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Abstract

The increasing number of online auctions poses a
big challenge to e-consumers, especially to those
who are actively looking for good deals. In this
paper, we present the design of an autonomous
agent that can alleviate some of these problems by
participating across multiple online auctions (in
particular, English, Dutch, and Vickrey auctions).
The agent makes decisions on behalf of the
consumer and endeavours to guarantee the delivery
of the item according to the user’s preferences.
Our agent monitors and collects information from
the ongoing auctions and determines which auction
it wishes to participate in. The decision on how
much to bid in the selected auction is made based
on a series of tactics and strategies.  The proposed
bidding algorithm has been implemented in a
simulated marketplace environment and its
performance has been evaluated empirically.

1 Introduction
Over the last few years, the number of online auction houses
has increased tremendously. To date there are more than
500 auction houses that conduct business online1. In 1998,
the total revenue for both business-to-consumer and
consumer-to-consumer auctions was $USD1.4 billion and it
is estimated to reach $USD19.0 billion in 20032. Some
examples of popular online auction houses include eBay,
Amazon, Yahoo!Auction, Priceline, UBid, and
FirstAuction. The types of auction that are conducted vary
from site to site, but the most popular ones are English,
Dutch, first-price sealed bid and second-price sealed bid
(Vickrey).  In an English auction, the auctioneer begins with
the lowest acceptable price and bidders are free to raise their
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bids successively until there are no more offers to raise the
bid. The winning bidder is the one with the highest bid
[McAfee and McMillan, 1987].  The Dutch auction is the
converse of the English one; the auctioneer calls for an
initial high price, which is then lowered progressively until
there is an offer from a bidder to claim the item.  In the first-
priced sealed bid, each bidder submits his offer for the item
independently without any knowledge of the other bids.
The highest bidder gets the item and he pays a price equal to
his bid amount. Finally, a Vickrey auction is similar to a
first-price sealed bid auction, but the item is awarded to the
highest bidder at a price equal to the second highest bid
[Vickrey, 1961].

Due to the proliferation of these online auctions,
consumers are faced with the problem of monitoring
multiple auction houses, picking which auction to
participate in, and making the right bid to ensure that they
get the item under conditions that are consistent with their
preferences.  These processes of monitoring, selecting and
making bids are time consuming. The task becomes even
more challenging when the individual auctions have
different start and end times. Moreover, auctions can last for
a few days or even weeks.  To assist consumers in this task,
some online auctions provide bidding robots that act on
their behalf.  The robots send updates to the consumers from
time to time.  However, this service only operates within the
hosting auction site. In this case, the consumer only needs to
supply the maximum bid value to the bidding robot, and it
will then automatically increment the bid value
progressively while the auction is ongoing.  It stops bidding
when the maximum price is reached.3 While freeing the
consumer to a certain extent, this type of facility limits the
choice of auctions that a consumer can participate in.  If the
consumer wishes to purchase the item, he has to wait until
the auction is concluded before he bids in another auction to
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avoid getting multiple items. In addition, the auction site
host could use information about the consumer to cheat him
by manipulating the auction.  This is possible through shill
bidding where bids are deliberately placed to drive up the
price of an item [McAfee and McMillan, 1992].  In this
case, the consumer ends up paying a price equal (or very
close) to his maximum bid.

In view of these complexities, consumers tend to focus
on a single auction of their choice. Unfortunately, winning
in that auction does not necessarily mean that they get the
best deal.  They may have received a better price in another
auction.  The losers may also have had better luck in another
auction as well.  From the seller’s perspective, the lock in of
bidders is also a disadvantage since those agents that value
the good highly may not be amongst this set.  This, in turn,
restricts the expected revenue from the auction.

To address these shortcomings, a service that is starting
to emerge is that of an auction search engine.  These allow
the consumer to monitor multiple concurrent auctions, but
they leave the actual bidding decision to the consumer4.
While this certainly increases the consumer’s knowledge of
the global marketplace, it does not solve the problem of
reducing the amount of time that has to be spent on-line.
Moreover, deciding what amount to bid for an item requires
an intelligent decision where the consumer needs to come
up with a strategy to work out the bid value.  In many cases,
the outcome of this decision making is that the consumer is
trapped with the winner’s curse phenomenon where he pays
more than the actual value of the item [Klemperer, 1999].
From this analysis, it can be seen that time and decision
making are the two most important factors in online auction
environments. Given this, we believe it is desirable if both
processes can be automated leaving the consumer free to do
other tasks.

Such automation can be achieved by building a
software agent that acts on behalf of a consumer and is
empowered with trading capabilities such as the ability to
search online auctions, negotiate with sellers and make
purchases autonomously.  A buyer agent that participates in
multiple online auctions needs to possess the ability to
decide in which auction it should participate and then to
determine the appropriate bid value for the desired item. In
the face of multiple auctions, this decision is not
straightforward. It is dependent on many factors including
the type of auction that the agent is participating in, the
number of ongoing auctions, the amount of time allocated
for it to deliver the item, the behaviour of the agent itself
and other participants, and the consumer’s valuation of the
item. There are standard models of auction behaviour that
an agent can follow when participating in an auction
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[Klemperer, 1999], but these models are applicable to single
shot auctions only.  Thus, for our purposes, these models are
not appropriate since we are dealing with multiple
simultaneous auctions and with multiple auction protocols.
In short, the standard results from auction theory are not
applicable.

Against this background, we detail and evaluate the
decision-making procedures of an autonomous agent that
can participate in multiple online auctions to assist
consumers in purchasing their required item. The agent
makes decisions on behalf of the consumer and endeavours
to guarantee the delivery of the item.  The agent must ensure
that it never bids above the reservation price (the maximum
amount that the consumer is willing to pay) and it tries to
get the item in a manner that is consistent with the
consumer’s preferences (e.g. at the earliest time, at the
lowest price, or with the maximum chance of succeeding).
To make decisions, the agent generates a set of tactics and
strategies that it can use, based on the existing environment.
The agent participates in three different types of auction
protocol: English, Dutch and Vickrey.  The first-price sealed
bid auction is not considered here because of its similarities
to the Dutch auction [McAfee and McMillan, 1987]. The
main contribution of this work is that we develop a novel
algorithm that enables an agent to bid across multiple
simultaneous auctions, each of which may be employing a
different protocol.  In addition, we detail the implementation
of this algorithm and we present a preliminary evaluation of
its operational performance characteristics.

The remainder of the paper is structured in the
following manner. In the next section, we describe our
electronic marketplace scenario. Section 3 describes the
bidding algorithm. Our initial experiments and results are
presented in Section 4.  Section 5 discusses related work and
Section 6 describes our plans for future work in this area.

2 The Electronic Marketplace Simulation
The simulated electronic marketplace consists of a number
of auctions that run concurrently (see Figure 1)5.  There are
three types of auctions running in the environment: English,
Dutch and Vickrey.  The English and Vickrey auctions have
a finite start time and duration generated randomly from a
standard probability distribution, the Dutch auction has a
start time but no pre-determined end time. The start time

                                                          
5 The marketplace is a virtual simulation in that it is supposed to
represent all the auctions that are selling the desired item anywhere
on the Internet.  It is obviously a simplification, since by grouping
them in this way we can focus on the agent’s bidding strategy (our
main aim) and we do not have to worry about the problem of
finding all the auctions that sell the desired item, semantic
interoperability due to heterogeneous information models and
ontologies, latency due to network traffic variability, or interfacing
our software to proprietary commercial auction houses.



Figure 1 - The Marketplace Simulator

and the end time varies from one auction to another.  At the
start of each auction (irrespective of the type), a group of
random bidders are generated to simulate other auction
participants.  These participants operate in a single auction
and have the intention of buying the target item and
possessing certain behaviour. They maintain information
about the item they wish to purchase, their private valuation
of the item (reservation price), the starting bid value and
their bid increment. These values are generated randomly
from a standard probability distribution. Their bidding
behaviour is determined based on the type of auction that
they are participating in.  In an English auction, they start
bidding at starting bid value; when making a counter offer,
they add their bid increment to the current offer (provided
the total is less than the reservation price), and they stop
bidding when they acquire the item or when their
reservation price is reached.  In a Dutch auction, they wait
until the offer value is equal to their reservation price before
making an offer.  Finally, in a Vickrey auction, they bid at
their reservation price.  These strategies are based on the
dominant strategies of the respective one-shot single
auctions [Sandholm, 1999].

The auction starts with a predefined starting value; a
small value for an English auction and a high value for a
Dutch auction.  There is obviously no start value for a
Vickrey auction. Offers and counter offers are accepted
from bidders who are picked randomly from the group of
bidders in that particular auction. These processes are
repeated until the reservation price is reached or until the
end time for that auction is reached. The winner in an
English auction is the bidder with the highest bid value at
the end of the auction.  In a Dutch auction, when no offer is
received from the bidders, the value is reduced (based on a

fixed decrement value) and the whole process is repeated
again. The item is sold when a bidder agrees to buy the item
at the offer price.  If there is more than one bidder who is
interested at the same price, the item will be sold to the
bidder who offered to buy the item first. There may be cases
where there is no offer from the bidders at all throughout the
auction.  In this situation, the auction terminates when the
decremented offer reaches the reservation price. Bidders in a
Vickrey auction submit their bid values before the end of
the auction. Bids are opened at the end of the auction and
the winner is the one who offered the highest price.  If there
is a tie, the winner is the bidder who submits the earliest bid.

The marketplace is flexible and can be configured to
take up any number of auctions and any value of discrete
time. We assume that all the auctions in the marketplace are
auctioning the item that the consumers are interested in.
Our bidder agent is allowed to bid in any of the auctions at
any time when the marketplace is active. The objective of
the bidder agent is to participate across the multiple
auctions, bid in the auctions and deliver the item to its
consumer in a manner that is consistent with their
preferences.  The bidder agent is given a deadline by when
it needs to obtain the item.  The bidder agent utilises the
available information to make its bidding decision; this
includes the consumer’s reservation price, the time it has
left to acquire the item, the current offer of each individual
auction, and its set of tactics and strategies.  The reservation
price is derived from the item’s closing price distribution,
observed from past auctions.  The tactics and strategies are
the main constituents that drive the agent’s behaviour in
making the bidding decision (these are described later in the
paper).  The output of the bidding decision is the auction the
agent should bid in and the recommended bid value that it



should bid in that auction.  If the agent does not purchase
the item by its deadline, it returns to the consumer for
further instructions.

3 Designing the Agent’s Bidding Strategy
To ensure that the bidder agent operates effectively in the
marketplace, it needs to possess a strategy to ensure that it
obtains the item within the given time in a manner
consistent with the consumer’s preferences. Here the
bidding strategy for the agent is modelled on the idea of
negotiation decision functions as proposed by Faratin et al.
[Faratin et al., 1998].  The original model defined a range of
strategies that an agent can employ to generate initial offers
and counter offers in a two party negotiation. This model
identifies the key constituents that drive an agent’s
negotiation behaviour and defined a single tactic to deal
with each of them.  The agent’s overall behaviour is then the
amalgamation of these different facets, weighted by their
relative importance to the user.  Mapping this to an auction
environment, the bidder agent needs to decide the new bid
value based on the current offer price.  The current offer can
be treated as the offer and the new bid value can be treated
as the counter offer.  Negotiation is over when the auction
terminates or when the bidder’s reservation price is reached
(bidder walks out of the negotiation process).

Firstly, we will present our notation.  Let t  be the
current universal time across all auctions, where ,τ∈t  and

τ is a set of finite time intervals.  Let maxt be the time by

when the agent must obtain the good (i.e. maxtt ≤≤0 ), and

let A  be the list of all the auctions that will be active before

time maxt .  At any time t , there is a set of active auctions

)(tL where AtL ⊂)( .  Let )(tE , )(tD , and )(tV be the set

of active English, Dutch and Vickrey auctions, respectively,
where ,)()( φ=∩ tDtE ,)()( φ=∩ tVtD ,)()( φ=∩ tVtE

and )()()()( tLtVtDtE =∪∪ .  Each auction Ai ∈ , will

have its own start time, iσ , and its own end time iη  where

).()( tVtEi ∪∈  Let λ  be the agent’s bid increment value,

and rp  be its reservation price for the target item.  Let

NAItem_  be a boolean flag to indicate whether the target

item has already been purchased by the agent.  We assume

that the value of rp  is based on current reliable market

price observed from past auctions, and that the marketplace
is offering the item that our agent is interested in.

With these definitions in place, the algorithm for the
bidding agent is summarised in Figure 2.  Since each
auction has a different start and end time, the bidder agent
needs to build an active auction list to keep track of all the
auctions that are currently active in the marketplace.  We
define an active auction as one that has started but not

reached its end time.  The agent identifies all the active
auctions and gathers relevant information about them. It
then calculates the maximum bid it is willing to make at the
current time using the agent’s strategy (described later in the
paper). This current maximum bid, by definition, will

always be less than or equal to rp .  Based on the value of

the current maximum bid, the agent selects the potential
auctions in which it can bid and calculates what it should
bid at this time in each such auction. The auction and
corresponding bid with the highest expected utility is
selected from the potential auctions as the target auction.
Finally, the agent bids in the target auction.

while )( maxtt ≤ and )_( trueNAItem =
Build active auction list
Calculate current maximum bid using the agent’s
strategy
Select potential auctions to bid in, from active auction
list
Select target auction as one that maximises agent’s
expected utility
Bid in target auction using current maximum bid as
reservation price at this time

endwhile

Figure 2 - Algorithm for the Bidding Agent

3.1 Calculating the Current Maximum Bid
At any given time t , the agent needs to determine its
current maximum bid.  This bid is defined as the maximum
value the agent is willing to offer at the current moment in
time.  There are several factors that the agent needs to take
into consideration when calculating this value. One is the
remaining time that it has left to acquire the item. Thus, a
key determinant of what price to offer depends on how
much time it has left to bid. For example, the agent may
decide to make a low bid value when it has a lot of time left,
and as the remaining time decreases, the agent bids closer to
its reservation price. Another consideration is the number of
remaining auctions that the agent can bid in. Here the
agent’s behaviour is similar to the time constraint, whereby
it may choose to maximise its chances of success by bidding
close to the reservation price when the number of auctions is
small. The level of desperateness to obtain the item is
another consideration that the agent may need to take into
account. If the agent is desperate to get the item, it bids
aggressively as soon as it starts to ensure that it maximises
its chances of getting the item.  This level of aggressiveness
is influenced by the agent’s desperateness for the item.  The
opposite of this behaviour is that of an agent who is looking
for a bargain.  If an agent wishes to get the item at a bargain
price, it starts bidding at a very low price and eventually
bids its reservation price when it has very little time left.
The set of considerations of the remaining time left, the
remaining auctions left, the desire to get a bargain and the



level of desperateness are here referred to as the bidding
constraints. The agent uses some combination of these
constraints in order to determine its maximum bid value at
the current moment in time. Our model is open in that if
there was another aspect that the consumer wanted the agent
to consider, then this could easily be added in as a new
bidding constraint.  Exactly which constraints are used in a
given situation is determined by the consumers and their
preferences. Thus, a consumer who wants to ensure it
receives the item as quickly as possible would place the
greatest weight on the time until deadline and the
desperateness tactics, whereas a consumer who is looking to
minimise the price he pays would value the bargain tactic
most highly.

More formally, let C  be the set of considerations that
the agent takes into account when formulating a bid and j

represent the individual bidding constraints, where

},...1{ Cj ∈ .  Let t∆ denote the remaining time left for the

agent to bid (i.e. ttmax − ), and a∆  denote the number of

auctions left in the marketplace.  Let µ  denote the agent’s

desire for a bargain, where ]1,0[∈µ  (where 1 is actively

looking for bargain and 0 is not actively looking for a
bargain), andε denote the agent’s level of desperateness for
the item, where ]1,0[∈ε  (where 1 is very desperate and 0 is

less desperate).  For each of constraint Cj ∈ , there is a

corresponding function )(tf j , which suggests the value to

bid based on that constraint.  These individual constraints
are then combined using a function F  to produce the
agent’s overall position.  Examples for F  include weighted
average, max, or min.

At a given time, the agent may consider any of the
bidding constraints individually or it may combine them
depending on the situation (what the agent sees as being
important at that point in time). In this work, if the agent
combines multiple bidding constraints, it allocates weights

to denote their relative importance.  Thus, let )(tw j be the

weight on constraint j  at time t , where ,Cj ∈∀

,1)(0 ≤≤ tjw  and∑
∈

=
Cj

j tw 1)( .

The current maximum bid value for the agent at time t ,
is then calculated as:

∑
∈

=
Cj

jj tftwt )()()( .

The agent uses a set of polynomial functions (drawn
from Faratin et al.’ s negotiation functions) to calculate the
bid value based on a single bidding constraint.  Here this set
of functions is referred to as the tactics. In the current

implementation, the four tactics are remaining time,
remaining auctions, desire for bargain and desperateness.
The definition of each of these is given below.

3.1.1 The Remaining Time Tactic

This tactic determines the recommended bid value based on
the amount of time remaining for the agent. Assume that the

agent is bidding at time maxtt ≤≤0 .  The agent bids closer

to rp  as t  approaches maxt , and it eventually bids at rp

when .maxtt =  To calculate the bid value at time t , the

following expression is used:

rrtrt ptf )(α=

where )(trtα  is a polynomial function of the form:

βα /1))(1()(

max

rtrtrt t

t
kkt −+=

rtk  is a constant that when multiplied by the size of the

interval determines the value of the starting bid of the agent

in any auction. By varying the value of )(trtα , a wide range

of time dependent functions can be defined from those that

start bidding near rp  quickly, to those that only bid near

rp  right at the end, to all possibilities in between.  The only

condition is that 1)(0 ≤≤ trtα , rtrt k=)0(α ,

1)( =maxrt tα , and 10 ≤≤ rtk .

Using the polynomial function defined earlier, different
shapes of curves can be obtained by varying the values of
β .  This represents an infinite number of possible tactics,

one for each value of β .  In this tactic, β  is drawn from
+ℜ , where 1000200/1 ≤≤ β .  When 1<β , the tactic

maintains a low bid value until the deadline is almost
reached, where this tactic concedes by suggesting the
reservation price as the recommended bid value.  The other
extreme is when 1>β ; the tactic starts with a bid value

close to the reservation price and quickly reaches the
reservation value long before the deadline is reached.

3.1.2 The Remaining Auctions Tactic

This tactic is broadly similar to the remaining time tactic;

the agent bids closer to rp as the number of remaining

auctions approaches 0 (since it is running out of
opportunities to purchase the desired good).

raf  has the same form as rtf  and raα  is defined as

follows:



βα /1)
)(

)(1(
A

tc
kk rarara −+=

Most of these terms are similar to rtα , the only difference

being that )(tc  is the list of all the auctions that have been

completed between time 0 and time t .  β  is again drawn

from +ℜ , where  1000200/1 ≤≤ β .

3.1.3 The Desire for Bargain Tactic

This tactic is employed when the agent is motivated to try
and obtain a bargain. The agent keeps the λ  to a minimum

as it progresses from 0=t  to maxt , but eventually bids its

reservation price when maxt  is reached.  To determine the

bid value for this tactic, the agent considers the minimum
bid value for the target item across all the auctions in the
marketplace. At a given time t , newly started English
auctions have low current bid values and Dutch auctions
have very high current bid values.  On the other hand, when
auctions are terminating, English auctions typically have
high current bid values and Dutch auctions have low current
bid values.  Vickrey auctions do not have information on the
bid values since bids are sealed and they are only opened at
the end time. To deal with these points, the minimum bid
value is calculated by taking into consideration the current
bid value and the proportion of time left in the auction.
These values are summed and averaged with respect to the
number of active auctions at that time.

Let )(tvi  be the current highest bid value in an auction

i  at time t , where )(tLi ∈ , and )(tω  be the minimum bid

value for the agent at time t  where:

∑
≤≤ −

−
=

)(1
)(

)(

1
)( )(

tLi
tv

t

tL
t

i
ii

i

ση

σ
ω

The bid value is then calculated using the expression:

))()(()( tpttf rbaba ωαω −+=

where )(tbaα  is defined as:

βα /1)/)(1()( maxbababa ttkkt −+=

Assume that )(tbaα  is similar to the polynomial

function discussed in the first two tactics, but this time,

3.01.0 ≤≤ bak , the minimum value of β  equals 1/200 and

the maximum value of β  equals 0.5.  These values reflect

the fact that an agent that is looking for a bargain should
never bid with 1>β  because this would inflate the agent’s

bid well before the deadline.  In contrast, an agent that is
looking for a bargain (with )1<β  maintains a low bid

value until the deadline is almost reached, where it will then

suggest rp  as the recommended bid value.  By conceding

with a recommended bid value of rp , the agent tries to

ensure that it still successfully acquires the item even if it
did not succeed in getting a bargain.

3.1.4 The Desperateness Tactic

This tactic is employed when the agent is desperate to get

the item. The agent bids close to rp at 0=t , and

eventually bids at rp  when maxt  is reached.  In this tactic,

the agent utilises the minimum bid value and the polynomial
function described in subsection 3.1.3 but with a slight
variation to the value of β , where 100067.1 ≤≤ β  and

9.07.0 ≤≤ dek .  The values picked for dek  are high since

a desperate agent starts bidding at a value that is near to rp .

With these minor variations, def  is the same as baf  and

deα is the same as baα .

3.2 Selecting Potential Auctions and the Target
Auction

The agent selects potential auctions if and only if it is not
holding the highest bid in an English auction, or it has not
placed a bid in a Dutch or a Vickrey auction.  This is to
ensure that the agent does not acquire more than one of the
target item. The agent selects the potential auctions by
considering values for the current maximum bid for each
active auction.  In the English auctions, this is carried out by
taking those auctions that are close to their end time, in
which the current bid value when added to the bid increment
is less than or equal to the current maximum bid. The
agent’s new bid value is the current bid plus the bid
increment. Only English auctions that are close to their end
time are picked to maximise the agent’s chances of winning.
If the agent currently holds a bid in an English auction that
still has a long time to complete, it will not be able to
participate in other auctions until it loses out to another
bidder or until the auction terminates. There are several
potential outcomes when an auction terminates; the agent
loses out to another bidder; the agent’s bid value may be
less that the reservation price (in which case there will be no
winner); or the agent wins.  If either of the first two
situations occur, the agent loses out in that it wasted a lot of
time in one auction, thus reducing its chances of
participating in other auctions.  The potential Dutch
auctions, in which the agent may bid, are those with current
bids that are less than the current maximum bid.  Here, the
agent’s new offer is the current bid for that particular Dutch
auction. The potential Vickrey auctions in which the agent



may bid are those that are terminating at the current time
and the agent’s bid value is its current maximum bid value.
This selection of timing is based on the same reasoning as
that of the English auction.

If there is only one auction in the potential auction list,
that auction is picked as the target auction. If there are
multiple auctions, the agent calculates the expected utility
for each of these potential auctions. By definition, the
expected utility is the product of the probability of the agent
winning in that auction at the given bid value and the value
of the agent's utility function.  The auction with the highest
expected utility for the agent's bid value is picked as the
target auction. Here, the probability of winning is highly
dependent on the type of auction and the agent’s bid value.
In English and Vickrey auctions, the closer the bid value is
to the reservation price the higher the probability of the
agent winning (i.e. the probability of the agent winning in

the auction with a bid value rp  is close to 1).  Here we

assume that the agent's reservation price is selected based on
the current reliable market price, observed from past
auctions and that if the agent bids at this reservation price it
is likely that it will win the auction.  Thus, the probability
function is, in fact, the probability of winning given that the
agent's reservation price is competitive to the prevailing
market condition. In a Dutch auction, this is slightly
different. The probability of winning in the auction with bid
value of the reservation price or lower is very close to 1 due
to the decreasing nature of the bid values.  If the bid value is

at rp , it is almost certain that the agent will win the auction

(unless there are clashes).  This is similar when the value is

lower than rp .  In more detail, let )(vPi be the probability

of winning in auction i if the agent bids with the value v .
The expected utility for an auction i with a bid value v is
calculated as:

),()()( vUvPvu iii =  where β/1)(1)(
r

i
p

v
vU −=

The β used here is the same as the one used in generating

the polynomials for the tactics.  The utility function for each
potential auction is calculated by dividing the payoff

amount with rp .  The utility value is higher when the

payoff ( v
r

p − ) is high (value greater than 0), and it is

lower when the payoff is low (value close to or equals to 0).

There is a possibility that our agent may make a
counteroffer in an English auction as soon as other
participants outbid it.  This occurs when the value of the
expected utility is in favour of the previous target auction.
When this happen, our agent has the advantage, in that it
implicitly forces the other agents to move towards their
reservation price.

4 Experimental Evaluation
To evaluate the performance of our agent using the bidding
algorithm described above, we undertook an empirical
evaluation.  Here we defined three control models as a basis
for comparison. These models simulate three plausible
modes of behaviour in online auctions. In the first model
(control C1), the agent randomly joins one auction and stays
there until its reservation price has been reached or until the
auction’s end time is reached.  The agent does not move to
any other auction.  This is a similar strategy to most current
bidding agents.  Our second control agent deploys a greedy
strategy (control C2).  This agent picks the auction that has
the closest end time where the current bid value for the item
does not exceed the reservation price. If there is more than
one possibility, it makes a random choice. The agent stays
there until the reservation price has been reached or until the
auction is over. If it has not purchased the item, it then
moves to another auction using the same selection technique
and repeats the process until its allocated time is over. In the
last model (control C3), an agent picks an auction randomly
from all the active auctions and bids in that auction.  It stays
there until its reservation price is reached or until the
auction is over.  If the agent is not successful, it randomly
picks another auction and repeats the process until the
allocated time is over or it successfully purchases the item.

Our experiments consist of 100 runs for the proposed
and control models. These experiments were run in an

environment with 20=maxt , between 3 and 10 English,

Dutch and Vickrey auctions running concurrently, and for
each auction, there are between 2 and 10 participants. We
deployed different strategies for the bidding agent by
varying the values of the weights for the tactics. In this
particular experiment, the polynomial functions for the
tactics are:

)(trtα  had 6.0=rtk  and 4=β  (giving a high start

bid value which quickly reaches rp )

)(traα  had 6.0=rak  and 4=β  (giving similar

behaviour as above)

)(tbaα  had 3.0=bak  and 3.0=β , (giving a low

level desire for bargain behaviour)

)(tdeα  had 7.0=dek  and 5=β  (giving a low level

of desperateness behaviour).

We defined six different strategies for our bidding agent
to use.  The first four (RT, RA, BA, DE) are based on a
single tactic strategy.  The last two strategies use
combinations of the weights for all the four tactics: the
COM1 strategy uses equal weighting among the four tactics,

and COM2 uses variable weights ( 4.0=rtw , 2.0=raw ,



1.0=baw , and 3.0=dew ).  These values were chosen to

model a behaviour of an agent that values time as the most
important facet, and is desperate to get the item, but is not
interested in a bargain or the remaining auction tactics. The
control models are labelled as C1, C2, and C3.  All the
agents use the same reservation price and the same time for

maxt .
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Figure 3 - Success Rate Comparisons

Figure 3 shows the performance of all the agents in
terms of their success rate.  The success rate is defined as
the number of times, as a percentage, the agent is successful
in obtaining the item. Strategy RT and COM2 performed
best, followed by C2, DE, COM1, and RA. The
performance of the agents that used a single tactic can be
associated to the value of k  and β .  Agent RT achieved a

success rate higher than 80% because it starts with a bid
value close to the reservation price and quickly goes to its
reservation price. Agent RA, did not perform as well as
agent RT (even though they have a similar pricing function)
because multiple auctions may terminate at each discrete
time t .  At each time step, the agent works out the number
of auctions that are terminating at that current time, and uses
this information to work out the value of )(tc .

Unfortunately, the agent has no way of knowing whether
there are any Dutch auctions that are terminating at that
point in time (Dutch auctions do not have end times), and
this adversely affects the performance of agent RA. The
performance for the agent that deploys BA is low due to its
bargaining nature.  The agent maintains a low bid until the
deadline has almost expired and finally concedes with a bid
value of RP.  Agent DE’s performance is very close to that

of RT, since the values for its DEk  and β  are similar.  The

performance of agent COM1 indicates that with equal
weighting, the success rate is close to the average success
rate of those four single tactics combined (as would be
expected). COM2’s performance is slightly better than
COM1 since heavier weights were placed on RT and DE,
where both RT and DE performed well as a single tactic.
The performance of C2 is good, since it takes every
opportunity to bid in a terminating auction without
considering other issues like payoff and time left to bid.  C1

and C3 perform poorly due to their simplified behaviour of
picking any auction randomly.

Figure 4 relates closely to the success rate performance
of all the agents in the experiment.  It shows the agents’
final bid values (the bid values at which they acquired the
item) as percentages of the average closing prices for all the
auctions in the marketplace that closed within the period
that the agents were active.  It can be clearly seen that our
six agents performed better than the three control models,
since their final bid values are lower than any of the final
bid values of the control models. The final bid value is
considered as a very important factor in our analysis since it
determines the closing price of a particular auction and the
resulting payoff that the agent expects to get upon acquiring
the item.  The agents’  behaviours in the selection of bid
values are described in more detail in the next paragraph.
This result leads us to conclude that our agents successfully
acquire the item at a price lower than or equal to the
reservation price, which is subsequently lower than the
average closing price in all the auctions that closed within
the period that they were active.
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Figure 4 - Percentage of Closing Price Comparisons

Figure 5 shows the average payoff for each agent
participating in the experiment.  Payoff is calculated by
subtracting the agent’s bid value (when it successfully
acquired the item) from the reservation price.  The average
payoff is the summation of all the payoffs divided by the
number of times the agent successfully acquires the item.
As can be seen, all our agents performed better than the
control models except for DE.  DE’s low average payoff can
be attributed to the fact that the agent is desperate to get the
item.  It starts bidding at a bid value close to its reservation
price and quickly reaches this reservation price.  Its goal is
to try and get the item as early as possible. The high average
payoff by our other agents clearly shows that payoff is an
important criteria that the agent needs to take into
consideration when bidding in any auction.  Agent RT, RA,
and COM2 achieved the highest average payoff, followed
by BA and COM1.  The performance of these agents (RT,
RA, COM2, and COM1) can be related to the average time
taken by the agents to acquire the item (see Figure 6).  As an
example, the time spent by agent RT to obtain the item is
short, which means the recommended bid value at the time



of acquisition is much lower than the reservation price.  The

closer the agent’s acquisition time to maxt  the closer its bid

value to the reservation price.  This is the same case with
agent RA, COM2, and COM1. BA’s performance is
acceptable (even though it is the one that actively looks for a
bargain, hence its payoff should be higher) since it
continually tries to looks for a bargain and finally concedes
when the auction is close to its end time.  At this time, the
agent bids at its reservation price resulting in a lower payoff.
The performance of the three control models is poor because
of their disregard for the payoff issue.  Their main goal is to
get the item at a price lower than or equal to the reservation
price.
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Figure 5 - Average Payoff Comparisons

Finally, Figure 6 shows the average time taken by the
agents to acquire the item.  Our agents spend between t = 10
and t = 18 to get the item, whereas the control models spend
between t = 8 and t = 16. This indicates that the control
models try to take any opportunity to bid in a particular
auction as soon as possible. Agent BA spent the longest
average time to acquire the item since it tries to look for
possible bargains in the auctions. In the case of DE, it is
more interested in obtaining the item as soon as possible,
thus less time is required.  This is a similar situation for
agent RT, where it views time as the most important
consideration.  RA, COM1 and COM2 have similar average
times since time is not a major consideration in their
reasoning.
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Figure 6 - Average Time Taken Comparisons

When taken together, the preliminary results indicate
that allowing agent to participate in multiple auctions is an

effective strategy for meeting the consumer’s objectives.
Our agent consistently outperformed C1 in terms of success
rate, average payoff, and average time taken to acquire the
item.

5 Related Work
There have been several attempts to design sophisticated
and efficient bidding strategies for agents participating in
online auctions.  The Recursive Modeling Method (RMM)
uses a decision theoretic paradigm of rationality, where an
agent makes decisions based on what they think the other
agents are likely to do, and what the other agents think
about them and so on [Gmytrasiewicz and Durfee, 1995].
The downside to this approach is that not all the information
in the recursive model may be relevant to the agent; there
may be cases where this information does not influence the
agent’s decision-making at all. It is also possible that little
or no information is available for the agent to use in the
types of environment considered in this work.  Faratin et al's
model is broadly similar to the one defined in this paper
[Faratin et al., 1998]. However, there are also several
important differences between one-to-one negotiations and
multiple auctions. Chief amongst these, are the type of
tactics that are considered relevant and the aspect of the
domain that need to be reflected in these tactics.

The possibility based approach to designing bidding
strategies views the strategies as a decision made under
uncertainty [Garcia et al., 1998; Gimenez-Funes et al.,
1998].  They rely on the possibilistic-based decision theory
to model a buyer agent’s behaviour. This work was
implemented in the FM96.5 (a Java based electronic auction
house) that focuses on Dutch auctions only.  This approach
differs from ours in two ways. Firstly, it operates on one
auction protocol only. Secondly, it generates a possibility
distribution based on previous similar market situations.
The single auction approach used by this model is not
applicable in the environment that we are working in.
Moreover, our approach uses a probability based on current
market value rather than relying on the similarities of
previous market histories.  Park et al. proposed an adaptive
bidding strategy called the p-strategy that is based on
stochastic modelling and uses reinforcement learning to
make the strategy adaptive [Park et al., 1999]. This
approach was implemented using the University of
Michigan Digital Library (UMDL) auction based on a
continuous double action protocol and the strategy was
designed for a seller agent. The model is designed for
implementation in a continuous double auction protocol,
hence it is inappropriate to the work described here.

Preist proposed an algorithm design for agents that
participate in multiple simultaneous English auctions [Preist
et al., 2000a; Preist et al., 2000b].  The algorithm proposes a
co-ordination algorithm to be used in the environment
where all the auctions terminate simultaneously, and a



learning method to tackle auctions that are terminating at
different times. This work is designed specifically for
purchasing multiple items in multiple English auctions, and
it is not applicable in an environment where multiple
auctions with multiple protocols are used.  BiddingBot is a
multi-agent system that supports users in attending,
monitoring and bidding in multiple auctions through a
process called co-operative bidding [Ito et al., 2000].  This
approach demonstrates how agents can cooperate and work
together to do the bidding process in multiple auctions. It
consists of one leader agent and several bidder agents,
where the leader agents acts as the coordinator and
facilitator of the whole bidding process.  Bidding is done by
exchanging messages between the user, the leader agent,
and the bidder agents.  However, the main problem with this
approach is that the agents do not actually make the bidding
decision.  This decision is left to the user.  Thus, the agents
do not have full autonomy and the decision-making process
is slow since the agent needs to interact with the user from
time to time.

The first trading agent competition (TAC-2000)6,
provided a platform for agent designers to allow their
autonomous agents to compete with one another in online
simultaneous auctions for complimentary and substitutable
goods. The key feature of TAC is that it required
autonomous bidding agents to buy and sell multiple
interacting goods in auctions of different types [Greenwald
and Stone, 2001].  Each participant agent is a simulated
travel agent, with the goal of assembling a number of travel
packages for its 8 clients.  Each client is characterised by a
random set of preferences for the possible arrival and
departure dates, hotel rooms and entertainment tickets.  The
objective of a TAC agent is to maximise the total
satisfaction of its customers (i.e., the sum of the customer
utilities).  The competition attracted 22 participants, in
which 12 qualified for the semi-finals and finals. One of the
interesting outcomes from this competition was the fact that
the designs of these agents were motivated by a wide variety
of research interests including machine learning, artificial
life, experimental economics and real-time systems.
ATTac–2000, which emerged as the winner, used a
principled bidding strategy that included several elements of
adaptivity.  This feature allows the agent to cope with a
variety of possible scenarios during the competition.
Another top finisher, RoxyBot, was based on heuristic
search techniques.  Aster, the third placed agent, used a cost
estimation framework that can respond to strategic
behaviour of competing agents. Finally UmbcTAC, placed
more importance on the network load (in that it adapted to
network performance more frequently than competing
agents and received more frequent updates).  All the TAC
agents are involved with two basic activities; bidding and

                                                          
6 http://tac.eecs.umich.edu

allocation.  The agents need to determine the most profitable
allocation before they decide on what goods to bid.  If they
fail to obtain the good, they need to recalculate the optimal
allocation. This scenario is somewhat different from ours in
that we concentrate on the bidding strategies to obtain one
particular item rather than worrying about the
complementary goods that need to be bundled with the
desired item.  Moreover in TAC, the type of auctions that
are conducted are continuous one-sided auctions, standard
English ascending multi-unit auctions and continuous
double auctions as opposed to our environment that runs
simultaneous standard English auctions, Dutch auctions and
Vickrey auctions.

6 Conclusions and Future Work
This paper presented a bidding algorithm that can be used
for an agent to participate in multiple online auctions with
multiple protocols.  We initially described the environment
in which the bidding algorithm is implemented. The bidding
algorithm itself is based on multiple tactics, that each deal
with a single facet of the agent's reasoning. These tactics are
then combined in order to give the agent's overall view at a
given moment in time. Our preliminary experimental results
demonstrate the potential of our approach.

Our main line of work is to further explore the
development of strategies for our bidding agent. Since the
environment in which the multiple auctions are running is
highly dynamic, we intend to extend this work by using an
evolutionary approach based on genetic algorithms (GAs).
GAs will be used to determine the relative success of these
strategies and how these strategies can evolve over time to
better fit their environment.  The performance of the agent is
very much influenced by the strategy employed which, in
turn, relates to the values of k and β in the given tactics and
the weights for each tactic when combined.  Different
strategies may perform well in some environments but may
perform poorly in another. The numbers of strategies that
can be employed are endless and the search space is huge.
To address this issue, we intend to use GAs to search for the
most successful strategies in predefined environments in an
off-line fashion.  This knowledge can then be codified into
an agent’s online reasoning behaviour so that it can
determine the best strategy to employ in the prevailing
circumstances.
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