Green, D.W., Leveque, I., Walsh, D., Howard, D., Yang, X., Partridge, K., Mann, S. and Oreffo, R.O.C. (2005) Biomineralized polysaccharide capsules for encapsulation, organization, and delivery of human cell types and growth factors. Advanced Functional Materials, 15 (6), 917-923. (doi:10.1002/adfm.200400322).
Abstract
The construction of biomimetic microenvironments with specific chemical and physical cues for the organization and modulation of a variety of cell populations is of key importance in tissue engineering. We show that a range of human cell types, including promyoblasts, chondrocytes, adipocytes, adenovirally transduced osteoprogenitors, immunoselected mesenchymal stem cells, and the osteogenic factor, rhBMP-2 (BMP: bone morphogenic protein), can be successfully encapsulated within mineralized polysaccharide capsules without loss of function in vivo. By controlling the extent of mineralization within the alginate/chitosan shell membrane, degradation of the shell wall and release of cells or rhBMP-2 into the surrounding medium can be regulated. In addition, we describe for the first time the ability to generate bead-in-bead capsules consisting of spatially separated cell populations and temporally separated biomolecule release, entrapped within alginate/chitosan shells of variable thickness, mineralization, and stability. Such materials offer significant potential as multifunctional scaffolds and delivery vehicles in tissue regeneration of hard and soft tissues.
This record has no associated files available for download.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.