant termwe then have

(32)

Hence, our metric in the SOVA algorithm is updated as in the
Viterbi algorithm, with the additional term included
so that thea-priori information available is taken into account.
Notice that this is equivalent to the forward recursion in (24)
used to calculate in the Max-Log-MAP algorithm.

Let us now discuss the second modification of the algorithm
required, i.e., to give soft outputs. In a binary trellis there will
be two paths reaching state at stage in the trellis. The
modified Viterbi algorithm, which takes account of thea-priori
information , calculates the metric from (32) for both
merging paths, and discards the path with the lower metric. If the
two paths and reaching state have metrics
and , and the path is selected as the survivor because

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2217

its metric is higher, then we can define the metric difference
as

(33)

The probability that we have made the correct decision when we
selected path as the survivor and discarded path, is then

correct decision at

(34)

Upon taking into account our metric definition in (31) we have

correct decision at

(35)

and the LLR that this is the correct decision is simply given by
.

Fig. 6 shows a simplified section of the trellis of the
RSC code, with the metric differences marked at various
points in the trellis.

When we reach the end of the trellis and have identified the
ML path through the trellis, we need to find the LLRs giving the
reliability of the bit decisions along the ML path. Observations
of the Viterbi algorithm have shown that all the surviving paths
at a stage in the trellis will normally have come from the same
path at some point beforein the trellis. This point is taken to
be at most transitions before, where usually is set to be five
times the constraint length of the convolutional code. Therefore,
the value of the bit associated with the transition from state

tostate on theMLpathmayhavebeendifferent
if, instead of the ML path, the Viterbi algorithm had selected one
of the paths which merged with the ML path up totransitions
later, i.e., up to the trellis stage . By the arguments above
if the algorithm had selected any of the paths which merged with
the ML path after this point the value of would not be affected,
because such paths will have diverged from the ML path after the
transition from to . Thus, when calculating the
LLR of the bit , the soft output Viterbi algorithm (SOVA) must
takeaccountof theprobability that thepathsmergingwith theML
path from stage to stage in the trellis were incorrectly
discarded. This is done by considering the values of the metric
difference forall states alongtheMLpathfromtrellisstage

to . It is shown by Hagenauer in [29] that this LLR
can be approximated by

(36)

where is the valueof the bit given by the MLpath,andis the
value of this bit for the path which merged with the ML path and
was discarded at trellis stage. Thus the minimization in (36) is
carried out only for those paths merging with the ML path which
would have given a different value for the bit if they had been
selectedas thesurvivor.Thepathswhichmergewith theMLpath,
but would have given the same value foras the ML path, obvi-
ously do not affect the reliability of the decision of.

Fig. 6. Simplified section of the trellis for ourK = 3 RSC code with SOVA
decoding.

For clarification of these operations refer again to Fig. 6
showing a simplified section of the trellis for the RSC
code. In this figure, as before, solid lines represent transitions
taken when the input bit is a 1, and dashed lines represent
transitions taken when the input bit is a1. We assume that the
all-zero path is identified as the ML path, and this path is shown
as a bold line. Also shown are the paths which merge with this
ML path. It can be seen from the figure that the ML path gives
a value of for , but the paths merging with the ML path
at trellis stages and all give a value of 1 for
the bit . Hence, if we assume for simplicity that , from
(36) the LLR will be given by 1 multiplied by the
minimum of the metric differences and .

B. Implementation of the SOVA Algorithm

The SOVA algorithm is implemented as follows. For each
state at each stage in the trellis the metric is calculated
for both of the two paths merging into the state using (32). The
path with the highest metric is selected as the survivor, and for
this state at this stage in the trellis a pointer to the previous state
along the surviving path is stored, just as in the classical Viterbi
algorithm. However, in order to allow the reliability of the de-
coded bits to be calculated, the information used in (36) to give

is also stored. Thus the difference between the
metrics of the surviving and the discarded paths is stored, to-
gether with a binary vector containing bits, which indicate
whether or not the discarded path would have given the same
series of bits for back to as the surviving
path does. This series of bits is called the update sequence in
[29], and as noted by Hagenauer it is given by the result of a
modulo two addition (i.e., an exclusive-or operation) between
the previous decoded bits along the surviving and dis-
carded paths. When the SOVA has identified the ML path, the
stored update sequences and metric differences along this path
are used in (36) to calculate the values of .

The SOVA algorithm described in this section is the least
complex of all the soft-in soft-out decoders discussed in this
chapter. In [7] it is shown by Robertsonet al.that the SOVA algo-
rithm is about half as complex as the Max-Log-MAP algorithm.
However, the SOVA algorithm is also the least accurate of the
algorithms we have described in this chapter and, when used in
an iterative turbo decoder, performs about 0.6 dB worse [7] than
a decoder using the MAP algorithm.

2218 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

Let us now augment our understanding of iterative turbo de-
coding by considering a specific example in the next section.

VII. T URBO DECODING EXAMPLE

In this section, we discuss an example of turbo decoding using
the SOVA algorithm [9], [19] detailed in Section VI. This ex-
ample serves to illustrate the details of the SOVA algorithm and
the iterative decoding of turbo codes discussed in Section IV.

We consider a simple half-rate turbo code using the
RSC code. The reason for using RSC codes instead of conven-
tional nonsystematic, nonrecursive codes is two-fold, which we
attempt to make plausible at this stage. Firstly, it would be rather
wasteful in terms of both transmitted signal energy and bit rate
to transmit the information and the parity bits of both compo-
nent encoders twice. This would namely erode the performance
benefits of turbo coding. If, however, a systematic component
encoder is used, it is straightforward to puncture or obliterate
one of the original systematic information bits from the trans-
mitted bitstream. Furthermore, systematic codes impose less
constraints on the encoded bitstream, than their nonsystematic
counterparts, since in systematic encoders the original infor-
mation bits are directly copied to the encoder’s output. Hence,
the systematic codes exhibit a slightly better BER performance,
than the nonsystematic codes, since the latter codes are over-
whelmed by the plethora of channel errors and hence precip-
itate more errors upon attempting to correct errors, when the
channel BER is high. Since turbo codes are of most interest at
high-channel BERs, systematic codes are preferred.

Secondly, the importance of the recursive nature of the RSC
encoder can be made plausible as follows. For a nonrecursive
convolutional code the trellis path corresponding to an input
sequence of containing a
single emerges from and merges back into the all-zero trellis
path within a finite number of trellis transitions, depending
on the minimum distance of the code. For recursive codes
however, the input sequence would result in a eternally
cycling through the encoder’s shift register stages, such that
the corresponding trellis path never remerges into the all-zero
path. This would result in an output sequence containing an
infinite number of “ ”s. Since their associated output is
quite different, the closest neighbor transmitted sequences of

(the all-“ ” dataword)
and above would rarely be confused with each other in the
decoder in the case of recursive component codes. The path
corresponding to is hence a very unlikely deviation from
the all-zero path during the decoding process in the case of
a recursive code, whereas it is the most likely deviation for a
nonrecursive code.

Following the above brief justification for using RSC codes
the generator polynomials are expressed in octal form as 7 and 5,
as shown in [18, Fig. 6]. Two such codes are combined, as shown
in [18, Fig. 7], with a block interleaver to give a simple
turbo code. The parity bits from both the component codes are
punctured, so that alternate parity bits from the first and the
second component encoder are transmitted. Thus the first, third,
fifth, seventh, and ninth parity bits from the first component
encoder are transmitted, and the second, fourth, sixth, and eighth

Fig. 7. State transition diagram for the(2; 1; 3) RSC component codes.

parity bits from the second component encoder are transmitted.
The first component encoder is terminated using two bits chosen
to take this encoder back to the all zero state. The transmitted
sequence will therefore contain nine systematic and nine parity
bits. Of the systematic bits, seven will be the input bits, and two
will be the bits chosen to terminate the first trellis. Of the nine
parity bits, five will come from the first encoder, and four from
the second encoder.

The state transition diagram for the component RSC codes is
shown in Fig. 7. As in all our diagrams in this section, a solid line
denotes a transition resulting from a1 input bit, and a dashed
lines represents an input bit of1. The figures within the boxes
along the transition lines give the output bits associated with that
transition—the first bit is the systematic bit, which is the same
as the input bit, and the second is the parity bit.

For the sake of simplicity we assume that an all1 input se-
quence is used. Thus there will be seven input bits which are

1, and the encoder trellis will remain in the state.
The two bits necessary to terminate the trellis will be1 in
this case and, as can be seen from Fig. 7, the resulting parity
bits will also be 1. Thus, all 18 of the transmitted bits will be

1 for an all 1 input sequence. Assuming that BPSK modu-
lation is used with the transmitted symbols being1 or 1, the
transmitted sequence will be a series of 181’s. The received
channel output sequence for the example-together with the input
and the parity bits detailed above are shown in Table V. Notice
that approximately half the parity bits from each component en-
coder are puncturedthis is represented by a dash in Table V. Also
note that the received channel sequence values shown in Table V
are the matched filter outputs, which were denoted byin pre-
vious sections. If hard decision demodulation were used then
negative values would be decoded as1’s, and positive values
as 1’s. It can be seen that from the 18 coded bits which were
transmitted, all of which were 1, three would be decoded as

1 if hard decision demodulation were used.
In order to illustrate the difference between iterative turbo de-

coding and the decoding of convolutional codes, we initially
consider how the received sequence shown in Table V would
be decoded by a convolutional decoder using the Viterbi algo-
rithm. Imagine the half-rate RSC code detailed above
used as an ordinary convolutional code to encode an input se-
quence of seven 1’s. If trellis termination was used then two

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2219

Fig. 8. Trellis diagram for the Viterbi decoding of the received sequence shown in Table V.

1’s would be employed to terminate the trellis, and the trans-
mitted sequence would consist of 181’s, just as for our turbo
coding example. If the received sequence was as shown in Table
V, then the Viterbi algorithm decoding this sequence would have
the trellis diagram shown in Fig. 8. The metrics shown in this
figure are given by the cross correlation of the received and ex-
pected channel sequences for a given path, and the Viterbi al-
gorithm maximizes this metric to find the ML path, which is
shown by the bold line in Fig. 8. Notice that at each state in the
trellis where two paths merge, the path with the lower metric is
discarded and its metric is shown crossed out in the figure. As
can be seen from Fig. 8, the Viterbi algorithm makes an incor-
rect decision at stage in the trellis and selects a path other
than the all zero path as the survivor. This results in three of the
seven bits being decoded incorrectly as1’s.

Having seen how Viterbi decoding of a RSC convolutional
code would fail and produce three errors given the received se-
quence, we now proceed to detail the operation of an iterative
turbo decoder for the same channel sequence. Consider first the
operation of the first component decoder in the first iteration.
The component decoder uses the SOVA algorithm to decide
upon not only the most likely input bits, but also the LLRs of
these bits, as described in Section VI.

The metric for the SOVA algorithm is given by (32), which is
repeated here for convenience

(37)

As initially we are considering the operation of the first decoder
in the first iteration there is noa-priori information and hence
we have for all , which corresponds to ana-priori
probability of 0.5. The received sequence given in Table V was
derived from the transmitted channel sequence (which has
) by adding AWGN with variance . Hence, as the fading

amplitude is , from (18) we have for the channel reliability
measure .

Fig. 9 shows the trellis for this first component decoder in the
first iteration. Due to the puncturing of the parity bits used at
the encoder, the second, fourth, sixth, and eighth parity bits have
been received as zeros. Thea-priori and channel values shown
in Fig. 9 are given as and so that the metric
values, given by (37), can be calculated by simple addition and
subtraction of the values shown. As we have and

, these metrics are again given by the cross correlation of
the expected and received channel sequences. Notice however,
that because of the puncturing used the metric values shown in
Fig. 9 are not the same as those in Fig. 8. Despite this the ML
path, shown by the bold line in Fig. 9, is the same as the one that
was chosen by the Viterbi algorithm shown in Fig. 8, with three
of the input bits being decoded as1’s rather than 1’s.

We now discuss how, having determined the ML path, the
SOVA algorithm finds the LLRs for the decoded bits. Fig. 10
is a simplified version of the trellis from Fig. 9, which shows
only the ML path and the paths that merge with this ML path
and are discarded. Also shown are the metric differences, de-
noted by in Section VI, between the ML and the discarded
paths. These metric differences, together with the previously de-

2220 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

Fig. 9. Trellis diagram for the SOVA decoding in the first iteration of the first decoder.

Fig. 10. Simplified trellis diagram for the SOVA decoding in the first iteration of the first decoder.

fined update sequences that indicate for which of the bits the
survivor and discarded paths would have given different values,
are stored by the SOVA algorithm for each node at each stage
in the trellis. When the ML path has been identified, the algo-
rithm uses these stored values along the ML path to find the LLR

for each decoded bit. Table I shows these stored values for the
example trellis shown in Figs. 9 and 10. The calculation of the
decoded LLRs shown in this table is detailed below.

Notice in Table I that at trellis stages and there is
no metric difference or update sequence stored because, as can

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2221

TABLE I
SOVA OUTPUT FOR THEFIRST ITERATION OF THEFIRST DECODER

be seen from Figs. 9 and 10, there are no paths merging with
the ML path at these stages. For all subsequent stages there is
a merging path, and values of the metric differences and update
sequences are stored. For the update sequence a “1” indicates
that the ML and the discarded merging path would have given
different values for a particular bit. At stagein the trellis we
have taken the Most Significant Bit (MSB), on the left-hand
side, to represent , the next bit to represent , etc. until
the Least Significant Bit (LSB), which represents. For the
RSC code any two paths merging at trellis stagegive different
values for the bit , and so the MSB in the update sequences
in Table I is always 1. Notice furthermore that although in the
example the update sequences are all of different lengths, this
is only because of the very short frame length we have used.
More generally, as explained in Section VI, all the stored update
sequences will be bits long, where is usually set to be
five times the constraint length of the convolutional code.

We now explain how the SOVA algorithm can use the stored
update sequences and metric differences along the ML path to
calculate the LLRs for the decoded bits. Equation (36) shows
that the decodeda-posterioriLLR for a bit is given
by the minimum metric difference of merging paths along the
ML path. This minimum is taken only over the metric differ-
ences for stages where the value
of the bit given by the path merging with the ML path at
stage is different from the value given for this bit by the ML
path. Whether or not the condition is met is deter-
mined using the stored update sequences. Denoting the update
sequence stored at stagealong the ML path as , for each bit
the SOVA algorithm examines the MSB of, the second MSB
of , etc. up to the th bit (which will be the LSB) of

. For our example this examination of the update sequences
is limited because of our short frame length, but the same prin-
ciples are used. Taking the fourth bit as an example, to deter-
mine the decoded LLR for this bit the algorithm ex-
amines the MSB of in row four of Table I, the second MSB
of in row five, etc. up to the sixth MSB of in row nine. It
can be seen, from the corresponding rows in Table I, that only
the paths merging at stages and of the trellis give
values different from the ML path for the bit . Hence, the
decoded LLR from the SOVA algorithm for this bit
is calculated using (36) as the value of the bit given by the ML
path times the minimum of the metric differences stored at
Stages 4 and 6 of the trellis (7.2 and 2), yeilding .

The remaining decoded LLR values in Table I are computed
following a similar procedure. However, it is worth noting
explicitly that the low value (2) of the metric difference for
the merging path at Stage 6 in the trellis, which is where
the incorrect path is chosen as the survivor, gives the LLR
for the bits where this path and the ML path give different
values. Hence, the LLRs for the three incorrectly decoded
bits, i.e., and , have the lowest magnitudes of any
of the decoded bits.

We now move on to describing the operation of the second
component decoder in the first iteration. This decoder uses
the extrinsic information from the first decoder asa-priori
information to assist its operation, and therefore should be
able to provide a better estimate of the encoded sequence
than the first decoder was. Equation (16) from Section IV
give the extrinisic information from a component
decoder as the soft output from the decoder with
the a-priori information (if any was available) and
the received systematic channel information subtracted.
This is equivalent to [18, eq. (13)]. Table II shows the extrinsic
information calculated from (16) from the first decoder, which
is then interleaved by a block interleaver and used as the
a-priori information for the second component decoder. The
second component decoder also uses the interleaved received
systematic channel values, and the received parity bits from
the second encoder which were not punctured (i.e., the second,
fourth, sixth, and eighth bits).

Fig. 11 shows the trellis for the SOVA decoding of the second
decoder in the first iteration. The extrinsic information values
from Table II are shown after being interleavered and divided
by two as . Also shown is the channel information

used by this decoder. Notice that as the trellis is not
terminated for the second component encoder, paths termi-
nating in all four possible states of the trellis are considered at
the decoder. However, the metric for the state is the
maximum of the four final metrics, and hence this all zero state
is used as the final state of the trellis.

The ML path chosen by the second component decoder is
shown by a bold line in Fig. 11, together with the LLR values
output by the decoder. These are calculated, using update se-
quences and minumum metric differences, in the same way as
was explained for the first decoder using Fig. 10 and Table I.
It can be seen that the decoder makes an incorrect decision at
stage in the trellis and selects a path other than the all
zero path as the survivor. However, the incorrectly chosen path
gives decoded bits of 1 for only two transitions, and hence
only two, rather than three, decoding errors are made. Further-
more, the difference in the metrics between the correct and the
chosen path at trellis stage is only 2.2, and so the mag-
nitude of the decoded LLRs for the two incorrectly
decoded bits, and , is only 2.2. This is significantly lower
than the magnitudes of the LLRs for the other bits, and indicates
that the algorithm is less certain about these two bits being1
than it is about the other bits being1.

Having calculated the LLRs from the second component de-
coder, the turbo decoder has now completed one iteration. The
soft output LLR values from the second component decoder
shown in the bottom line of Fig. 11 could now be de-interleaved

2222 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

Fig. 11. Trellis diagram for the SOVA decoding in the first iteration of the second decoder.

TABLE II
CALCULATION OF THE EXTRINSIC INFORMATION FROM THEFIRST DECODER

IN THE FIRST ITERATION

and used as the output from the turbo decoder. This de-inter-
leaving would result in an output sequence which gave negative
LLRs for all the decoded bits except and , which would be
incorrectly decoded as1’s as their LLRs are both 2.2. Thus,
even after only one iteration, the turbo decoder has decoded the
received sequence with one less error than the convolutional de-
coder did. However, generally better results are achieved with
more iterations, and so we now progress to describe the opera-
tion of the turbo decoder in the second iteration.

In the second, and all subsequent, iterations the first compo-
nent decoder is able to use the extrinsic information from the
second decoder in the previous iteration asa-priori informa-
tion. Table III shows the calculation of this extrinsic informa-
tion using (16) from the second decoder in the first iteration. It
can be seen that it gives negative LLRs for all the bits except

and , and for these two bits the LLRs are close to zero.
This extrinsic information is then de-interleaved and used as the

a-priori information for the first decoder in the next (second) it-
eration. The trellis for this decoder is shown in Fig. 12. It can
be seen that this decoder uses the same channel information as
it did in the first iteration. However now, in contrast to Fig. 9, it
also hasa-priori information, to assist it in finding the correct
path through the trellis. The selected ML path is again shown by
a bold line, and it can be seen that now the correct all zero path
is chosen. The second iteration is then completed by finding the
extrinsic information from the first decoder, interleaving it and
using it asa-priori information for the second decoder. It can
be shown that this decoder will also now select the all zero path
as the ML path, and hence the output from the turbo decoder
after the seond iteration will be the correct all1 sequence. This
concludes our example of the operation of an iterative turbo de-
coder using the SOVA algorithm, leading on to a comparison of
the component decoder algorithms.

VIII. C OMPARISON OF THECOMPONENT DECODER

ALGORITHMS

In this article, we have described in detail the iterative struc-
ture and the component decoders used to decode turbo codes.
A numerical example illustrating this decoding was given in
the previous section. We now conclude by summarizing the
operation of the algorithms which can be used as component
decoders, highlighting the similarities and differences between
these algorithms, and noting their relative complexities and per-
formances.

The MAP algorithm is the optimal component decoder for
turbo codes. It finds the probability of each bit being a 1
or 1 by calculating the probability for each transition from
state to that could occur if the input bit was

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2223

Fig. 12. Trellis diagram for the SOVA decoding in the second iteration of the first decoder.

TABLE III
CALCULATION OF THE EXTRINSIC INFORMATION FROM THESECONDDECODER

IN THE FIRST ITERATION

1, and similarly for every transition that could occur if the
input bit was 1. As these transitions are mutually exclusive,
the probability of any one of them occurring is simply the sum
of their individual probabilities, and hence the LLR for a bit
is given by the ratio of two sums of probabilities, as in (3).

Due to the Markov nature of the trellis and the assumption that
the output from the trellis is observed in memoryless noise, the
individual probabilities of the transitions in (3) can be expressed
as the product of three terms— and , as in
(5). The terms can be calculated from thea-priori prob-
abilities for the decoded bits, and the received channel informa-
tion, as in (14) and (15). Then the and terms can be
calculated recursively as in . (11) and (13). The MAP algorithm
is optimal for the decoding of turbo codes, but is extremely com-
plex. Furthermore, because of the multiplications used in the re-
cursive calculation of the and terms it often suf-
fers from numerical problems in practice. The Log-MAP algo-

rithm is theoretically identical to the MAP algorithm, but trans-
fers its operations to the log domain. Thus multiplications are
replaced with additions, and so the numerical problems of the
MAP algorithm are avoided and its complexity is dramatically
reduced.

The Max-Log-MAP algorithm further reduces the com-
plexity of the Log-MAP algorithm using the maximization
approximation given in (20). This has two effects on the
operation of the algorithm compared to that of the Log-MAP
algorithm. Firstly, as can be seen by examining (27), it means
that only two transitions are considered when finding the LLR

for each bit —the best transition from
to that would give and the best that would
give . Similarly in the recursive calculations of the

and terms of (24)
and (25) the approximation means that only one transition, the
most likely one, is considered when calculating from
the terms and from the terms. This
means that although should give the logarithm of the
probability that the trellis reaches state alongany
path from the initial state , in fact it gives the logarithm
of the probability of only themost likelypath to state .
Similarly should give the logarithm of the
probability of the received sequence given only that the
trellis is in state at stage . However, the maximization
in (25) used in the recursive calculation of the terms
means that only the most likely path from state to the
end of the trellis is considered, and not all paths.

Hence, the Max-Log-MAP algorithm finds the LLR
for a given bit by comparing the probability of the most likely
path giving to the probability of the most likely path
giving . For the next bit, , again the best path

2224 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

that would give and the best path that would give
are compared. One of these “best paths” will al-

ways be the ML path, and so will not change from one stage to
the next, whereas the other may change. In contrast the MAP
and the Log-MAP algorithms consider every path in the calcu-
lation of the LLR for each bit. All that changes from one stage
to the next is the division of paths into those that give
and those that give . Thus the Max-Log-MAP algo-
rithm gives a degraded performance compared to the MAP and
Log-MAP algorithms.

In the SOVA algorithm the ML path is found by maximizing
the metric given in (32). The recursion used to find this metric
is identical to that used to find the terms in (24) in the
Max-Log-MAP algorithm. Once the ML path has been found,
the hard decision for a given bit is determined by which tran-
sition the ML path took between trellis stages and .
The LLR for this bit is determined by examining the
paths which merge with the ML path that would have given a
different hard decision for the bit . The LLR is taken to be
the minimum metric difference for these merging paths which
would have given a different hard decision for the bit. Using
the notation associated with the Max-Log-MAP algorithm, once
a path merges with the ML path, it will have the same value
of as the ML path. Hence, as the metric in the SOVA
is identical to the values in the Max-Log-MAP, taking
the difference between the metrics of the two merging paths
in the SOVA algorithm is equivalent to taking the difference
between two values of in the
Max-Log-MAP algorithm, as in (27). The only difference is that
in the Max-Log-MAP algorithm one path will be the ML path,
and the other will be the most likely path that gives a different
hard decision for . In the SOVA algorithm again one path will
be the ML path, but the other may not be the most likely path
that gives a different hard decision for. Instead, it will be the
most likely path that gives a different hard decision forand
survives to merge with the ML path. Other, more likely paths,
which give a different hard decision for the bit to the ML
path may have been discarded before they merge with the ML
path. Thus the SOVA algorithm gives a degraded performance
compared to the Max-Log-MAP algorithm. However, as pointed
out in [7] by Robertsonet al. the SOVA and Max-Log-MAP al-
gorithms will always give the same hard decisions, as in both
algorithms these hard decisions are determined by the ML path,
which is calculated using the same metric in both algorithms.

A comparison of the complexities of the Log-MAP, the
Max-Log-MAP, and the SOVA algorithms is given in [7]. The
relative complexity of the algorithms depends on the constraint
length of the convolutional codes used, but it is shown that
the Max-Log-MAP algorithm is about twice as complex as the
SOVA algorithm. The Log-MAP algorithm is slightly more
complex than the Max-Log-MAP algorithm due to the look-ups
required to find the correction factors . The performance
of the algorithms when used in the iterative decoding of turbo
codes falls in the same order as their complexities, with the
best performance given by the Log-MAP algorithm, then the
Max-Log-MAP algorithm, and the worst performance given by
the SOVA algorithm. In the next section we study the effect of
the various parameters on the codec performance.

TABLE IV
STANDARD TURBO ENCODER AND DECODERPARAMETERS USED

TABLE V
INPUT AND TRANSMITTED BITS FORTURBO DECODINGEXAMPLE

IX. THE EFFECT OFVARIOUS CODEC PARAMETERS

In this section we present simulation results for turbo codes
using Binary Phase Shift Keying (BPSK) over Additive White
Gaussian Noise (AWGN) channels. We show that there are
many parameters, some of which are interlinked, which affect
the performance of turbo codes. Some of these parameters are:

• The component decoding algorithm used.
• The number of decoding iterations used.
• The frame-length or latency of the input data.
• The specific design of the interleaver used.
• The generator polynomials and constraint lengths of the

component codes.
The standard parameters that we have used in our simulations

are shown in Table IV. The turbo encoder uses two component
RSCs in parallel. The RSC component codes are codes
with generator polynomials and in octal repre-
sentation. These generator polynomials are optimum in terms of
maximizing the minimum free distance of the component codes
[30]. The effects of changing these parameters are examined in
Section IX-E. The standard interleaver used between the two
component RSC codes is a 1000–bit random interleaver with
odd-even separation [31]. The effects of changing the length of
the interleaver, and its structure, are examined in Sections IX-D
and IX-F. Unless otherwise stated, the results in this section are
for half-rate codes, where half the parity bits generated by each
of the two component RSC codes are punctured. However, for
comparison, we also include some results for turbo codes where
all the parity bits from both component encoders are transmitted,

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2225

Fig. 13. Turbo coding BER performance using different numbers of iterations
of the MAP algorithm. other parameters as in Table IV.

leading to a one-third rate code. At the decoder two component,
soft-in soft-out, decoders are used in parallel in the structure
shown in Fig. 1. In most of our simulations we use the Log-MAP
decoder, but the effect of using other component decoders is in-
vestigated in Section IX-C. Usually 8 iterations of the compo-
nent decoders are used, but in the next section we consider the
effect of the number of iterations.

A. The Effect of the Number of Iterations Used

Fig. 13 shows the performance of a turbo decoder using the
MAP algorithm versus the number of decoding iterations which
were used. For comparison, the uncoded BER and the BER ob-
tained using convolutional coding with a standard non-
recursive convolutional code, are also shown. Like the compo-
nent codes in the turbo encoder, the convolutional encoder uses
the optimum octal generator polynomials of 7 and 5. It can be
seen that the performance of the turbo code after one iteration is
roughly similar to that of the convolutional code at low SNRs,
but improves more rapidly than that of the convolutional coding
as the SNR is increased. As the number of iterations used by
the turbo decoder increases, the turbo decoder performs signif-
icantly better. However, after eight iterations there is little im-
provement achieved by using further iterations. For example, it
can be seen from Fig. 13 that using 16 iterations rather than eight
gives an improvement of only about 0.1 dB. Similar results are
obtained when using the SOVA algorithm—again there is little
improvement in the BER performance of the decoder from using
more than eight iterations. Hence, for complexity reasons usu-
ally only about eight iterations are used, and so, unless otherwise
stated, in our future simulations we have used eight iterations.
In the next section, we consider the effect of puncturing.

B. The Effect of Puncturing

Again, in a turbo encoder two or more component encoders
are used to generate parity information from an input data se-
quence. We have used two RSC component encoders, and this is
the arrangement most commonly used for turbo codes with rates
below two-thirds. Typically, in order to give a half-rate code,

Fig. 14. BER performance comparison between one-third and half-rate turbo
codes using parameters of Table IV.

Fig. 15. BER performance comparison between different component decoders
for a random interleaver withL = 1000. Other parameters as in Table IV.

half the parity bits from each component encoder are punctured.
This was the arrangement used in their original paper by Berrou
et al. on turbo codes [1]. However, it is of course possible to
omit the puncturing and transmit all the parity information from
both component encoders, which gives a one-third rate code.
The performance of such a code, compared to the corresponding
half-rate code, is shown in Fig. 14. In this figure, the encoders
use the same parameters as were described above for Fig. 13.
It can be seen that transmitting all the parity information gives
a gain of about 0.6 dB, in terms of , at a BER of 10 .
This corresponds to a gain of about 2.4 dB in terms of channel
SNR. Very similar gains are seen for turbo codes with different
frame-lengths. Let us now consider the performance of the var-
ious soft-in soft-out component decoding algorithms.

C. The Effect of the Component Decoding Algorithm Used

It can also be seen from Fig. 15 that the Max Log MAP and
the SOVA algorithms both give a degradation in performance
compared to the MAP and Log MAP algorithms. At a BER of

2226 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

Fig. 16. BER performance comparison between different component decoders
for aL = 169; 13� 13, block interleaver. Other parameters as in Table IV.

Fig. 17. BER performance comparison between different component
decoders for a random interleaver withL = 1000 Using a1=3 rate code.
Other parameters as in Table IV.

10 this degradation is about 0.1 dB for the Max Log MAP
algorithm, and about 0.6 dB for the SOVA algorithm.

Fig. 16 compares the Log MAP, Max Log MAP and SOVA
algorithms for a turbo decoder with a frame-length of only
169 b, rather than 1000 b as was used for Fig. 15. It can be seen
that although all three decoders give a worse BER performance
than those shown in Fig. 15, the differences in the performances
between the decoders are very similar to those shown in Fig. 15.
Similarly, Fig. 17 compares these three decoding algorithms
for a one-third rate code, and again the degradations relative to
a decoder using the Log-MAP algorithm are about 0.1 dB for
the Max-Log-MAP algorithm, and about 0.6 dB for the SOVA
algorithm.

D. The Effect of the Frame-Length of the Code

In the original paper on turbo coding by Berrouet al.[1], and
many of the subsequent papers, impressive results have been
presented for coding with very large frame lengths. Dolinaret al.

Fig. 18. Effect of frame-length on the BER performance of turbo coding.
All Interleavers exceptL = 169 block interleaver use random separated
interleavers [31]. Other parameters as in Table IV.

analyzed the associated theoretical performance limits as a func-
tion of the coded frame length in [32]. However, for many appli-
cations, such as speech transmission systems, the large delays
inherent in using high frame-lengths are unacceptable. There-
fore, an important area of turbo coding research is achieving as
impressive results with short frame-lengths as have been demon-
strated for long frame-length systems. Fig. 18 shows how dra-
matically the performance of turbo codes depends on the frame-
length used in the encoder. The 169-bit code would be suitable
for use in a speech transmission systems at approximately 8 kb/s
with a 20-ms frame-length [33], while the 1000–bit code would
be suitable for video transmission. The larger frame-length sys-
tems would be useful in data or nonreal time transmission sys-
tems. It can be seen from Fig. 18 that the performance of turbo
codes is very impressive for systems with long frame lengths.
However, even for a short frame-length system, using 169 b per
frame, it can be seen that turbo codes give good results, com-
parable to or better than a constraint length convolu-
tional code. The use of the convolutional code as a
bench-marker is justified below.

Fig. 15 shows a comparison between turbo decoders using
the parameters described above. In this figure the “Log MAP
(exact)” curve refers to a decoder which calculates the correc-
tion term in (28) of Section 5 exactly, i.e., using

(38)

rather than using a look-up table as described in [7]. The Log
MAP curve refers to a decoder which does use a look-up table
with eight values of stored, and hence introduces an ap-
proximation to the calculation of the LLRs. It can be seen that,
as expected, the MAP and the Log-MAP (exact) algorithms give
identical performances. Furthermore, as Robertson found [7],
the look-up procedure for the values of the correction
terms introduces no degradation to the performance of the de-
coder.

It can be shown that a single decoding operation with the
Log-MAP decoder, including using thea-priori information, is

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2227

about four times as complex as decoding the same code using
a standard Viterbi decoder. The curves shown in Fig. 18, and
in most of our results, were generated using two component de-
coders with eight iterations. Therefore, the overall complexity of
a turbo decoder is approximately times that of a
Viterbi decoder for one of the component convolutional codes.
This means that the complexity of our turbo decoder using eight
iterations of two component codes is approximately
the same as the complexity of a Viterbi decoder for an ordi-
nary convolutional code. However, this ignores the fact
that, at any given iteration after the first, the component decoders
re-use the same channel information they used in the first iter-
ation. Only thea-priori information inputs to the component
decoders change from one iteration to the next. Therefore, the
complexity of iterations after the first one can be reduced by
storing information used in the first iteration, rather than recal-
culating it. This allows us to reduce the complexity of the turbo
decoder by about a third. In order to give a comparison between
the performance of turbo codes and convolutional codes for sim-
ilar complexity decoders, we will compare our turbo
codes with an eight iteration decoder to a convolutional
code. However, it should be noted that it is possible to reduce
the complexity of the turbo decoder below that of the
convolutional decoder.

Fig. 18 shows the performance of such a convolutional code.
A nonrecursive convolutional code using the gener-
ator polynomials and in octal notation,
which maximize the free distance of the code [30], was used.
These generator polynomials provide the best performance in
the AWGN channels we use in this section. A frame-length of
169 b is used, and the code is terminated. It can be seen that even
for the short frame-length of 169 b, turbo codes out-perform
similar complexity convolutional codes. As the frame-length is
increased, the performance gain from using turbo codes, rather
than high constraint length convolutional codes, increases dra-
matically.

Fig. 19 shows how the performance of a one-third rate turbo
code varies with the frame-length of the code. Again, the perfor-
mance of the turbo code is better the longer the frame-length of
the code, but impressive results are still obtained with a frame
length of only 169 b. Again the results for a convolu-
tional code are shown, this time using a third rate
code with the optimal generator polynomials of

and [30] in octal notation. Again it
can be seen that the high constraint length convolutional code
is out-performed by turbo codes with frame-lengths of 169 and
higher.

Let us now consider the effect of using different RSC com-
ponent codes.

E. The Component Codes

Both the constraint length and the generator polynomials used
in the component codes of turbo codes are important parame-
ters. Often in turbo codes the generator polynomials which lead
to the largest minimum free distance for ordinary convolutional
codes are used, although when the effect of interleaving is con-
sidered these generator polynomials do not necessarily lead to
the best minimum free distance for turbo codes. Fig. 20 shows

Fig. 19. Effect of frame-length on BER performance of1=3 rate turbo coding.
All interleavers exceptL = 169 block interleaver use random interleavers.
Other parameters as in Table IV.

the huge difference in performance that can result from different
generator polynomials being used in the component codes. The
other parameters used in these simulations were the same as de-
tailed above in Table IV.

Most of the results given in this report were obtained using
constraint length three component codes. For these codes we
have used the optimum generator polynomials in terms of max-
imizing the minimum free distance of the component convolu-
tional codes, i.e., 7 and 5 in octal representation. These gener-
ator polynomials were also used for constraint length three turbo
coding by Hagenaueret al. in [16] and Jung in [34]. It can be
seen from Fig. 20 that the order of these generator polynomials
is important—the octal value 7 should be used for the feedback
generator polynomial of the encoder (denoted here by). If

and are swapped round, the performance of a convolu-
tional code (both regular and recursive systematic codes) would
be unaffected, but for turbo codes this gives a significant degra-
dation in performance.

The effect of increasing the constraint length of the compo-
nent codes used in turbo codes is shown in Fig. 21. For the con-
straint length four turbo code we again used the optimum min-
imum free distance generator polynomials for the component
codes (15 and 17 in octal, 13 and 15 in decimal representations).
The resulting turbo code gives an improvement of about 0.25 dB
at a BER of 10 over the curve.

For the constraint length 5 turbo code we used the octal gener-
ator polynomials 37 and 21 (31 and 17 in decimal), which were
the polynomials used by Berrouet al. [1] in the original paper
on turbo coding. We also tried using the octal generator poly-
nomials 23 and 35 (19 and 29), which are again the optimum
minimum free distance generator polynomials for the compo-
nent codes, as suggested by Hagenaueret al.in [16]. We found
that these generator polynomials gave almost identical results to
those used by Berrouet al.It can be seen from Fig. 21 that in-
creasing the constraint length of the turbo code does improve its
performance, with the code performing about 0.25 dB
better than the code at a BER of 10 , and the
code giving a further improvement of about 0.1 dB. However,

2228 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

Fig. 20. Effect of generator polynomials on BER performance of turbo coding.
Other parameters as in Table IV.

Fig. 21. Effect of constraint length on the BER performance of turbo coding.
Other parameters as in Table IV.

these improvements are provided at the cost of approximately
doubling or quadrupling the decoding complexity. Therefore,
unless otherwise stated, we have used component codes with
a constraint length of 3 in our work. Let us now focus on the
effects of the interleaver used within the turbo encoder and de-
coder.

F. The Effect of the Interleaver

It is well known that the interleaver used in turbo codes has
a vital influence on the performance of the code. The inter-
leaver design together with the generator polynomials used in
the component codes, and the puncturing used at the encoder,
have a dramatic affect on the free distance of the resultant turbo
code. Several algorithms have been proposed, for example, in
[35] and [36], that attempt to choose good interleavers based on
maximizing the minimum free distance of the code. However,
this process is complex, and the resultant interleavers are not
necessarily optimum. For example, in [37] random interleavers
designed using the technique given in [36] are compared to a

Fig. 22. Effect of block interleaver choice forL � 190 frame-length turbo
codes. Other parameters as in Table IV.

block interleaver, and the “optimized” interleavers are
found to perform worse than the block interleaver.

In [31], a simple technique for designing good interleavers,
which is referred to as “odd-even separation” is proposed. With
alternate puncturing of the parity bits from each of the compo-
nent codes, which is the puncturing most often used, if an inter-
leaver is designed so that the odd and even input bits are kept
separate, then it can be shown that one (and only one) parity bit
associated with each information bit will be left unpunctured.
This is preferable to the more general situation, where some
information bits will have their parity bits from both compo-
nent codes transmitted, whereas others will have neither of their
parity bits transmitted.

A convenient way of achieving odd-even separation in the in-
terleaver is to use a block interleaver with an odd number of
rows and columns [31]. The benefits of using an odd number
of rows and columns with a block interleaver can be seen in
Fig. 22. This shows a comparison between turbo coders using
several block interleavers with frame-lengths of approximately
190 b. The block interleaver, proposed for short frame
transmission systems in [37] and used by the same authors in
other papers such as [34], [38], [39], clearly has a somewhat
lower performance than the other block interleavers, which use
an odd number of rows and columns. It is also interesting to note
that of the two block interleavers with an odd number of rows
and columns, the interleaver which is closer to being square (i.e.,
the interleaver) performs better than the more rectan-
gular interleaver.

We also attempted using random interleavers of various
frame-lengths. The effect of the interleaver choice for a turbo
coding system with a frame-length of approximately 960 b is
shown in Fig. 23. It can be seen from this figure that, as was
the case with the codes with frame-lengths around 192 b shown
in Fig. 22, the block interleaver with an odd number of rows
and columns (the interleaver) performs significantly
better than the interleaver with an even number of rows and
columns (the interleaver). However, both of these
interleavers are outperformed by the two random interleavers.

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2229

Fig. 23. Effect of interleaver choice forL � 961 frame-length turbo codes.
Other parameters as in Table IV.

Fig. 24. Effect of interleaver choice forL � 169 frame-length turbo codes.
Other parameters as in Table IV.

In the “random separated” interleaver odd-even separation,
as proposed by Barbulescu and Pietrobon [31], is used. This
interleaver performs very slightly better than the other random
interleaver, which does not use odd-even separation. However,
the effect of odd-even separation is much less significant for
the random interleavers than it is for the block interleavers.

Similar curves are shown in Fig. 24 for turbo coding schemes
with approximately 169 b per frame. It can be seen again that the
scheme using block interleaving with odd-even separation (i.e.,
the interleaver) performs better than the the scheme
using block interleaving without odd-even separation (i.e., the

interleaver). However, for this short frame-length system
the two random interleavers perform worse than the best block
interleaver. From our results it appears that although random in-
terleavers give the best performance for turbo codes with long
frame-lengths, for short frame-length systems the best perfor-
mance is given using a block interleaver with an odd number of
rows and columns.

Fig. 25. Effect of interleaver choice for third-rateL � 169 frame-length turbo
codes. Other parameters as in Table IV.

When puncturing is not used, and we have a third rate code,
the benefit of using odd-even separation with block interleavers,
i.e., using block interleavers with an odd number of rows and
columns, disappears. This can be seen from Fig. 25, which com-
pares the performance of a turbo code with no puncturing using
three different interleavers, all with a length of approximately
169 b. As in the case of the half-rate turbo codes using punc-
turing in Fig. 24, for a small frame length, such as 169 b, the
best performance is given by using a block rather than a random
interleaver. However, it can be seen from Fig. 25 that, unlike
for half-rate codes, for turbo codes without puncturing there is
little difference between the block interleavers with and without
odd-even separation, i.e., between the and in-
terleavers.

In [40], Herzberg suggests that a “reverse block” interleaver,
i.e., a block interleaver in which the output bits are read from
the block in the reverse order relative to an ordinary block inter-
leaver, gives an improved performance over ordinary block in-
terleavers. He also suggests that for high SNRs, and low BERs,
reverse block interleavers with a small frame-length give a better
performance than random interleavers with a much longer frame
length. However, as can be seen from Fig. 26, which shows the
performance of ordinary and reverse block interleavers for var-
ious frame-lengths, we found very little difference between the
performances of block and reverse block interleavers. One dif-
ference between our results and those in [40] is that we have
used punctured half-rate turbo codes, whereas Herzberg used
turbo codes without puncturing. However, we found that even
with third-rate turbo codes using no puncturing, and using

interleavers as Herzberg did, the performance of block and
reverse block interleavers were almost identical. It appears in
[40] that for turbo codes with long random interleavers, and
with an ordinary block interleaver, Herzberg used the gener-
ator polynomials and , whereas for the reverse
block interleaver he used the generator polynomials and

. The generator polynomials and were
used so that the performance of turbo codes with long random
interleavers could be approximated using the Union bound and
the error coefficients calculated by Benedetto and Montorosi in

2230 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

Fig. 26. BER performance of block and reverse block interleavers. Other
parameters as in Table IV.

[15] for these generator polynomials. However, as was seen in
Fig. 20, these generator polynomials give a significantly worse
performance that the generator polynomials and

we have used for most of our simulations, and Herzberg used
with his reverse block interleaver. Thus it appears that the reason
Herzberg found such promising results for the reverse block in-
terleaver was not because of this interleaver’s superiority, but
because of the inferiority of the generator polynomials he used
with random and block interleavers.

Having investigated the performance of turbo codes when
used with BPSK modulation over AWGN channels, in the next
section we will briefly characterize the expected performance
over Rayleigh-fading channels.

X. TURBO CODING OVER RAYLEIGH CHANNELS

In the previous sections, we have discussed the performance
of turbo coded BPSK over AWGN channels. In this section
we have trasmitted over Rayleigh fading channels, assuming
that the receiver has exact estimates of the fading amplitude
and phase inflicted by the channel. This assumption is justified
as several techniques, e.g., Pilot Symbol Assisted Modulation
(PSAM) [4], are available which provide practical CSI recovery
with performance very close to that assuming perfect recovery.
In Section X-A we consider the performance of various turbo
codes over Rayleigh fading channels, which are perfectly inter-
leaved. Then in Section X-B we characterize the effects of var-
ious Doppler frequencies.

A. Turbo Coded Perfomance over Perfectly Interleaved
Rayleigh Channels

Fig. 27 shows the performance of three turbo codes with dif-
ferent frame-lengths over a perfectly interleaved Rayleigh
fading channel using BPSK modulation. All the turbo codecs
use two RSC component codes with generator polyno-
mials and . At the decoder eight iterations of
the Log-MAP decoder are used. Also shown in Fig. 27 is the
performance of a constraint length convolutional code
which, as explained earlier, has a decoder complexity which is

Fig. 27. BER performance of turbo codes with different frame-lengthsL over
perfectly interleaved Rayleigh fading channels. Other turbo codec parameters
as in Table IV.

Fig. 28. BER performance of turbo codes with different interleavers over
perfectly interleaved Rayleigh fading channels. Other turbo codec parameters
as in Table IV.

similar or slightly higher than that of the turbo decoder. It can
be seen that the turbo codes with frame-lengths of
or give a significant increase in performance over
the convolutional code. Even the turbo code with a short frame
length of 169 b outperforms the convolutional code for BERs
below 10 .

Comparing the performance of the and
turbo codes in Fig. 27 to those in Fig. 18 for the

same codes over an AWGN channel, we see that the perfectly
interleaved fading of the received channel values degrades the
BER performance of the code by around 2 dB at a BER of 10,
with a larger degradation for the shorter frame-length codes.

The short frame-length turbo codec in Fig. 27 uses
a block interleaver. We found in Section IX–F that with
a Gaussian channel for short frame-lengths a block interleaver
with an odd number of rows and columns should be used. Fig. 28
shows the effect of using different interleavers, all with a frame-
length of approximately 169 b, on the BER performance of a
turbo codec over a perfectly interleavered Rayleigh channel. It

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2231

Fig. 29. BER performance of turbo codes withL = 1000 Using different
component decoders over perfectly interleaved Rayleigh fading channels. Other
turbo codec parameters as in Table IV.

can be seen from this figure that again for the short frame-length
of 169 b the best performance is given by a block interleaver
with an odd number of rows and columns. This block interleaver
acheives odd-even separation [31] so that each data bit has one,
and only one, of the two parity bits associated with it trans-
mitted. The block interleaver shown in Fig. 28 does not
give odd-even separation, and so even through its frame-length
is almost identical to that of the block interleaver (168
rather than 169 b) it performs almost 1 dB worse than the
block interleaver at a BER of 10 . The two random interleavers
shown in Fig. 28 also perform worse than the block in-
terleaver, although the random interleaver with odd-even sepa-
ration does perform better than the nonseparated interleaver.

Fig. 29 shows how the choice of the component decoders used
at the turbo decoder affects the performance of the codec over
a perfectly interleavered Rayleigh channel. It can be seen that
again the Log-MAP decoder gives the best performance, fol-
lowed by the Max-Log-MAP decoder with the SOVA decoder,
the simplest of the three, giving the worst performance. It can
also be seen that the differences in performances between the
different decoders are slightly larger than they were over an
AWGN channel—the Max-Log-MAP decoder performs about
0.2 dB worse than the Log-MAP decoder, and the SOVA de-
coder is about 0.8 dB worse than the Log-MAP decoder.

Fig. 30 shows the effect of puncturing on a turbo code with
frame-length over the perfectly interleaved Rayleigh
channel. In Fig. 14 we saw that over the AWGN channel the
third-rate code outperformed the half-rate code by about 0.6 dB
in terms of . We see from Fig. 30 that again for the per-
fectly interleaved Rayleigh channel the difference in perfor-
mance is bigger—about 1.5 dB in terms of or about
3.25 dB in terms of channel SNR.

B. Turbo Coded Performance over Correlated Rayleigh
Channels

Fig. 31 shows the performance of a half-rate turbo coding
system with over various Rayleigh fading chan-
nels. It can be seen that by far the best performance is given by

Fig. 30. The BER performance comparison between one-third and one-half
rate of turbo codes over perfectly interleaved Rayleigh fading channels. Other
turbo codec parameters as in Table IV.

Fig. 31. Performance of turbo coding over Rayleigh fading channels. Turbo
codec parameters as in Table IV.

the perfectly interleaved Rayleigh channel where there are no
correlations between sucessive fading values. The narrowband
Rayleigh channel shown has a normalized Doppler frequency
of , given by assuming a carrier frequency
of 1.9 GHz, a symbol rate of 360 Kbaud and a vehicular speed
of 50 km/h. These values correspond to a RACE ATDMA long
macro-cell type system. It can be seen that the turbo codes give
a significant coding gain over the uncoded BER results even
for this channel. We found that for Rayleigh fading channels
with faster fading, i.e., a higher normalized Doppler frequency,
the coding gain increased. Also it can be seen that interleaving
the output bits from the turbo encoder before transmission over
the Rayleigh fading channel improves the performance for the
narrowband system by about 2.5 dB at a BER of 10. This
gain was acheived by merely interleaving over the length of
the output block from the turbo encoder (2000 b). Higher inter-
leaving gains can be acheived, at the cost of extra delay, by in-
terleaving over longer periods. Perfect interleaving over a much

2232 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, NOVEMBER 2000

longer period would give the performance shown by the uncor-
related Rayleigh curve in Fig. 31.

Also shown in Fig. 31 is the performance of our turbo codec
over an Orthogonal Frequency Division Multiplexing (OFDM)
system with Rayleigh fading. The effects of OFDM with turbo
coding will be explored in the next section, but it can be seen that
the OFDM gives a coded performance much closer to that for
the perfectly interleaved Rayleigh channel. Again interleaving
over the 2000 output bits from the turbo encoder improves the
coded performance.

Having portrayed the performance of turbo codes using
BPSK modulation over Rayleigh channels, in the next section
we offer our conclusions.

XI. CONCLUSION

In this article, we have described the techniques used for the
decoding of turbo codes. Although it is possible to optimally
decode turbo codes in a single noniterative step [21], [22], for
complexity reasons a nonoptimum iterative decoder is almost al-
ways preferred. Such an iterative decoder employs two compo-
nent soft-in soft-out decoders, and we have described the MAP,
Log-MAP, Max-Log-MAP and SOVA algorithms, which can all
be used as component decoders. The MAP algorithm is optimal
for this task, but it is extremely complex. The Log-MAP algo-
rithm is a simplification of the MAP algorithm, and offers the
same optimal performance with a reasonable complexity. The
other two algorithms, the Max-Log-MAP and the SOVA, are
both less complex again, but give a slightly degraded perfor-
mance. In order to gauge the expected coding performance we
also provided a range of performance results using a variety of
codec parameters.

Research continues in a range of areas, attempting to improve
the complexity versus performance tradeoffs. For example,
while innovating in the field of block-based turbo codes,
near-Shannonian performance was achieved by Hagenaueret
al. using a near-unity coding rate, although at a high decoding
complexity. Other efforts are in the field of incorporating
turbo codes in practical speech and video systems. A range of
application examples can be found in the context of interactive
and broadcast video systems as well as local area networks in
[4] and [5], and in [42]–[52]. In short, an exciting era at the
50th anniversary of Shannonian information theory, witnessing
the first practical systems performing close to information the-
oretical limits, stimulating the research community to aspire to
similar performance over dispersive, fading wireless channels.

ACKNOWLEDGMENT

Sincere thanks are due to the EPSRC, U.K. and to the Virtual
Centre of Excellence in Mobile Communications.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding. Turbo codes,” inProc. Int. Conf.
Communications, May 1993, pp. 1064–1070.

[2] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding. Turbo-codes,”IEEE Trans. Commun., vol. 44, no. 10, pp.
1261–1271, 1996.

[3] R. Steele and L. Hanzo, Eds.,Mobile Radio Communications: Second
and Third Generation Cellular and WATM Systems, 2nd ed. New York:
Wiley, 1999, ISBN 07273-1406-8.

[4] L. Hanzo, W. T. Webb, and T. Keller,Single- and Multi-Carrier Quadra-
ture Amplitude Modulation: Principles and Applications for Personal
Communications, WATM and Broadcasting. New York: Wiley, 2000.

[5] L. Hanzo, P. Cherriman, and J. Streit. Video compression and commu-
nications over wireless channels: From second to third generation sys-
tems, WLAN’s and beyond. TITLE? [Online]. Available: http://www-
mobile.ecs.soton.ac.uk

[6] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,”IEEE Trans. Inform. Theory,
vol. VOL. NO?, pp. 284–287, Mar. 1974.

[7] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in
Proc. Int. Conf. Communications, June 1995, pp. 1009–1013.

[8] G. Battail, “Ponderation des symboles decodes par l’algorithme de
Viterbi,” Ann. Telecommun., vol. 42, no. 1–2, pp. 31–38, Jan. 1987. (in
French).

[9] C. Berrou, P. Adde, E. Angui, and S. Faudeil, “A low complexity soft-
output Viterbi decoder architecture,” inProc. Int. Conf. Communica-
tions, May 1993, pp. 737–740.

[10] S. Le Goff, A. Glavieux, and C. Berrou, “Turbo-codes and high spec-
tral efficiency modulation,”Proc. IEEE Int. Conf. Communications, pp.
645–649, 1994.

[11] U. Wachsmann and J. Huber, “Power and bandwidth efficient digital
communications using turbo codes in multilevel codes,”Eur. Trans.
Telecommun., vol. 6, pp. 557–567, Sept.–Oct. 1995.

[12] P. Robertson and T. Worz, “Bandwidth-efficient turbo trellis-coded
modulation using punctured component codes,”IEEE J. Select. Areas
Commun., vol. 16, pp. 206–218, Feb. 1998.

[13] S. Benedetto and G. Montorsi, “Design of parallel concatenated convo-
lutional codes,”IEEE Trans. Commun., vol. 44, pp. 591–600, May 1996.

[14] L. C. Perez, J. Seghers, and D. J. Costello, “A distance spectrum in-
terpretation of turbo codes,”IEEE Trans. Inform. Theory, vol. 42, pp.
1698–1709, Nov. 1996.

[15] S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results
on parallel concatenated coding schemes,”IEEE Trans. Inform. Theory,
vol. 42, pp. 409–428, Mar. 1996.

[16] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,”IEEE Trans. Inform. Theory, pp. 429–445,
Mar. 1996.

[17] R. Pyndiah, “Iterative decoding of product codes: Block turbo codes,” in
Proc. Int. Symp. Turbo Codes and Related Topics, Brest, France, Sept.
1997, pp. 71–79.

[18] B. Sklar, “A primer on turbo code concepts,”IEEE Commun. Mag., pp.
94–102, Dec. 1997.

[19] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision out-
puts and its applications,”IEEE Globecom, pp. 1680–1686, 1989.

[20] G. D. Forney, “The Viterbi algorithm,”Proc. IEEE, vol. 61, pp. 268–278,
Mar. 1973.

[21] M. Breiling and L. Hanzo, The super-trellis structure of turbo codes, in
IEEE Trans. Inform. Theory, Sept. 2000. to appear.

[22] , “Optimum noniterative turbo-decoding,” inProc. PIMRC’97,
Helsinki, Finland, Sept. 1997, pp. 714–718.

[23] C. Berrou, “Some clinical aspects of turbo codes,” inProc. Int. Symp.
Turbo Codes and Related Topics, Brest, France, Sept. 1997, pp. 26–31.

[24] H. Nickl, J. Hagenauer, and F. Burkett, “Approaching Shannon’s ca-
pacity limit by 0.27 dB using simple Hamming codes,”IEEE Commun.
Lett., vol. 1, pp. 130–132, Sept. 1997.

[25] W. Koch and A. Baier, “Optimum and sub-optimum detection of
coded data disturbed by time-varying inter-symbol interference,”IEEE
Globecom, pp. 1679–1684, Dec. 1990.

[26] J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity
symbol dectectors with parallel structures for ISI channels,”IEEE
Trans. Commun., vol. 42, pp. 1661–1671, 1994.

[27] A. Viterbi, “Approaching the Shannon limit: Theorist’s dream and prac-
titioner’s challenge,” inProc. Int. Conf. Millimeter Wave and Far In-
frared Science and Technology, 1996, pp. 1–11.

[28] A. J. Viterbi, “An intuitive justification and a simplified implementation
of the MAP decoder for convolutional codes,”IEEE J. Select. Areas
Commun., pp. 260–264, Feb. 1997.

[29] J. Hagenauer, “Source-controlled channel decoding,”IEEE Trans.
Commun., vol. 43, pp. 2449–2457, Sept. 1995.

[30] J. G. Proakis,Digital Communications, 3rd ed. New York: McGraw-
Hill, 1995.

WOODARD AND HANZO: COMPARATIVE STUDY OF TURBO DECODING TECHNIQUES 2233

[31] A. S. Barbulescu and S. S. Pietrobon, “Interleaver design for turbo
codes,”IEE Electron. Lett., pp. 2107–2108, Dec. 1994.

[32] S. Dolinar, D. Divsalar, and F. Pollara. Code Performance as
a Function of Block Size. SPL, NASA. [Online]. Available:
http://tmo.jpl.nasa.gov/tmo/progress_report/42-133/title.htm

[33] J. P Woodard, T. Keller, and L. Hanzo, “Turbo-coded orthogonal fre-
quency division multiplex transmission of 8 kbps encoded speech,” in
Proc. ACTS’97, Aalborg, Denmark, Oct. 1997, pp. 894–899.

[34] P. Jung, “Comparison of turbo-code decoders applied to short frame
transmission systems,”IEEE J. Select. Areas Commun., pp. 530–537,
1996.

[35] P. Robertson, “Illuminating the structure of code and decoder of parallel
concatenated recursive systematic (turbo) codes,”IEEE Globecom, pp.
1298–1303, 1994.

[36] P. Jung and M. Naßhan, “Performance evaluation of turbo codes for
short frame transmission systems,”IEE Electron. Lett., pp. 111–112,
Jan. 1994.

[37] , “Dependence of the error performance of turbo-codes on the in-
terleaver structure in short frame transmission systems,”IEE Electron.
Lett., pp. 287–288, Feb. 1994.

[38] , “Results on turbo-codes for speech transmission in a joint detec-
tion CDMA mobile radio system with coherent receiver antenna diver-
sity,” IEEE Trans. Veh. Technol., vol. 46, pp. 862–870, Nov. 1997.

[39] P. Jung, M. Naßhan, and J. Blanz, “Application of turbo-codes to a
CDMA mobile radio system using joint detection and antenna diver-
sity,” Proc. IEEE Conf. Veh. Technol., pp. 770–774, 1994.

[40] H. Herzberg, “Multilevel turbo coding with short interleavers,”IEEE J.
Select. Areas Commun., vol. 16, pp. 303–309, Feb. 1998.

[41] T. A. Summmers and S. G. Wilson, “SNR mismatch and online estima-
tion in turbo decoding,”IEEE Trans. Commun., vol. 46, pp. 421–423,
Apr. 1998.

[42] L. Hanzo, P. J. Cherriman, and E. L. Kuan, “Interactive cellular and cord-
less video telephony: State-of-the-art, system design principles and ex-
pected performance,”Proc. IEEE, vol. 88, pp. 1388–1415, Sept. 2000.

[43] C. H. Wong, T. H. Liew, and L. Hanzo, “Blind-detection assisted, block
turbo coded, decision-feedback equalised burst-by-burst adaptive mod-
ulation,” IEEE J. Select. Areas Commun., submitted for publication.

[44] C. S. Lee, T. Keller, and L. Hanzo, “OFDM-based turbo-coded hierar-
chical and nonhierarchical terrestrial mobile digital video broadcasting,”
Proc. IEEE Trans. Broadcasting, vol. 46, pp. 1–22, Mar. 2000.

[45] P. Cherriman, E. L. Kuan, and L. Hanzo, “Turbo coded burst-by-burst
adaptive joint-detection CDMA based video telephony,”IEEE Trans.
Circuits Syst. Video Technol., submitted for publication.

[46] T. Keller and L. Hanzo, “Turbo-coded adaptive modulation techniques
for duplex OFDM transmission,”IEEE Trans. Veh. Technol., to be pub-
lished.

[47] B.-L. Yeap, T.-H. Liew, J. Hamorsky, and L. Hanzo, “Comparative study
of convolutional coded as well as convolutional-based and block-based
turbo coded turbo equalisers,”IEEE J. Select. Areas Commun., sub-
mitted for publication.

[48] T. Keller and L. Hanzo, “Adaptive multicarrier modulation: A conve-
nient framework for time-frequency processing in wireless communica-
tions,” Proc. IEEE, vol. 88, pp. 611–642, May 2000.

[49] T. Keller, M. Münster, and L. Hanzo, “A turbo-coded burst-by-burst
adaptive wideband speech transceiver,”IEEE J. Select. Areas Commun.,
pp. 2363–2372, Nov. 2000.

[50] P. J. Cherriman, T. Keller, and L. Hanzo, “Subband-adaptive turbo-coded
OFDM-based interactive video telephony,”IEEE Trans. Circuits Syst.
Video Technol., submitted for publication.

[51] C. S. Lee, S. Vlahoyiannatos, and L. Hanzo, “Satellite based
turbo-coded, blind-equalised 4-QAM and 16-QAM digital video
broadcasting,”Proc. IEEE Trans. Broadcasting, pp. 23–34, Mar. 2000.

[52] L. Hanzo, C. H. Wong, and P. Cherriman, “Burst-by-burst adaptive wide-
band wireless video telephony,”IEEE Signal Processing Mag., vol. 17,
pp. 2212–2228, July 2000.

Jason P. Woodardwas born in Northern Ireland in 1969. He received the B.A.
degree in physics in 1991 from Oxford University, Oxford, U.K., and the M.Sc.
degree in electronics in 1992 from Southampton University, Southampton, U.K.,
where he is currently pursuing the Ph.D. degree in speech coding.

Lajos Hanzoreceived the Dipl. Ing. degree in electronics in 1976 and the Ph.D.
degree in 1983, both from the Technical University of Budapes, Budapest, Hun-
gary.

During his 24-year career in telecommunications, he has held various re-
search and academic posts in Hungary, Germany, and the U.K. Since 1986, he
has been with the Department of Electronics and Computer Science, University
of Southampton and has been a Consultant to Multiple Access Communications
Ltd., U.K. Currently, he holds the chair in Telecommunications. He has coau-
thored five books on mobile radio communications, published in excess of 300
research papers, organized and chaired conference sessions, presented overview
lectures, and was awarded a number of distinctions. Currently he is managing a
research team, working on a range of research projects in the field of wireless
multimedia communications under the auspices of the Engineering and Phys-
ical Sciences Research Council (EPSRC) U.K, the European IST Programme,
and the Mobile Virtual Centre of Excellence (VCE). He also provides a range
of industrial training courses.

