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Abstract

We emphasise and briefly review existing infrastructure required to realise the
Computational Grid, and define such Grid with reference to Knowledge and Infor-
mation Grids. We then propose an agent-based approach for the Computational
Grid, which is centered on providing “services” for managing resources.

1 Introduction

The “Grid” is an emerging infrastructure that connects multiple regional and
national grids to create a universal source of computing power — the work
“Grid” was chosen by analogy with the electric power grid, which provides
pervasive access to power. We believe that by providing pervasive, depend-
able, consistent and inexpensive access to advanced computational capabilities,
databases, sensors, and people, computational grids will have a transforming
effect similar to the electric power grid, allowing new classes of applications
to emerge.

Ian Foster and Carl Kesselman [14]

Since the publication of the Grid Manisfesto [14], research activity has dramatically
increased in this area. The term “Grid” has become a reference to a large scale pervasive
infrastructure into which hardware or software components can be plugged, and which
permits easy configuration and creation of new functionality from existing components.
The Grid is therefore the underlying infrastructure that enables new information services
to be defined, activated, supported and managed in a uniform way.

Research in “Grids” has become an area of active interest, with communities such as
the Grid Forum [1] in the US, the E-Grid [2] forum in Europe, and the Asia-Pacific Grid
Forum in Australia and Japan, working to unify common interest across the world.

Due to the very generic nature of the Grid, the term “Grid” has started to have
different meanings for different people. An organisation based on three layers has been
proposed [5], and we will define the computational grid, the information grid and the
knowledge grid.



By their ability to adapt to their environments, agents can provide solutions to the
very dynamic services required by each of these layers. In this paper, we focus on the
Computational Grid, for which we identify existing approaches, we discuss their limita-
tions and suggest research directions for agent-based solutions.

2 A Three Layer Model

A three layer model for the Grid infrastructure was described by Jeffery [5] in a strategy
document earlier this year. This model has been adopted widely by various research
communities in the US and Europe, and we now describe it.

The Computational Grid, the lower layer, is primarily concerned with large-scale
pooling of computational and data resources. (Alternatively, this lower layer is called
the Data Grid.) Such pooling requires significant shared infrastructure to enable the
monitoring and control of resources in the resulting ensemble. The Computational Grid
generalises ideas undertaken in early work on Metacomputing [11], concerned with creat-
ing a giant computational environment out of a distributed collection of files, databases,
computers, scientific instruments and devices.

The Information Grid constitutes the middle layer, allowing uniform access to het-
erogeneous information sources and providing commonly used services running on dis-
tributed computational resources. Uniform access to information sources relies on meta-
data to describe information and to help integrating heterogeneous sources. The gran-
ularity of the offered services can vary, from subroutine or method calls to complete
applications. Hence, in scientific computing, services can include the availability of spe-
cialised numerical solvers, such as matrix solvers and partial differential equation solvers,
to complete scientific codes for applications such as wheather forecast and molecular or
fluid dynamics. In commercial computing, services can be statistical routines based on
existing software libraries, such as SPSS or SAS, or prediction services which offer coarser
grained functionality, such as database profiling or visualisation services. In hyperme-
dia applications, services can be multimedia content analysis algorithms or hyper-link
servers [21]. Services can therefore be offered by individual providers or by corporations;
they may be specialised for specific applications, such as genomic databases, or general
purpose, such as numerical libraries.

The Knowledge Grid is the top most layer and provides specialised services which
can look for patterns in existing data repositories, and manage information services. The
knowledge grid is aimed at creating new, value added services which cannot be defined as
a single service: they involve an aggregation of many different types of services, providing
a correlation between data sets generated by different services, or combining results of
existing services in novel ways.

It is intended that each of these layers provide services to various applications, ranging
from support for mobile devices, to large scale single applications such as modelling
protein folding and concurrent engineering.

A substantial part of the research effort dedicated to the Grid has concentrated on the
Computational Grid. The primary reason is that the Physics community is an important
“customer” of the Grid, which they use in order to process huge amounts of data, such as
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Figure 1: Grids and the Computational Grid

generated by the Large Hadron Collider (LHC) experiments to be undertaken by CERN
in Switzerland. The data volumes are of the order of Petabytes per year, and must be
distributed to scientists and engineers across the world.

However, initiatives such as the “Semantic Web” [3], or research in collaborative envi-
ronments [22], clearly investigate fundamental issues that are relevant to the Information
and Knowledge Grids.

Agents [28] can provide a useful abstraction at each of the three Grid layers. Indeed,
by their ability to adapt to the prevailing circumstances, agents will provide services that
are very dynamic and robust, and therefore suitable for a Grid environment. However,
in this paper, we concentrate on the first layer, outlining how agents can support and
extend existing computational infrastructures.

Our emphasis on the lower layer is primarily due to the lack of agreement about stan-
dards for services to be supported within Information and Knowledge Grids at present.
The resource management problem has been investigated in detail, and a considerable
research effort has been expended to create and support standards in this area (such as
LDAP). However, what is lacking in current Computational Grid efforts, is the lack of
service discovery and management, which an agent based paradigm can offer. We feel
that a small improvement at this layer can have a significant impact on the higher level
Information and Knowledge Grids; therefore, we show how agents can be used to support
and extend the current Computational Grid infrastructure.



3 The Computational Grid

In this section, we identify some of the current applications of the Grid and derive some
requirements. We discuss some of the services of the computational grid which have to
meet these requirements.

3.1 Overview

The Computational Grid aims to provide the infrastructure for integrating computational
resources to form a single virtual machine, or enable solving large scale problems that
cannot be solved on a single system. Examples include distributed interactive simula-
tion such as military simulations, and simulation of physical processes such as climate
modelling. It may be useful to note that such resource integration may not lead to perfor-
mance improvements, instead providing high throughput computing to improve resource
utilisation. Applications that could benefit from this approach include the use of multiple
distributed workstations to solve hard cryptographic or complex design problems.

The Computational Grid may also be used to provide on-demand computing and to
meet short-term requirements for resources that cannot be cost-effectively or conveniently
located locally. The resources may provide computation capabilities, or may include
software and data repositories, specialised sensors and other devices. Unlike existing
applications based on distributed supercomputing, these new application domains are
often driven by cost-performance concerns rather than absolute performance. Particular
challenges in these applications are the existence of dynamic resource requirements, and
the potentially large population of users and resources involved; in particular, location,
scheduling, code management, configuration, fault-tolerance and security deserve some
investigation. To support some of these requirements, we define a service layer that
can benefit from existing monitoring and management services within Metacomputing
systems. Such a service layer can include (1) management services, such as locating
devices, migrating jobs to devices, load balancing on devices etc, or (2) capability services,
such as matrix solving or other linear algebra operations, running a molecular dynamics
or fluid dynamics code etc. Hence, we couple management services currently available in
Metacomputing systems, as illustrated in figure 1, with a layer that can aggregate and
combine these with software libraries that offer a particular functionality for applications.

The Computational Grid may also provide support for data-intensive computing, in
which the grid is used to synthesise new information from data maintained in geographi-
cally-distributed repositories, digital libraries, and databases. Challenges in this class
of applications are the scheduling and configuration of complex, high-volume data flows
through the network and multiple levels of processing. Collaborative and concurrent
engineering provides one example of such design activities, enabling groups of users to
collaborate within virtual environments. In many cases, these applications involve pro-
viding the participants with shared access to data and computational resources.



3.2 Computational Grid Components

Figure 1 provides our perspective on the Computational Grid, with reference to Informa-
tion and Knowledge grids identified above. As illustrated, our model of Computational
Grid comprises three layers of services: (1) host and network services, (2) meta comput-
ing services and (3) device and resource management. These layers are based on existing
implementation infrastructures, such as Java/Jini [12] and Metacomputing systems such
as Globus [9, 14] or Legion [10].

At the lowest level, we find a set of resources and local schedulers. Resources can
be single processor machines managed by an operating system, or multiprocessor super-
computers managed by batch queueing systems such as LSF or Codine. Resources may
also include mobile devices containing a Java Virtual Machine (JVM) or other embedded
controllers, such as Digital Signal Processor (DSP) chips. Each individual resource or
cluster is responsible for managing tasks locally through the use of a local scheduler.

The second layer is composed of a set of Metacomputing services relying on local
resources and scheduler. In particular, the Metacomputing Directory Service (MDS)
is responsible for translating device characteristics into a searchable tree, comprising
device identifiers, parameters such as CPU speeds, local memory etc. Devices can be
managed within administrative domains. Security services can also be provided at this
level, offering authentication based on certificates, or lower level encryption techniques
such as SSL.

At the third level, we then find higher level services, for service discovery, service
advertisement and service management.

4 Agent Based Services

Grids use existing infrastructures wherever possible, especially if standardisation work is
already in progress or completed. We review some of the technologies which could con-
tribute to the Computational Grid, analyse their limitations, and suggest agent-oriented
solutions.

4.1 Resource and Service Discovery

Resource discovery exists within many Metacomputing toolkits, such as Globus and
Legion, and is primarily concerned with locating devices based on their IP address within
a domain or sub-domain. The Lightweight Directory Access Protocol (LDAP) based
hierarchical naming scheme has been widely used to register devices, enabling new devices
to be registered, and available devices to be discovered at run time. Such a resource
discovery service can be used by a resource management system to identify possible
devices for task placement and execution.

Existing resource discovery services can only be used to locate available devices for
executing tasks, and generally do not provide details of the software available on these
devices. In some limited cases, software details are made available, but these are generally
restricted to operating system information, such as the Condor system [13].



Hence, resource discovery needs to be extended with service discovery, whereby service
level information is also included in a resource specification. An agent framework can be
used to provide such service discovery, based on a Service Advertiser agent, a MatchMaker
agent, and a Service Request agent [6, 7]. Service advertisements can range from methods
or procedure calls, to more complex signatures specifying service types and categories.
The match making process can also vary in complexity from exact matching of services,
to matching based on category or parameters. Furthermore, agent frameworks provide
various mechanisms by which components may be kept informed, such as asynchronous
notifications or the publish/subscribe paradigm [24].

Jini The Java programming language provides many features conducive to the de-
velopment of the Computational Grid, most significant of which is the Jini API. The
‘Lookup-Discovery’ protocol in Jini [15], along with the ‘Leasing’, ‘Transactions’ and dis-
tributed ‘Events’ services can be used as underlying infrastructure for developing resource
and service discovery, service management and migration, and service decomposition and
delegation.

For instance, the Leasing service can be used to grant licensing periods, over which
a user or a service can invoke another service. On the expiry of this period, access
to the service is withdrawn, requiring the user or service to acquire a new lease. Such
functionality in core infrastructure can be useful for building more complex services, such
as match making and service advertising. Agent frameworks such as SOFAR [24] use such
a concept of lease in the semantics of registration and notification.

However, issues such as stability, security and scalability are lacking in the Jini API
at present, and these need to be addressed before it can be deployed within the Compu-
tational Grid. Furthermore, service discovery and matching in Jini is based on an exact
syntax match between service request and service interface, and based on Java primitive
or derived types. This may not be adequate when service requests must be decomposed,
or delegated to other providers.

The Jini API can also be used in collaboration with the JavaSpaces API to provide
distributed shared memory support for sharing services. JavaSpaces is based on the
concept of tuple spaces in Linda, and enables service types to be grouped, and matched
on type signatures. A similar service from IBM called TSpaces, also provides a similar
functionality, and may be used in collaboration with Jini. This idea of tuple space has
been reused to coordinate the activities of mobile agents [20].

4.2 Service Specification

A shared data model or framework is required to enable resources and services to be
described. This is necessary to match service requests with service availability, for ser-
vice decomposition, and for new services to be made available. The DARPA Agent
Markup Language (DAML) [19] provides a constraint language to enable the specifica-
tion of services, and offers a useful tool for encoding services. No standard data models
or ontologies exist at present, however, for specifying resource capabilities and services.
Various projects, such as Globus and Legion have defined their own specification lan-



guages, although these are restricted to specifying resource capability only, and do not
tackle the more difficult task of defining services.

It is unlikely that a common ontology will emerge, suggesting that negotiation between
service providers and service users is more likely to be the prevalent scenario. Dynamic
ontology creation is important in this context, to enable users and providers to use
common terms or themes to negotiate and propose services. An important consideration
in this context is the time to reach agreement: negotiation protocols should be chosen in
function of their cost and their impact on the scalability of the Computation Grid.

4.3 Metacomputing Frameworks

Metacomputing frameworks generally involve support for aggregating various aspects of
resource management, such as scheduling, security, communication, resource location,
resource allocation, process management, and data access. Resources can be tightly
coupled parallel machines, or loosely coupled networks of workstations. Metacomputing
frameworks do not provide local schedulers or resource managers, but enable multiple
resource managers to be integrated at a higher level. In this way, local control and
resource management policies can be respected, whilst enabling large scale applications
to be executed on distributed computing infrastructure.

The Globus project [9, 14] is one example of a Metacomputing framework, and is
based on the assumptions that, (1) grid architectures should provide basic services, but
not prescribe particular programming models or higher-level architectures, (2) grid ap-
plications require services beyond those provided by today’s commodity technologies.

Legion [10] provides another such environment, where a collection of workstations,
vector and parallel machines connected by local area and larger-scale networks appears
to the user as a single computer. Legion uses object-oriented design techniques to specify
resource capability, their location and deployment information, and means of accessing
them. The Legion architecture defines a complete object model that includes object
abstractions for compute resources (called host objects), storage systems (called data
vault objects), as well as other object classes. Users can use inheritance to specialise the
behaviour of these objects to support specific requirements, as well as to develop new
objects. The use of reflection (the representation of parts of the underlying system as
objects that can be directly operated on to access and change system behaviour) is partic-
ularly important in Legion. For example, host objects represent Legion processors. One
or more host objects run on each computing resources included in Legion. These objects
create and manage processes for application-level Legion objects. Object classes invoke
the operations of host objects to activate their instances on the computing resources that
the host objects represent. Representing computing resources as Legion objects abstracts
the heterogeneity of different host computing platforms, and allows resource owners to
manage and control their resources within the context of the system.

Metacomputing frameworks available at present are primarily concerned with resource
discovery and management. There is little or no support available to specify services.
They provide useful infrastructure for building agent based service discovery and migra-
tion techniques.



4.4 Mobile Agent Libraries

Mobile agents also provide a useful abstraction for supporting service migration and mo-
bile services in the Computational Grid. Existing libraries such as Voyager (ObjectSpace)
[4], Aglets (IBM Research) [8], D’Agents (Dartmouth College) etc, provide well defined
calls to enable a service to be migrated, checkpointed, and run on remote machines. Vir-
tually all of these libraries still rely on the existence of a “place” process on the remote
host to receive in-coming code. No support is provided to bootstrap or initialise new
hosts at run time into a cluster in any of these libraries.

Additional work is needed to enable mobile agents to be deployed within the Com-
putational Grid, and ranges from support for managing “forwarders” during service mi-
gration [25], maintaining state consistency after migration, checkpointing the complete
execution state, selective data migration after service migration, and mechanisms to deal
with security, related both to the host receiving the mobile code, and the integrity of
the mobile agent itself. All of these requirements will bring security, adaptability and
robustness to mobile agent systems; their deployment in the Computational Grid is still
conditional to the scalability of their supporting infrastructure.

We can identify common agent services in the context of the Computational Grid,
which may be shared across applications. These services can be offered centrally and
shared, or services may be federated, with one service in each resource cluster. The
objective of defining such agent services is to identify common usage patterns across
resources, which can vary in type and capability, and to combine expertise at a single
place.

4.5 High-Level Multi-Agent Interactions

All the services described before would benefit of some agent-based approaches, but we
reckon that the benefit of agents would further be visible in higher-level services that
involve the collaboration of several nodes in the computational Grid.

Two forms of interactions between autonomous agents are generally distinguished.
Cooperation (cooperative problem solving) is the process by which a group of agents
choose to work together to achieve their goal [27]. Negotiation is the process by which a
group of agents communicate with one another to try and come to a mutually acceptable
conclusion [26].

In the general case, resource allocation can be seen as a problem involving the collab-
oration of several nodes, which have to agree on a satisfactory allocation of resources for
the current problem and the prevailing circumstances. We can foresee a very dynamic
market-based approach where idle nodes bid for computations to be started on or even
migrated to themselves. A similar approach is adopted in the design of new generation
mobile phone networks, where software agents are used to trade communication services,
e.g. QoS [23]. Multi-agent high-level interactions such as auctions seem therefore worth
investigating in the context of the Computational Grid.



4.6 Related Work

The DARPA CoABS (Control of Agent Based Systems) project [18] aims to develop
agent systems for offering specialised services, such as component interaction managers,
database wrappers, traders/brokers, to resource planners and interactions managers. The
remit of the project is very wide, and a diverse set of requirements have been identified
within the project. The approach proposed in this paper addresses a subset of the CoABS
functionalities. The computational grid is more well defined, and contains a more precise
set of requirements. There are also more well defined standards which operate at the
level of the Computational Grid. However, as the CoABS project matures, it is likely to
impact various aspects of the Computational Grid also.

5 Conclusion

Establishing and implementing Grids is an important undertaking, and offers new chal-
lenges in developing robust and scalable infrastructures. We have identified three types
of Grids in this paper, a Computational Grid as core infrastructure for supporting higher
level services in Information and Knowledge Grids.

So far, the Computational Grid has been considered primarily as resource specification
and management. We have extended this notion to also include service discovery and
specification; we have suggested the use of agents, as offering services within such a grid,
and also as means to manage existing resources and integrate existing frameworks. We
have presented infrastructure tools and frameworks that could be of benefit in establishing
the Computational Grid, and we have proposed an agent based architecture for the
Computational Grid.
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