SoFAR with DIM Agents

An Agent Framework for Distributed Information Management

Luc Moreau, Nick Gibbins, David DeRoure, Samhaa El-Beltagy,
Wendy Hall, Gareth Hughes, Dan Joyce, Sanghee Kim,
Danius Michaelides, Dave Millard, Sigi Reich, Robert Tansley, Mark Weal
Multimedia Research Group
University of Southampton
L.Moreau, nmg97r@ecs.soton.ac.uk

Abstract

In this paper we present SOFAR, a versatile multi-agent framework designed for
Distributed Information Management tasks. SOFAR embraces the notion of proactiv-
ity as the opportunistic reuse of the services provided by other agents, and provides
the means to enable agents to locate suitable service providers. The contribution of
SOFAR is to combine some ideas from the distributed computing community with the
performative-based communications used in other agent systems: communications
in SOFAR are based on the startpoint/endpoint paradigm, which is the foundation
of Nexus, the communication layer at the heart of the Computational Grid. We
explain the rationale behind our design decisions, and describe the predefined set
of agents which make up the core of the system. Two distributed information man-
agement applications have been written, a general query architecture and an open
hypermedia application, and we recount their design and operations.

1 Introduction

The volume of information available from the World Wide Web and corporate information
systems has increased dramatically over the last few years. It is now recognised that users
require assistance to avoid being overwhelmed by this wealth of information [10]; it is also
essential that information suppliers are provided with tools that help them in authoring
and maintaining it [4, 10].

Distributed Information Management (DIM) is the term used to describe the set of
activities that allow users to manage the entire life-cycle of information in a distributed
environment [8]. The activities, also referred to as DIM tasks, involve, amongst others,
document creation and publication, information space navigation, information discovery,
integrity maintenance.

The large volume of highly dynamic information involved in DIM tasks is an ideal
subject for agent-style processing. This has been exemplified in several research projects,
such as Pattie Maes’ agents that reduce users’ overload [31] or the numerous agents applied
to the Internet or the www [6, 30].

Over the last decade, a series of projects at Southampton have addressed the issue
of distributed information management. This activity began with the Microcosm system
[20], which pioneered the idea of building a hypertext system out of a set of loosely-coupled
communicating processes. It was an example of an open hypermedia system, in which links
are regarded as first-class citizens. By managing and storing links in specific databases,
called linkbases, this approach allows users to customise their information environment
by selecting the appropriate linkbases. Distribution and process coordination were then
investigated [22], and the open hypermedia philosophy was brought to the www by the
Distributed Link Service [4]. The same principles were also applied to other types of
media, in particular to images [29] and sound [2]. In a project called Memoir [11], the
notion of navigation trails was used to recommend documents that have been examined by
user’s sharing similar interests. These ideas were also applied to bookmarks, annotations
and document ratings shared by users [14]. Querying multimedia information has been
an important focus in our investigation of distributed information management. We have
also concentrated on optimising the actual act of query, as opposed to its content: query
routing [12] has been used to optimise queries of distributed information systems. Other
DIM tasks have been investigated, such as link integrity maintenance [36] and authoring
[4]. The benefit of mobility to solve distributed information management tasks was also
studied [7].

We learned two important lessons from our practical experience with designing and
building prototypes over the last decade. First, it became clear that properties of weak
agency identified by Wooldridge and Jennings [50], namely autonomy, social ability, reac-
tivity and pro-activity, are also desirable for distributed information management systems.
Second, we came to the conclusion that distributed information management may be re-
garded as the result of coordinating a multitude of simple DIM tasks. It is our belief
that the functionality of the system can emerge from individual agents opportunistically
exploiting services offered by other agents. Therefore, we have been working towards
building a multi-agent system, where numerous agents can interact to test our hypothe-
sis. Since individual agents would not necessarily require “intelligence” to perform their
distributed information management task, we regard them as “dim” DIM agents.

In the domain of distributed information management, the ubiquitous definitions of
weak agency defined in [50] are applicable, but require some qualification. We have
adopted the following terminology for our DIM agent framework:

1. autonomy: the ability of an agent to effect elements of its behavioural repertoire
without intervention or direct control from actors external to the agent system (e.g.
the user).

2. social ability: the capacity to communicate with other agents in the system — it is
an existence criterion for our framework; an agent that does not communicate, by
definition, is not a participant agent.

3. pro-activity: as part of their autonomy, agents must at least possess opportunism
as a key goal-directed behaviour; that is, they must actively search for and use the
abilities of other agents to complete their tasks [27].

All coordinated activity of a multi-agent system is composed of agents with simple
(usually singular) abilities who possess the above three criteria. The notion of oppor-

tunism enables us to build systems where agents can potentially discover new function-
ality through cooperation — emergent behaviour, in short. We believe that the simplicity
of each of the DIM agents will enable the principled engineering of global behaviour more
easily than if each agent is gifted with sophisticated functionality and behaviours — this
is because the local interactions are simpler, enabling abstraction [28]. By making use of
other agents whenever possible, the whole is greater that the sum of the parts, so the real
power of the system is realised as a result of the collective behaviour of the agents.

Over the last two years, part of our activity has concentrated on designing and building
a framework for coordinating the activity of our DIM agents. The purpose of this paper
is to describe the soFAR framework (SOuthampton Framework for Agent Research), its
properties, its design and implementation, and to present our first agent applications built
using the framework.

The key contribution of SOFAR is to apply some successful ideas of the distributed com-
puting community to multi-agent systems. We adopt the same communication paradigm
as Nexus [19], which is the communication layer that is used to build the Computational
Grid [18]. This approach has been shown to be generic and scalable. From the agent
perspective, the act of communication becomes independent of the mechanisms for com-
municating, which is a view that naturally extends to speech-act based communications.

This paper is organised as follows. In Section 2, we discuss the requirements of the
framework. In Section 3, the framework itself is described, including its communication
mechanism, the notion of ontology, and the architecture it provides. We then revisit
the requirements and show how the framework meets them (Section 4). In Section 5,
we describe a general querying architecture and an open-hypermedia application that we
have implemented with this framework. Finally, we discuss related (Section 6) and future
work (Section 7).

2 Framework for DIM Agent: Requirements

Our initial motivation is to build an advanced distributed information management sys-
tem. Even though we can identify a vast number of tasks that such a system must perform,
we are currently unable to define such a system precisely, nor are we able to explain its
behaviour in terms of sub-components. Instead, we have adopted a bottom-up approach
to building such a system. As we are able to engineer systems that perform the simple
tasks that we have identified, we wish to coordinate their activity in order to provide an
emergent behaviour. We believe that advanced behaviours can emerge from individual
agents opportunistically exploiting services offered by other agents; it is therefore the
goal of the framework to facilitate the reexploitation of these services. In this Section, we
present a list of requirements that we have identified for the framework in order to satisfy
that goal:

1. DM tasks need to be coordinated in a distributed environment. The number of tasks
is not known a priori, and may evolve over time. The framework must be reactive
since it must accommodate new tasks as they are created in the environment.

2. The framework must promote the opportunistic reuse of agent services by other
agents. To this end, it must provide mechanisms by which agents may advertise
their capabilities, and ways of finding agents supporting certain capabilities.

3. There is potentially a large number of agents that must be coordinated by the agent
framework. The framework must be light-weight and scalable. By light-weight, we
mean that it must be possible to implement efficient communication mechanisms,
and that the administrative overhead of the framework should not hamper the over-
all performance of the system. It is a requirement of the framework to be scalable:
we want to avoid centralised components which would create bottlenecks during
execution.

4. The communication primitives provided by the framework must be independent of
the actual means of communication. There are many communication techniques
that would be suitable, such as XML messages over sockets, or object-style commu-
nications based on CORBA, DCOM or RMI. However, once an on-the-wire protocol has
been chosen, it becomes very difficult to adopt another communication mechanism.
Therefore, the framework is required to provide an abstract way of communicating
between agents, which may be mapped onto different on-the-wire protocols.

In our framework, it is not a requirement to be directly compliant with standard agent
communication languages such as KQML [15] or FIPA [16]. However, we believe that these
standards are the result of a long experience of building agent systems, and we adopt
some of their essential ideas, namely declarative communications based on speech act
theory which give the context of the communication, and the organisation of knowledge
into discrete ontologies.

3 The SoFAR Agent Framework: Description

In this Section, we describe SOFAR, the Southampton Framework for Agent Research.
Most of the requirements of Section 2 are in fact standard distributed computing require-
ments, and therefore we looked at that community to find a solution to be used in the
context of multi-agent systems. We present such a solution below, and we extend and
adapt it to support proper agent communications, as prescribed by KQML or FIPA agent
communication mechanisms, amongst others.

3.1 A Distributed Computing View

The distributed programming community has investigated numerous communication para-
digms for distributed environments, such as message-passing libraries (e.g. MPI or PVM),
communication channels (e.g. CsP or m-calculus), remote procedure call (RPC) and its
object-oriented variant, remote method invocation [45, 46].

Nexus [19, 35] is a distributed programming paradigm, available as a library, that
provides the essence of a distributed object system and has inspired the model of com-
munication used in SOFAR. Nexus is the communication layer used in the Globus projects
(www.globus.org), the basis of the Computational Grid [18]. Nexus has been shown to be
a generic mode of communication, which is efficient and scalable. It provides program-
mers with two key ideas: startpoint/endpoint pairs to refer to remote objects and remote
service requests to start computations on remote objects.

In Nexus, communication flows from a communication startpoint to a communication
endpoint. A startpoint is bound to an endpoint to form a communication link. Many

startpoints can be bound to a single endpoint, in which case incoming communication
is merged as in typical point-to-point message passing systems. Both startpoints and
endpoints can be created dynamically; the startpoint has the additional property that it
can be moved between processors using the communication operations we now describe.

A communication link supports a single communication operation: an asynchronous
remote service request (RSR). An RSR is applied to a startpoint by providing a procedure
name and some data. The RSR transfers the data to the process in which the endpoint
is located and remotely invokes the specified procedure, providing the endpoint and the
data as arguments. A local address can be associated with an endpoint, in which case
any startpoint associated with the endpoint can be thought of as a “global pointer” to
that address.

Each communication link defines a unique communication medium, with which a spe-
cific communication method can be associated. There may be several supported protocols:
the Nexus communication library is multi-protocol and RSRs may be transported on top of
TCP, UDP and HTTP[32]. In addition, each endpoint is associated with a table of handlers,
from which one handler, i.e. a method in object-oriented jargon, is selected upon reception
of an incoming RSR. In Nexus, a remote service request is a one-way communication; if
results need to be returned, a second RSR has to be used.

3.2 Communications as Performatives

The Nexus programming model provides the essence of a distributed object system, with
means to refer to remote objects and to activate computations on them. Jennings and
Wooldridge [28] convincingly argue that agents are different to objects. We agree with
their view and observe further differences as far as communications are concerned.

If we return to a message-passing view of object-oriented systems, the messages sent
and received by objects typically combine the exchanged data with the intended action
(a query, or perhaps a statement of change) to be performed with that data in a way that
makes the two inseparable. In addition, in object-oriented systems, classes have few or
no restrictions on the methods they may implement or call. By comparison, the approach
taken by many agent systems is to separate intention from content in communicative acts,
abstracting and classifying the former according to Searle’s speech act theory [43]. An
agent’s communications are thereby structured and constrained according to a predefined
set of performatives, which together make up an agent communication language (ACL).

The number of different performatives varies between different AcLs. The most simple,
such as Shoham’s Agent-0 [44], have less than half a dozen, while the more complex, such
as KQML or FIPA have more than twenty. We believe that a frugal but careful choice
of performatives would allow our agents to interact in as complex ways as if they were
using a more complex agent communication language. In particular, FIPA and KQML
contain specialised performatives for tasks such as forwarding messages or issuing calls for
proposals which we see as functions of the communication layer, or as terms to be defined
in an application ontology. At the other extreme, Agent-0 relies on the composition of
basic acts to perform more complex messages, which FIPA and KQML consider as primitive.
Our minimal set of performatives and their intuitive descriptions are given in Figure 1,
and are an attempt to strike a compromise between these extremes, being chosen in order
to avoid the complexity and communication cost that composition would entail in the
most common scenarios.

query_if Does the recipient know facts which match the query?
query._ref What facts does the recipient know which match the query?

inform The sender tells the recipient that the content is true

uninform The sender tells the recipient that the content is false

subscribe The sender asks to be informed of changes to facts which match the query
unsubscribe The sender cancels a subscription

request The sender asks the recipient to perform an action

register The sender advertises their capabilities with a broker

unregister The sender withdraws an advertisement

Figure 1: Supported Performatives

Although there are important differences between agents and objects, there are some
fundamental similarities, namely that both are communicative entities. If the predom-
inant object-oriented paradigm has shifted from message-passing to method invocation,
we can similarly adopt a Nexus-like approach to inter-agent communications. In this, the
performatives in Figure 1 become the names of the procedures invoked by an RSR. In
addition, methods may return values to their caller; simple query performatives such as
query_if or query_ref return values directly, rather than through an extended message
exchange involving an inform message sent back to the querent.

We have defined three query performatives in our ACL, each with different semantics
and expected responses: query_ref is an exhaustive search of an agent’s knowledge base
which returns all terms which satisfy the query; query_if verifies that a statement holds;
subscribe is a temporal query in which the querent requests that the receiver enters into
a contract to inform the querent each time a statement satisfying the query changes value
(e.g. is asserted or retracted).

3.3 An Agent View of Communications

The separation of intention from content is not the only difference we observe between
object- and agent-based systems. Jennings and Wooldridge [28] also note that while
objects control their state, they do not control their behaviour. A method invocation is
an irresistible request which the object must perform. Agents do not have this compulsion,
and are able to discriminate between messages based on their beliefs and the context of
the message

This communication context includes information about the act of communication it-
self such as the sender, receiver, sent time, message identifier and conversation thread.
An agent may use this to reject a message, to discriminate between senders, or to deter-
mine which thread of conversation a message belongs to. This information is usually not
available in object systems, but should definitely be made available in an agent system.

Object systems have evolved from explicit message-passing to method or function calls
that activate computations, potentially remotely. Doing so, messages are no longer re-
garded as first-class entities. However, in agent systems, a message expresses the intention
of an agent within a specified context; it is useful to consider messages as first-class, so
that we can store them in knowledge bases or we can match them against other messages.

Therefore, our model of agent communication is defined in terms of startpoints and

endpoints, communication context, first-class messages, and performatives.

A communication is based on a communication link defined by a startpoint and an
endpoint. An endpoint identifies an agent’s ability to receive messages using a specific
communication protocol, and extracts messages from the communication link and passes
them on to the agent. An agent’s endpoint is located where that agent resides.

A startpoint is the other end of the communication link, from which messages get
sent to an endpoint. There may be several startpoints for a given agent, each acting as
a representative of the agent at remote locations. A startpoint can be seen as a “proxy”
for an agent.

As far as implementation is concerned, agents are regarded as objects that implement
a predefined set of methods, corresponding to the performatives displayed in Figure 1.
Communication between agents is performed by method invocation. Such a method is
invoked on a startpoint, which takes care of packaging the method call up as a message
and transmitting it to the endpoint.

Startpoints and endpoints have a crucial role: startpoints define the different com-
ponents of the communication context, such as time or sender; endpoints construct the
communication context and make it available to the agent. An agent is defined as an
object that implements a method for each performative. Such methods are binary: the
first argument is the term that is the subject of the message, whereas the second argument
is the whole message itself, with its complete communication context.

Performatives such as queries are intended to return a result. The result is transmitted
back to the sender agent using the communication link that carried the query, and returned
as a result of the method invocation on the startpoint.

Usually, a startpoint is attached to a single endpoint, and communication is point-to-
point. If a startpoint is attached to several endpoints, a multicast mode of communication
becomes possible. Note that performatives that are used in multicast mode are not
supposed to return a result. Such a mode of communication is particularly useful for
the performative inform in order to propagate information to several agents using a
single communication act. (The implementation may use proper multicast, or simulate
multicast.)

3.4 Ontologies

The messages exchanged by agents are used to communicate information about their
environment or some problem domain, and so the content of the messages must be a
representation of their world. It is unreasonable to expect that all problem domains can
be consistently represented by a single model, and so the design of specialised ontologies
that form computational models of particular domains is now commonplace [24].

Like “agent”, the word “ontology” has of late become popular with the computing
community, and its meaning has become more vague as its use has increased. We take
our usage of the term “ontology” from the work of Guarino and Giaretta [24, 25], as
a vocabulary used for describing an intensional semantic structure. This structure, or
conceptualisation, captures the semantic relations of all possible worlds of a problem
domain, rather than of a particular state of affairs (as is the case with Gruber’s extensional
definition of a conceptualisation in [23]).

Traditional agent systems indicate the ontology in which the content of a message is
expressed by a name, including it with the other contextual information for the commu-

nication. For a compound content term which contains other terms, this is usually taken
to mean that all the terms in the expression are of that ontology.

We believe that this is overly restrictive, and prevents the easy reuse of objects and
concepts between ontologies. The problem domains modelled by ontologies need not be
disjoint, and common concepts, such as a person or a document, may appear in more than
one domain. Disallowing mixed-ontology expressions means that each ontology must im-
plement such common terms anew, or that there must be inheritance between ontologies,
which introduces a fresh set of complexities.

The bibliographic metadata domain, one of the more common DIM domains, often uses
mixed-ontology expressions. A bibliographic record representing a book may have fields
which are written in different schemas (ontologies); the subject description for one book
might use the Library of Congress subject classification, while that for another might use
Dewey Decimal. These records do not have a single ontology, but have an ontology for
each component part.

We want mixed ontologies for the reusability of term definitions, but this can be
problematic, because in the absence of any other constraints, a term from one ontology
may contain a term from any other ontology. We need to restrict the terms which can be
contained in a given term in order to maintain consistency and promote structure in the
domain model. Therefore, our ontologies, based on a predicate logic, are implemented as
Java classes standing for predicates, terms or atoms. The typing of Java instance variables
helps maintain the consistency of domain ontologies by constraining the relations in the
conceptualisation of the ontology. In addition, we have implemented unification-based
pattern matching and simple constraint satisfaction on the ontology terms to facilitate
the processing of queries.

3.5 Architecture

SOFAR is written in Java, and all its agents are defined as a subclass of the abstract class
“NullAgent”. NullAgent provides communication initialisation, agent identification, and
some utility functions for registering and finding agents. The agent framework contains
a vital agent, namely the registry, used for brokering. DIM tasks may benefit from other
predefined agents, such as the multimedia database, the Www browser, the input and the
output agents, which we present below.

Registry Every agent knows of one registry agent which it can use to advertise its
services, or to find out about the services offered by other agents. These services are
represented by a capability term which associates an agent with a (possibly non-ground)
predicate on which that agent can answer queries. The registry acts as a broker, matching
agents service needs to other agents which can provide those services.

Multimedia Database agent The multimedia database agent provides an interface
to a database of metadata about a collection of media in an archive accessible via the
www. The metadata stored is based on the Dublin Core element set [9], containing such
fields as title, creator, subject, and format. The data is stored in a number of tables in
an SQL database, which can be queried by agents.

WWW browser agent The Www browser is an important tool in today’s electronic
desktop, and the browser activity reflects, in part, the user’s activity. Therefore, the
WWW browser agent exports browser activity information to the rest of the framework,
by informing the agents who have subscribed to its service. Currently, the information
is about visited URLs; tighter integration with the browser will allow us to provide more
information, such as bookmarks or printed documents.

Input/Output Agents Some agents operating within the framework require inputs
which need to be obtained from users, or produce outputs which are intended to be
displayed as results. Rather than put the responsibility for interacting with the user on
every agent in the framework that requires it, we have abstracted the interface away from
the underlying processing.

Input Agent: This agent requests information from the user via dialogue boxes. A
number of input agents can exist within the framework, taking responsibility for obtaining
different types of information from the user. These might range from a simple text input
dialogue, to a more complicated image browser that allows users to select images from
a collection. Other acquisition mechanisms are also considered, such as speech or tactile
interfaces.

Output Agent: This agent provides a facility for displaying objects, including URLs,
hypertext, images, video or simply text. Such a component is being extended by a user’s
profile, maintaining how the user prefers data to be displayed (or printed, or said), what
kind of format is required, etc.

In addition to the architectural components, several ontologies used in common DIM
domains have also been defined in the framework with a view to providing a useful and
flexible base set for developers. These include the following: (i) white pages directory
information (i) bibliographic metadata, supporting commonly used schemas such as the
Dublin Core (iii) open hypermedia linking (7v) information on computer systems and
their usage (v) representation of multimedia objects and processing (vi) www-related
information, including user browsing records.

3.6 Contractual Registration and Subscription

Registration is the action by which an agent declares its ability to handle some messages
(typically related to a specific topic) to the registry agent. If the registry answers positively
to a registration act, it commits itself to advertise the registered capability and to return
it to agents which ask matching queries. As a proof of its commitment, the registry issues
a contract as a result of the registration act. As long as the contract remains live, the
registry will retain the advertised capability. Conversely, if the agent that registered the
capability desires to stop its advertising, it just has to terminate the associated contract.

A similar mechanism exists for subscriptions. If an agent decides to answer positively
to an act of subscription, it commits itself to honour such a subscription: whenever a
fact changes it informs the interested subscribee. For each subscription act, a subscrip-
tion manager issues a contract as a proof of commitment. The subscribee just needs to
terminate the contract in order to suspend the flow of inform messages.

The goal of the agent framework is to promote agent reuse by information sharing
between agents. In order to facilitate information sharing, the registry was designed to
help agents to advertise and find information. In an environment composed of numerous
agents, there must be some means of avoiding being swamped by irrelevant information;
two different ways are provided by the framework. (i) The general algorithm for
matching and constraints satisfaction allows agents to declare interests that are very
specific, and to be informed of facts satisfying them. (ii) Contracts allow agents to
terminate a flow of information when suitable.

There are several ways by which an agent can find information. They differ by when the
result is returned, and by the agent’s ability to control the flow of information. (i) Ex-
haustive searches (performative query_ref) and specific queries (performative query_if)
complete their execution with the requested information. (i) An agent A can advertise
(performative register) its desire to be informed about a given topic. Any agent in the
system may inform A on the topic. Agent A is given little control of the flow of infor-
mation. It can certainly stop advertising its interest, but there is no requirement for the
other agents to stop propagating information to A. (%ii) In order to gain more control of
the flow of information, agent A can subscribe (performative subscribe) to those agents
who are knowledgeable on the topic. In return, each of these agents issues a contract,
which may be used to terminate the individual subscriptions.

4 Requirements Revisited

In this Section, we examine how the design of the SoFAR framework satisfies the require-
ments we enumerated in Section 2.

1. At the framework level, reactivity of the system can be implemented by the sub-
scription mechanism, by which agents ask to be informed about facts, when they
change. From an architectural viewpoint, as agents advertise or retract services,
this information will be propagated between registries, and passed to agents that
have subscribed to this type of information. At the application level, agents such as
the Www browser agent, use the subscription mechanism to inform any agent that
has declared its interest in a user’s browsing activity.

2. The registry and the subscription mechanisms allow agents to advertise their capa-
bilities, in order to be reused by other agents. Agents use the registry to oppor-
tunistically take advantage of agents running in the system. Contracts allow agents
to exercise control on the flow of information that is directed to them.

3. Even though the communication mechanism abstracts away from the communica-
tion details, the framework remains light-weight. The cost of this abstraction is
two additional method invocations (one at the startpoint and one at the endpoint),
which can be neglected compared to the cost of communication. Furthermore, by
adopting a predefined set of performatives and typed ontologies, we reduce inter-
pretation of messages, which makes their processing light-weight.

In order to make the framework scalable, we have avoided centralised routing of
messages: communications are point to point. A multicast mode of communication
can even be implemented (though, currently, multicasting is simulated). We use

replication of data in order to distribute the content of the registry. Other techniques
such as query routing [12] or hierarchical organisation [33] are being investigated.

4. Currently, our implementation relies on shared memory communications and Java
RMI; we are planning to investigate the benefit of a lower-level communication layer
such a Nexus, using the NexusRMI compiler [3]. Generic pretty-printers allow us
to display terms of ontologies using KQML and FIPA syntax; we do not foresee any
problem communicating these terms on the wire.

5 Applications to Distributed Information Management

Our ultimate goal is to build an advanced distributed information management system
using the SoFAR framework we have presented. About thirty researchers of the Multimedia
Research Group have taken part in two “three day sessions”, which we call the “agentfest”,
with a goal to develop agents in SOFAR. As a result, two applications have been built to
test the framework. Both applications help users to find information which satisfies their
needs.

An advanced DIM system must be able to find an answer to any question, no matter
how vague, by inferring its exact meaning from the user’s activity, his/her profile, pre-
viously asked questions, in other words, from the user’s contert. Our long term goal is
to get closer to such a system; in the meantime, we have taken two different approaches.
The first application is a general query interface, which uses inputs from the user and
some user model. The second application uses the open hypermedia philosophy to find
relevant links to a multimedia document being viewed; these links can then be followed
by the user.

In both cases, the applications demonstrate that our framework can coordinate the
activities of many agents. Agents are able to opportunistically reuse information provided
by other agents. The applications can be extended by adding new agents, whose services
will be reused.

We are aware that a number of general query frameworks such as InfoSleuth [26]
already exist. The purpose of the applications we describe here is to illustrate the suit-
ability of SoFAR as a framework to coordinate DIM agents. In addition to the agents
below, we have also written more than twenty agents for such tasks as audio contouring,
content-based multimedia retrieval and network routing.

5.1 A Query Architecture

Figure 2 shows the agents that interoperate in the general query system we have built
using SOFAR. The multimedia database agent, and the output and input agents were
presented in Section 3.5; brief descriptions of the other components are given below.

Query Mediator Agent The query mediator agent coordinates the other agents, car-
rying out a single task, namely managing the information from the user’s initial input
through to displaying the final results.

Natural Language Query Resolver Agent The natural language (NL) Query Re-
solver Agent takes as input a NL query, and returns answers corresponding to that query.

Output Input

Agent Agent
Result Query
Analysis Mediator
Agent Agent
NL Query
I\/ffmory Resolver |- ~ Kn%wledge
gent Agent ase

Rest of the SoFAR frame A User profiling component

Multimedia AIMS
Database Database Wzbcosm
Agent Agent gent

Figure 2: The interface agents within the SoFAR framework

The following two steps are carried out. First, a NL query is converted into a logical
formula represented in our ontologies. Second, the Query Resolver finds agents able to
answer queries based on that formula; these agents are queried, and results are returned
to the mediator.

The NL Query Resolver agent uses a knowledge base that can be updated dynami-
cally as new agents join the system. As agents register in the system, they can provide
the Query Resolver with natural language queries or requests that they are capable of
answering.

Results Analysis Agent Where a number of underlying queries are performed, there
may be a need to amalgamate the results in some way before displaying them to the user.
The Results Analysis agent receives a set of predicates and attempts to convert them to a
more useful set of results for the user. The processing might include removing duplicates,
ordering the results, or perhaps filtering based on criteria such as user preferences. The
modular nature of the framework allows different Result Analysis agents to be plugged
into the system. We are currently investigating how user feedback may be used to update
user preferences, effectively building a user model.

An Example Query

To examine more closely how the agents interact, we trace a simple example query through
the system. The mediator agent initiates the query by requesting the input of a text string
query from the input agent. The text typed by the user is returned to the mediator, in

our example “Find information about SoFAR”.

The mediator then asks the system for any agents that can take a text query and
return answers to it. One of these agents is the NL Query Resolver agent, which is passed
the query by the mediator. Using information in its knowledge base, it matches the user’s
query “Find information about” to the predicate SQLQuery. It thus instantiates this
predicate with the text “SoFAR” which it extracted from the query string.

In this example, the predicate requires a minimum of one text string, which has been
supplied as the parameter. If the user had only typed ‘Find Information’, the Query
Resolver agent would call on the input agent to get the necessary parameters from the
user to instantiate any missing variables in the query.

The NL Query Resolution agent now requests agents that can carry out the SQLQuery
predicate. These agents appear in the bottom half of Figure 2 and are described below.
The mediator calls these agents and receives a set, of result predicates from both of them.

The mediator then finds an agent that performs result analysis, and sends it the set
of results to combine and analyse; it receives back a processed set of results, which can
finally be displayed by the output agent.

A number of stages in the process can benefit from user profiling information. To
facilitate this, a memory agent keeps a record of queries and their corresponding results.
The mediator calls the memory with a logical formula to see if it holds results for that
formula in its memory. If it does and a similarity between the new query and the cached
queries is satisfactory, then it can return the results; this similarity is computed by taking
into account how important a term is in a query, and how well the term characterises the
predicates. If it does not have any cached result, the memory agent responds negatively;
then, the mediator calls an agent to process the query, also informing the memory agent
of these results.

In fact, the memory agent acts as a model of the user, maintaining information re-
sulting from previous queries which were returned to the user. As with all dynamic user
models, issues concerning the consistency and the integrity of the stored information over
time need to be addressed.

The input and output agents can also maintain a user’s profile on how data should
be acquired or presented to the user. In conjunction, with the result analysis, they help
selecting and presenting relevant information to the user.

As shown in Figure 2, once the query has been composed, the NL Query Resolve
agent sends queries to agents that support them. Several agents may be queried. First,
the multimedia database agent (Section 3.5) provides access to a database of meta-data
about multimedia documents.

Second is the AIMs (Academic Information Management System) agent, an interface to
a WWww-based document management system providing access to a wide range of academic
material. Documents are enhanced by a variety of open linking techniques based on the
Distributed Link Service [4]. The AMs agent provides full text search on the material
held on the server and integrates legacy systems into the SoFAR framework.

Third, the WebCosm agent finds hypermedia links that are relevant to an input text.
The agent makes use of WebCosm, a commercial implementation of the Distributed Link
Service [4]. The agent can be thought of as a keyword finder and definition service for a
particular subject area.

5.2 An Open Hypermedia Example

In open hypermedia architectures, information about the links between multimedia docu-
ments is stored and managed separately from the documents themselves, which remain in
their native formats [20]. The links are objects in their own right; the link data consists
of a set of associated anchors (e.g. locations in documents) and some related informa-
tion. These links are kept in so-called linkbases and the corresponding servers are named
linkservers. Adopting separate links has important advantages for authors and readers
alike, especially when working with a complex, distributed information system [4, 20].

The Open Hypermedia Systems Working Group (OHSWG) [49] was set up to ab-
stract the common features of various open hypermedia systems in order to achieve
inter-operability. This effort resulted in (i) a common standardised data model for
navigating multimedia documents, (%) a reference architecture for Open Hypermedia
Systems [41], and (7ii) the Open Hypermedia Protocol (OHP) for communications in a
component-based open hypermedia system.

The second application we describe in this paper demonstrates how the SOFAR frame-
work can accommodate agents that exchange data based on the standardised linking
model defined by the OHSWG. Basically two approaches can be distinguished: (i)
building natively compliant agents from scratch, (ii) wrapping existing agents, in which
we include the notion of transducers introduced in [21]. For reasons of proof of concept
we have implemented both approaches. To this end, we define the OHP ontology, which
comprehends the semantics of the OHP data model and operations, and which can be used
by agents in the framework.

The design phase of the OHP within the OHSWG was dogged by issues that lay beyond
the initial hypermedia concerns, such as protocol syntax, connection management and
naming, pattern-based query handling and the management of a large set of processes.
For this reason, we have found the use of the SoFAR framework for open hypermedia to be
particularly attractive, as it has allowed us to concentrate on the modelling of hypermedia
without being side-tracked by these other complex problems. Indeed, communications and
naming are handled by SoFAR; message content must be part of some ontology and no
syntax design is required, because data are serialised by the communication layer. Finally,
the query language on ontology terms was more expressive than required by OHP.

Figure 3 presents the schematic organisation of the application, centered around the
MediaApplet agent, which works as follows. On startup, it queries the system for agents
supporting the OHP ontology (appearing in the bottom half of the figure). It then presents
a popup menu with an entry for each of the agents it has found and lets the user select
the agent to be queried by pressing a button. The results of the queries, presented as
links that can be followed, are then shown by the MediaApplet agent.

When the MediaApplet agent wishes to know about “documents related to this one”, it
queries OHP-compliant agents for any anchors that may be found in the current document.
When the user selects a link to follow, the MediaApplet agent sends a second query to
retrieve the link structures which were associated with that anchor and subsequently
retrieves the destination anchors and hence the documents that were related by the link.

While we envisaged that most OHP agents would be queried directly for this informa-
tion it was also expected that some agents might wish to generate their links only once
and then store them in a separate agent which would make that information available
to the system. The Link Server agent component is just such an agent. It listens to

User Interface

Media
Applet
Agent

Rest of the SoFAR framework

Media Link Wrapper
Processing Server
Agent |. Agent Agent
inform .
y
Multimedis
Thesaurus|
Agent

Figure 3: The MediaApplet

assertions made about link structures in the system and records them, retrieving them
again when asked. For instance, in Figure 3 a media processing agent informs the link
server about similarities between images.

Besides the use of native OHP agents, this application also shows how other existing
agents can be integrated for purposes of information management. We have implemented
a wrapper that maps some agents specific data structure onto a a dynamic link structure
that can be interpreted by the MediaApplet agent just like standard link structures.

As illustrated in Figure 3, the wrapper is used to convert the semantic equivalence
as defined by the Multimedia Thesaurus agent [13] into linking information. In essence,
the multimedia thesaurus captures semantic knowledge about the relationships between
media objects.

6 Discussion and Related Work

The exact nature and requirements of agency are still contentious subjects, with some
disagreement in the literature. We follow Jennings and Wooldridge [28] for our view of
agency, regarding it as a software engineering tool for managing the complexity of system
development. Nwana and Ndumu [38] raise several points, namely that the standardised
ACLscontain too many performatives, some of which are used only infrequently, and that
the effects on ontology design of the interactions between a problem domain and a task
to be accomplished are underinvestigated. If, as they suggest, the short term solution
is to create only limited domain ontologies, we believe that our use of mixed ontology
expressions is a useful approach to bridging the gap between limited ontologies and broader
general-purpose ontologies.

SOFAR is not the only Java-based agent framework; there exist a number of others,
the most notable of which are Zeus [39], JAFMAS [5], JATlite [40], FIPA-0Os [17], Ajanta
[48] and JACK [1]. Zeus and JAFMAS adopt a similar approach, providing both a FIPA-
or KQML-based communications infrastructure and a planning engine for handling rule-

based conversations by means of automata models, and as such are representative of a
‘traditional A’ approach to agency. JATlite also provides KQML-based messaging, but
is flexible: it is designed to support other ACLs as necessary and does not place any
restrictions on the internals of the agents. FIPA-Os [17] is a FIPA-compliant platform,
which necessarily relies on a CORBA-based communication substrate; our approach can
use CORBA as well as other technologies. Ajanta uses a method invocation approach not
unlike ours, but does not constrain the methods used to performatives. JACK is a Java-
based BDI framework which provides facilities for formulating plans and reasoning about
goals, but does not consider the pragmatics of communication or distribution issues.

In its parsimonious approach to its ACL and the simplicity of its agents, SOFAR is most
like Agent-0 [44] and the systems derived from it, such as AgentBuilder [42] or Becky
Thomas’s PLACA [47], although SoFAR does not provide support for planning abilities
at a framework/language level as this latter system does. AgentBuilder is noteworthy as
a commercial framework based on Shoham’s notion of agent-oriented programming [44],
but using KQML as its ACL rather than the much simpler Agent-0.

7 Conclusion

We have designed and implemented an agent communication mechanism that is derived
from distributed computing techniques, but taking on board the reality of agency. Our
approach is general and abstracts away from the communication details, supporting sev-
eral on-the-wire protocols; it is light-weight and a proven route to scalability. In order
to promote opportunistic reuse of agent services by other agents, our framework provides
mechanisms to advertise information, query agents and automatically manage subscrip-
tions. A set of ontologies has been defined in order to support distributed information
management tasks.

The sorFAR framework has been the focus of a tremendous activity involving up to
thirty researchers in the Multimedia Research Group at Southampton (cf. Section 8).
Training sessions were organised about agents, ontologies, and the actual framework
implementation in Java. On two occasions, a group activity, called “agentfest”, took
place: during a three day session, those researchers developed agents, of which some
were presented in this paper. As a result, SOFAR has now been adopted by several re-
searchers for their everyday research, and eventually we envisage the framework being
used for teaching. We welcome other researchers to try SoFAR, which is available from
www.sofar.ecs.soton.ac.uk.

While numerous ongoing projects investigate the activity of distributed management
using this framework, we concentrate here on future work related to the framework itself.
First, mobility and ontologies for related concepts are to be made part of the framework.
Our approach is based on an algorithm that transparently routes messages between mobile
agents [34]. The communication model based on startpoints and endpoints will remain the
same, but endpoints will be allowed to migrate with their associated agents. In addition,
a model of distributed resources [37] will be integrated with SOFAR so that (mobile) agents
are given the opportunity to reason about the resources they consume.

New modes of communication are to be investigated. Multicasting will allow us to
propagate streams of inform messages in a scalable way. Agents will also be allowed
to negotiate the quality of service (QoS) they require to communicate the data they

manipulate. Finally, following the Nexus experience on this topic, security techniques
such as encryption and authentication will be integrated in the communication model.

Once all the modes of communication we require become implemented, emphasis will
be put on tools that facilitate the development of agent applications in SoFAR. In a first
instance, an “ontology compiler” will convert an abstract specification of an ontology
into concrete Java class definitions. Higher-level protocols that foster the cooperation,
coordination and negotiation of agents are needed in SoFAR; tools have to be defined
to facilitate the definition of such protocols in the framework. We will also investigate
the possibility of reusing tools developed in other frameworks, such as Zeus [39], for the
graphical development of agents.

8 Acknowledgements

Thanks to Colin Bird, Steven Blackburn, Les Carr, Steven Chan, Mark Dobie, David
Dupplaw, Pierre Geurts, Jon Griffiths, Stephen Harris, lan Heath, Jessie Hey, Simon
Kampa, Shakeel Khoja, Nick Lamb, Paul Lewis, Rui Marinheiro, Kirk Martinez, Kevin
Page, Stephen Perry, Guillermo Power, Jonathan Read, Alistair Riddoch, Neil Ridgeway,
Mark Thompson, Mark Toller and Gary Wills, who took part in the first two “agentfests”.
Thanks to Nick Jennings for his comments on the paper. We acknowledge the EPSRC
for supporting the postgraduate students and research assistants who have contributed
to SOFAR.

References

[1] Agent Oriented Software Pty. Ltd. JACK Intelligent Agents User Guide, 1999.

[2] Steven G. Blackburn and David C. DeRoure. A tool for content based navigation of music.
In Proceedings of ACM Multimedia '98, pages 361-368, September 1998. ISBN: 1-58113-
036-8.

[3] Fabian Breg and Dennis Gannon. Compiler support for an RMI implementation using
NexusJava. Technical report, Indiana University, 1997.

[4] Les A. Carr, David C. DeRoure, Wendy Hall, and Gary J. Hill. The distributed link
service: A tool for publishers, authors and readers. In Fourth International World Wide
Web Conference: The Web Revolution, (Boston, Massachusetts, USA)., pages 647-656.
O’Reilly & Associates, December 1995. Appears in World Wide Web Journal issue 1, ISBN
1-56592-169-0, ISSN 1085-2301.

[5] Deepika Chauhan. JAFMAS: A Java-based Agent Framework for Multiagent Systems De-
velopment and Implementation. PhD thesis, ECECS Department, University of Cincinnati,
1997.

[6] L. Chen and K. Sycara. WebMate: a Personal Agent for Browsing and Searching. In
Proceedings of the Second International Conference on Autonomous Agents, pages 132—139,
1998.

[7] Jonathan Dale. A Mobile Agent Architecture for Distributed Information Management.
PhD thesis, University of Southampton, January 1998.

8]

[10]

[11]

[21]

[22]

Jonathan Dale and David DeRoure. Towards a Framework for Developing Mobile Agents
for Managing Distributed Information Resources. Technical Report M97/1, University of
Southampton, February 1997.

DCMLI. Dublin Core metadata element set reference description. Proposed recommendation,
Dublin Core Metadata Initiative, July 1999.

David DeRoure, Wendy Hall, Hugh Davis, and Jonathan Dale. Agents for distributed
multimedia information management. In Pratical Application of Intelligent Agents and
Multi-Agent Systems, pages 91-102, London, UK, April 1996.

David DeRoure, Wendy Hall, Sigi Reich, A. Pikrakis, Gary Hill, and M. Stairmand. An open
framework for collaborative distributed information management. In Seventh International
World Wide Web Conference (WWW7), Brisbane, Australia, volume 30, pages 624-625.
Elsevier, April 1998. Published in Computer Networks and ISDN Systems.

David C. DeRoure, Samhaa El-Beltagy, Nicholas M. Gibbins, Les A. Carr, and Wendy
Hall. Integrating link resolution services using query routing. In 5th Workshop on Open
Hypermedia Systems (OHS5), Darmstadt, Germany, February 1999.

M. Dobie, R. Tansley, D. Joyce, M. Weal, P. Lewis, and W. Hall. A flexible architecture
for content and concept based multimedia information exploration. In Proceedings of the
Challenge of Image Retrieval (CIR’99), February 1999.

Samhaa El-Beltagy, David C. DeRoure, and Wendy Hall. A multiagent system for nav-
igation assistance and information finding. In THe Fourth International Conference on
the Practical Application of Intelligent Agents and Multi-Agent Technology, pages 281-295,
April 1999.

T. Finin, Y. Labrou, and J. Mayfield. Software Agents, J. Bradshaw, Ed., chapter KQML
as an Agent Communication Language. MIT Press, 1997.

FIPA: Foundation for Intelligent Physical Agents. http://drogo.cselt.stet.it/fipa/.
FIPA-OS. http://www.nortelnetworks.com/products/announcements/fipa, 1999.

Tan Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufman Publishers, 1998.

Tan Foster, Carl Kesselman, and Steven Tuecke. The Nexus Approach to Integrating Mul-
tithreading and Communication. Journal of Parallel and Distributed Computing, 37:70-82,
1996.

Andrew M. Fountain, Wendy Hall, Ian Heath, and Hugh C. Davis. MICROCOSM: An
Open Model for Hypermedia With Dynamic Linking. In A. Rizk, N. Streitz, and J. André,
editors, Hypertext: Concepts, Systems and Applications (Proceedings of ECHT’90), pages
298-311. Cambridge University Press, 1990.

Michael R. Genesereth and Steven P. Ketchpel. Software agents. Communications of the
ACM, 37:48-53, July 1994.

Stuart Goose, Jonathan Dale, Gary J. Hill, David C. DeRoure, and Wendy Hall. An Open
Framework for Integrating Widely Distributed Hypermedia Resources. In Third IEEE
Conference on Multimedia Computing and Systems (ICMCS’96), Hiroshima, Japan,, 1996.

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[36]

[37]

Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge
sharing. Technical Report KSL-93-04, Knowledge Systems Laboratory, Stanford University,
August 1993.

Nicola Guarino. Formal ontology and information systems. In Formal Ontology in Infor-
mation Systems: Proceedings of FOIS’98. 10S Press, 6-8 June 1998.

Nicola Guarino and Pierdaniele Giaretta. Ontologies and knowledge bases: Towards a
terminological clarification. In N.J.I. Mars, editor, Towards Very Large Knowledge Bases.
10S Press, 1995.

N. Jacobs and R. Shea. The role of java in infosleuth: Agent-based exploitation of heteroge-
neous information resources. Mcc-insl-018-96, Microelectronics and Computer Technology
Corporation, March 1996. Presented at the IntraNet96 Java Developers Conference.

N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and develop-
ment. Int Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7-38, 1998.

N. R. Jennings and M. Wooldridge. Handbook of Agent Technology, chapter Agent-Oriented
Software Engineering. AAAI/MIT Press, (to appear).

Paul H. Lewis, Jo Kuan, Steve Perry, Mark R. Dobie, Hugh C. Davis, and Wendy Hall.
Content based navigation from images. Journal of Electronic Imaging, 7(2):275-281, April
1998.

Henry Lieberman. Letizia: An agent that assists web browsing. In Proceedings of the
International Joint Conference on Artificial Intelligence, Montreal, Canada, August 1995.

Pattie Maes. Agents that Reduce Work and Information Overload. Communications of the
ACM, 37(7):31-40, July 1994.

Danius Michaelides, Luc Moreau, and David DeRoure. A uniform approach to programming
the world wide web. Computer Systems Science and Engineering, 2:69-91, 1999.

Luc Moreau. Hierarchical Distributed Reference Counting. In Proceedings of the First
ACM SIGPLAN International Symposium on Memory Management (ISMM’98), pages 57—
67, Vancouver, BC, Canada, October 1998.

Luc Moreau. Distributed directory service and message router for mobile agents. Technical
Report ECSTR M99/3, University of Southampton, 1999.

Luc Moreau, David DeRoure, and lan Foster. NeXeme: a Distributed Scheme Based on
Nexus. In Third International Europar Conference (EURO-PAR’97), volume 1300 of Lec-
ture Notes in Computer Science, pages 581-590, Passau, Germany, August 1997. Springer-
Verlag.

Luc Moreau and Nicholas Gray. A Community of Agents Maintaining Links in the World
Wide Web (Preliminary Report). In The Third International Conference and Ezhibition on
The Practical Application of Intelligent Agents and Multi- Agents, pages 221-235, London,
UK, March 1998.

Luc Moreau and Christian Queinnec. Design and Semantics of Quantum: a Language
to Control Resource Consumption in Distributed Computing. In Useniz Conference on
Domain-Specific Languages (DSL’97), pages 183-197, Santa-Barbara, California, October
1997.

[38]

[39]

[40]

[41]

[50]

Hyacinth Nwana and Divine Ndumu. A perspective on software agents research. The
Knowledge Engineering Review, January 1999.

Hyacinth Nwana, Divine Ndumu, Lyndon Lee, and Jaron Collis. Zeus: A tool-kit for
building distributed multi-agent systems. Applied Artifical Intelligence Journal, 13(1):129—
186, 1999.

C. Petrie. Agent-based engineering, the web, and intelligence. IEEE Ezpert, December
1996.

Siegfried Reich, Uffe K. Wiil, Peter J. Niirnberg, Hugh C. Davis, Kaj Grgnbak, Kenneth M.
Anderson, David E. Millard, and Jorg M. Haake. Addressing Interoperability in Open
Hypermedia: The Design of the Open Hypermedia Protocol. New Review of Hypermedia
and Multimedia, 1999. Accepted for publication.

Reticular Systems, Inc. AgentBuilder: an Integrated Tookit for Constructing Intelligent
Software Agents, February 1999. Available from http://www.agentbuilder.com/.

John Searle. Speech Acts: An Essay in the Philosphy of Language. Cambridge University
Press, 1969.

Yoav Shoham. Agent-oriented Programming. Artificial Intelligence, 60:51-92, 1993.
Jon Siegel. CORBA fundamentals and programming. Wiley, 1996.
Sun MicroSystems. Java Remote Method Invocation Specification, November 1996.

S. Rebecca Thomas. The PLACA Agent Programming Language. In M. J. Wooldridge and
N. R. Jennings, editors, ECAI-94 Workshop on Agent theories, architectures and languages,
volume 890 of Lecture Notes on Al Springer-Verlag, 1994.

Anand Tripathi, Neeran Karnik, Manish Vora, Tanvir Ahmed, and Ram D. Singh. Ajanta
— A Mobile Agent Programming System. Technical Report TR98-016, Department of Com-
puter Science, University of Minnesota, April 1999.

Uffe Kock Wiil and Serge Demeyer, editors. Proceedings of the 2nd Workshop on Open
Hypermedia Systems, ACM Hypertext ’96, Washington, D.C., March 16-20. Available as
Report No. ICS-TR-96-10 from the Dept. of Information and Computer Science, University
of California, Irvine, 1996.

M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. Knowledge
Engineering Review, 10(2), June 1995.

