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Abstract—Socially intelligent agents are autonomous problem
solvers that have to achieve their objectives by interacting with
other similarly autonomous entities. A major concern, therefore, is
with the design of the decision-making mechanism that such agents
employ in order to determine which actions to take to achieve their
goals. An attractive and much sought after property of this mech-
anism is that it produces decisions that arerational from the per-
spective of the individual agent. However, such agents are also in-
herently social. Moreover, individual and social concerns often con-
flict, leading to the possibility of inefficient performance of the in-
dividual and the system. To address these problems we propose
a framework for making socially acceptable decisions, based on
social welfare functions, that combines social and individual per-
spectives in a unified and flexible manner. The framework is real-
ized in an exemplar computational setting and an empirical anal-
ysis is made of the relative performance ofvaryingly sociable de-
cision-makingfunctions in a range of environments. This analysis
is then used to design an agent that adapts its decision-making to
reflect the resource constraints that it faces at any given time. A
further round of empirical evaluation shows how adding such a
metalevel mechanism enhances the performance of the agent by
directing reasoning to adopt different strategies in different con-
texts. Finally, the possibility and efficacy of making the metalevel
mechanism adaptive, so that experience of past encounters can be
factored into the decision-making, is demonstrated.

Index Terms—Intelligent agents, social reasoning.

I. INTRODUCTION

SOCIALLY intelligent agents are autonomous problem
solvers that have to achieve their objectives by interacting

with other similarly autonomous entities (be they other arti-
ficial agents or humans). When designing and building such
agents, a major concern is, therefore, with the decision-making
apparatus that they should use. Traditionally, designers have
sought to make their agents rational so that they can “do the
right thing” [1]. To this end, a major strand of research has
adopted an economic viewpoint and looked at self-interested
agents [2] that consider what action to take solely in terms
of its worth to themselves. However, this is only part of the
story. When an agent is situated in a social context, its actions
can often have nonlocal effects. For example, the actions of
different agents can conflict or result in duplication of action.
This can lead to undesirable results and inefficient utilization
of common resources. This may have implications for both
the performance of the individual and of others. Consequently,
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the benefits, to both the individual and the overall system, of
a more social perspective on decision-making are beginning
to be realized [3], [4] and notions of social rationality [5], [6]
are emerging. The notion of socially acceptable decisions has
long been of interest in human societies and in particular in
the field of socio-economics [7]. However, to date, there has
been comparatively little cross fertilization with agent-based
computing research (except notably [8]). To help rectify this
situation, this research seeks to examine the link with human
style social reasoning and use its insights to explore the conflict
between individual and global concerns in designing and
building socially intelligent artificial agents.

In addition to balancing individual and social concerns, so-
cially intelligent agents typically need to operate in a resource-
bounded manner. They do not have unlimited time or compu-
tational resources. Moreover, such bounded rationality should
be responsive to fluctuations in the amount of resources avail-
able. Hence, agents should be able to modify how they make
decisions based on their current context. In our case, this means
agents should be able to dynamically vary their balance between
individual and social considerations depending on the amount of
resources available in the system. Moreover, because computing
the social effects of action choices consumes resources, agents
need to be able to vary the effort they expend on this task. Thus,
when resources are plentiful an agent may wish to expend a sig-
nificant amount of effort computing the social implications of
an important choice. However, when resources become scarce,
the same agent may choose to adopt a computationally cheaper
approach to the same decision.

This paper investigates the feasibility and efficacy ofsocially
rational decision-making. We define a decision-making frame-
work based on work found in socio-economics (in particular
social welfare functions) that explicitly characterizes how
agents can determine which action to perform in terms of a
balance between individual and social concerns. By being
explicit about the constituent components, the framework
provides the flexibility to enable agents to dynamically tune
their operation in order to be as rational as possible in the
prevailing circumstances. This framework is implemented in
an exemplar social setting and the ensuing empirical evalua-
tion highlights the effectiveness of various decision-making
strategies in different problem solving environments. These
results are then used to design a metalevel controller that adapts
the agent’s social strategy to the resource constraints that it
is faced with at any given moment in time. This mechanism
enables the agent to vary its degree of sociality atrun-time
according to its perception of the environment and the other
agents. The benefits of the metalevel controller are shown

1083–4427/01$10.00 © 2001 IEEE



382 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 31, NO. 5, SEPTEMBER 2001

through empirical evaluation. Finally, the metalevel controller
is made adaptive, using a-Learning model, so that the agent
can use its experience of previous encounters to adapt its social
behavior to best fit with that of the other agents. Again, the
benefits of this mechanism are highlighted empirically.

This work makes a number of important contributions to the
state-of-the-art in socially intelligent agents. First, it describes
a marriage of socio-economic and agent-based techniques to
demonstrate how social reasoning can be effectively employed
by an agent situated in a multiple agent system. Second, the ef-
fectiveness of a number of social reasoning strategies is eval-
uated as a dependent of the problem solving environment and
the types of other agents it contains. Third, the design, imple-
mentation, and evaluation of a metalevel controller is given that
enables the agent to vary its social problem solving disposi-
tion according to its prevailing resource constraints. Finally, the
means and the benefits of making the metalevel controller adap-
tive are demonstrated. When taken together, this work can be
seen as bringing together the main constituent components for
designing and building socially intelligent agents.

The remainder of the paper is structured as follows. Section II
details the socially rational decision-making framework and
introduces the multi-agent platform used in our empirical eval-
uation. Section III describes the experiments we performed to
assess our hypotheses about socially rational decision-making.
Section IV expands the basic design to include a metalevel
module that allows the agent to deal with the problems of
bounded rationality and builds on the results of the experiments
in Section III. Section V investigates the addition of a learning
component to the metacontrol level. Related work is discussed
in Section VI, followed by the conclusions and future work in
Section VII.

II. I NDIVIDUAL AND SOCIAL NEEDS

To date, the dominant decision-making philosophy in agent
design has been to equate rationality with the notion of an
individual maximizing a self-biased utility function. Thus,
an agent’s motivation is the maximization of benefits with
regards to its own goals. However, in a multi-agent setting,
for the reasons outlined above, a more social perspective on
decision-making is often desirable. Traditionally, this has
been achieved by making the overall system the primary unit
of concern. This has the consequence of subordinating an
agent’s autonomy to the needs of the system. For this reason,
we believe such top–down approaches fail to exploit the full
potential of the agent-oriented approach; therefore, we propose
an alternative means of achieving the same end. Thus, we wish
to build agents from the micro to macro level, but still retain the
benefits of a more social perspective. To this end, our approach
is to incorporate an element of social consideration into each
agent’s individual decision-making function.

One means of achieving good system performance from the
micro level is to incorporate all the necessary social information
into a single, amorphous utility function. This is the method that
would be followed by advocates of traditional decision theoretic
approaches. However, such an approach conceals important de-
tails of how (and why) the agent actually reasons. Such details

are not only important for the analysis of agent behavior, but
also provide a vital tool to designers when building complex
systems. Therefore, we advocate an approach that provides de-
tailed guidance as to how social agents may be constructed.

Making the theory of social decision-making finer grained in
this manner is also essential for progress on the issue of bounded
social rationality. Here, parallels can be drawn between con-
ceptions of metareasoning [9] and the idea of controlling the
amount of social reasoning that should be performed by con-
tracting and expanding the set of acquaintances the agent con-
siders in its reasoning.

A. Social Decision-Making Framework

In order to ascertain the social impact of an action, an agent
needs to be able to determine the value that a state (as a re-
sult of an action) has for other individuals and possibly for the
whole society. To do this, the agent needs to empathize with
what others value (i.e., know how others value states and be able
to make interpersonal comparisons). In this case, the social de-
cision framework developed here builds upon and extends the
idea of social rationality proposed by Jennings and Campos [5]
and is based on Harsanyi’s social welfare function [10]. Social
welfare functions were first introduced by sociologists and they
deal with choice by a group of individuals in a society. The de-
cision maker can either be a group making a joint decision or
an individual making a choice that has global consequences.
The general theory of social welfare is formalized as follows.
A set of agents must produce a collective
decision over a set of alternative social situations .
Each individual has a preference ordering of the alternatives
(this could be a simple ordinal ranking or a cardinal utility func-
tion). The group preference ordering, or social choice function,
is some function , such that represents the preferences of
the group. In Harsanyi’s formulation of social choice, each in-
dividual’s preferences are represented by a von Neumann–Mor-
genstern cardinal utility function that obeys the standard ax-
ioms of Bayesian rationality [11]. In particular, is defined to
be the weighted summation of the individual utilities

(1)

where
individual agent;
weight given to agent utility function in the overall
equation;
action under consideration.

To be socially rational, an individual maximizes over the dif-
ferent alternatives. This function represents how an individual
agent may judge states of the world from a moral or social per-
spective by taking into consideration the benefit to others of
its course of action and weighing it against its own benefits.
Harsanyi [10] has shown that his social welfare function sat-
isfies the following important postulates. First, the utility func-
tions of all the individuals satisfy the axioms of rational behavior
under risk. Second, the social preference function of the agent
also satisfies these axioms. Finally, if all individuals are indif-
ferent between any two alternatives, from the viewpoint of their
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personal preferences, then an individualwill be indifferent be-
tween them from the standpoint of its social preference func-
tion. This provides an invaluable link between conceptions of
individual and social rationality.

Our work adopts the basic mechanism of social choice de-
fined in (1) (although see [12] for variants) as the means of
ensuring that individual agents make socially responsible de-
cisions. Using this formulation of social welfare, an individual
has two separate preference orderings: its individual preferences
(indicating an agent’s own preference structure) and its social
preferences (representing what an agent believes is best for the
society in which it is situated). The task of analyzing how the
agent decides what action to perform can be formulated by dif-
ferentiating how the agent makes decisions in terms of what it
expects to get out of the action itself and what effect the ac-
tion has on others. The effect that an action has on other agents
can be determined by examining their utility functions. This is a
feasible method for agent systems consisting of tens of agents,
which is our primary target. However, when the number grows
to hundreds or even thousands, agents will have large acquain-
tance sets and the calculation of all the necessary utility func-
tions will be computationally prohibitive in most cases. In such
circumstances, the agent will need to control this calculation
by considering how resource bounded it currently is (see Sec-
tion IV for a further discussion of this point). A further poten-
tial difficulty with the approach we have advocated stems from
the inclusion of the acquaintances’ utility functions. In an ideal
world, each agent would know the utility function of all the other
agents. However, in practice this is infeasible. Thus, in the ex-
periments, each agent uses an approximation of these functions,
based on information it extracts from the interactions that it has
with others.

In terms of the balance between individual and social needs,
(1) can be rewritten as

(2)

By setting the weighting of a specific utility function to zero, an
agent can eliminate the influence of that acquaintance on its de-
cision-making. For example, setting the agent’s own weighting

to zero removes any personal utility benefit consideration
from its decisions. In this way, the agent can tailor its function
to give more weighting to either individual or social concerns.
Thus, we can say at a coarse level, the above equation becomes

soc (3)

where is the weighting given to the social utility part of the
function (i.e., how much one cares about the needs of others).
To gain a perspective on the feasibility of using such a mecha-
nism in practical systems, the above decision-making function
has been implemented in a multi-agent testbed and evaluated as
follows.

B. Experimental Domain

The decision-making framework was evaluated by applying
it to the Phoenix fire fighting multi-agent simulation [13]. Here,

Fig. 1. Distributed Phoenix environment.

the park is policed by several firebosses, each of which is re-
sponsible for a specific geographic region (see Fig. 1).

Firebosses control a number of firefighting resources (bull-
dozers), that can be exchanged as and when necessary. The goal
of the firebosses is to prevent fires claiming too much land.
Hence, the success of an agent, and the utility it achieves, is mea-
sured as a function of land loss. The system’s overall utility can
also be measured in this way (i.e., land lost in the whole park).
In order to use the framework described in.Section II-A, we as-
sume that the agents’ utility functions are comparable.1 A fire-
boss can estimate, given the current environmental conditions,
how a fire is likely to spread and it can, therefore, choose the
most effective allocation of its firefighting resources. These pro-
jections provide the agent with a means of determining the likely
outcomes of different courses of action. Thus, for example, an
agent can ascertain whether asking for a loan of resources from
another fireboss is likely to be profitable. This choice is affected
by the uncertainty of the reply of the other agents, and hence,
the decision maker will use a probability distribution based on
whether the agent believes that 1) there is a fire in the other
agent’s part of the park and 2) whether the other agent is likely
to give resources if it is possible for it to do so.

In what follows, we assume all agents are motivated toward
the goal of reducing the amount of land lost as a result of fires.
If an action results in a large land loss, then that action has
less utility in comparison with an action that produces lower
land loss. Attaining more resources allows the agent to com-
plete fighting the fire more quickly and so is preferred to simply
fighting the fire with its current resources. However, asking for
extra resources from another fireboss decreases that fireboss’s
effectiveness (and utility) when it is faced with a fire of its own.
Therefore, agents need to be able to estimate the likely utility of
a particular resource distribution to their acquaintances in terms
of predicted land lost in their region. Agents do this by assessing
whether a fire is likely to occur in the acquaintance’s area of the
park and what effect particular resource distributions will have
for the agent in this context (based on the acquaintance’s es-
timated utility function). This is then used in (3) to determine
which action is socially preferred.

To illustrate the nature of social decision-making in Phoenix,
consider a scenario involving three agents ( , and ), 2 each

1This is acceptable if we assume that the agents’ utility functions are compa-
rable up to an affine transformation [7].

2For reasons of clarity, the example scenario considers just three of the sys-
tems’ agents.
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of which has control over two bulldozers. If a fire breaks out
in ’s area, must decide whether to ask or for extra re-
sources or proceed to fight the fire with its current resources. By
obtaining an extra bulldozer, will probably reduce the amount
of land it loses and hence increase its utility. However, taking
a bulldozer from or reduces their firefighting power and
hence decreases their expected utility in the event of a fire. In ad-
dition, sharing bulldozers involves overheads based on the time
it takes to communicate, as well as the delay of waiting for the
extra resource(s) to arrive. Furthermore,is not certain that its
request will be granted, hence time may be wasted if its request
is refused. Against this background,’s decision can be formu-
lated in the following manner:

ask ask soc ask (4)

where
ask social welfare function of agent asking agent

for a loan of resources;
weighting gives to its own utility function;
weighting given to the social part of the utility
equation;
expected utility function of fireboss.

The utility functions and capture the domain specific
considerations detailed above, such as the likelihood of suc-
cess and the communication overheads involved in requesting
a bulldozer. Each agent uses a discrete probability distribution
to represent the likelihood that a resource request is accepted.
Initially all agents use the same distribution, but these are up-
dated over time as a result of interaction and resource exchange
between the agents (e.g., when resource requests are accepted
or rejected). Agent will compute similar formulations for its
other options (ask and fight the fire with current resources)
and then select the action that maximizes the social welfare.

III. EVALUATING THE EFFECTIVENESS OFSOCIAL

DECISION-MAKING

Our aim is to evaluate the effectiveness of different decision-
making attitudes under varying levels of resource pressure. To
this end, the experimental control variables are the following.

• The utility function weightings and from (3).
These values can be altered to implement a wide range
of decision-making strategies. Here we use the following
values:

• 0:1 Selfless: care nothing about their own utility.
These agents will not ask for help, but will grant any
resource request that they receive (provided they are
able to do so);

• 1:0 Selfish: care only about their own utility. They
will ask for resources from others, but will not loan
out their own resources;

• 0.5:0.5Balanced: place equal concern on individual
and social needs;

• 0.25:0.75 Social tendency: are more social than
selfish;

• 0.75:0.25Selfish tendency: are more selfish than so-
cial.

• The number of firefighting resources each agent controls,
i.e., one, two, or three bulldozers. In this context, three
represents as many as the agent ever needs to fight a single
fire).

• How fast each fireboss can make a decision (slow,
medium, or fast).

Resource pressure is exerted by 1) altering the number of re-
sources an agent controls and 2) manipulating how quickly an
agent can make its decisions. A given simulation run involves
specifying when and where fires occur, how large they are ini-
tially, and what the environmental conditions are (wind speed
etc.). Each run is randomly generated, involving between two
and six fires. Statistically significant results are obtained by av-
eraging over 12 runs. There are six firebosses in these exper-
iments; although this number represents a fairly small multi-
agent system, it nevertheless provides a reasonable indication
of the feasibility of our decision-making mechanism.

Two broad types of experiments were carried out. First, ones
where all agents used the same decision-making attitude (Sec-
tion III-A). This is to ascertain the performance profile of the
various attitudes under varying resource constraints. Second,
those in which agents have different attitudes (Section III-B).
This is to ascertain the robustness of the decision-making at-
titudes against a range of heterogeneous opponents. In all the
experiments, individual utility is measured as a function of land
lost and system utility is measured as a function of the land lost
in the entire park. The latter is calculated as the aggregation of
the land lost by all the firebosses.

A. Homogeneous Agent Societies

These experiments seek to test the following hypotheses
about social decision-making.

1) The performance of the self-biased attitudes (selfish,
selfish tendency) will deteriorate, both at the individual
and system level, as the number of resources in the
system are reduced.

2) The performance of the society-based attitudes (selfless,
balanced, and social tendency) will slowly degrade as re-
sources are reduced, but not as much as the self-interested
types.

3) Balanced agents will achieve the best system level perfor-
mance since their decisions are based upon the welfare of
the whole system.

Fig. 2 shows how the average individual performance, for one
sample agent, of the different agent strategies is affected when
resource pressure is exerted on the system. Runs using different
rates of thinking (the other form of resource pressure) produce
similar results but, because of space limitations, are not shown
here. It can be seen that self-biased agents, as predicted in hy-
pothesis 1, perform poorly in times of scarce resources. This is
because they waste time trying to obtain extra resources when 1)
it isperhapsunnecessaryand2) thesystem iscomprisedofagents
of the same type that will not provide assistance in any case. Fur-
thermore, we can see their performance degrades more rapidly
than those with social tendencies as stated in hypothesis 2.

The selfish tendency strategy is better than the purely selfish
one because requests for extra resources are only made if they
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Fig. 2. Individual agent performance.

are likely to have a noticeable benefit. The surprising result is
that agents with a social tendency perform very badly in times
of scarce resources. This is due to the fact that in times of scarce
resources when resources are more valuable, the value of those
extra resources outweighs any social considerations an agent
may have and so requests are more likely to be made. In turn,
the acquaintances are less likely to loan out their resources as it
is too costly for them on an individual basis. This introduces
a delay in the fire fighting and so means more land is lost.
Balanced agents perform well since all utilities are considered
equally and so the costs of asking for resources and loaning them
out play an important role in the decision. This means balanced
agents ask for and loan out resources, but only if it is clearly
beneficial. In times of plentiful resources, the performance of
the different types becomes less disparate since agents gener-
ally have sufficient resources to minimize the impact of social
interchange.

Fig. 3 shows the cumulative land loss of the entire system.
Here, agents with social tendencies generally perform well as
they explicitly attempt to assess the system-wide implication
of their choices. We can also see that balanced agents perform
the best (hypothesis 3) as they work toward overall utility
maximization. However, selfless agents perform worse than
the balanced or social tendency agents because they miss the
opportunity of attaining available resources from elsewhere,
i.e., balanced/social tendency attitudes. They do, however,
perform better than the self-biased strategies as they do not
waste time asking for resources unless they really need to, i.e.,
when they have no resources, and simply get on with the task
at hand.

B. Heterogeneous Agent Societies

To investigate the performance of a system comprising of
agents using different strategies, the runs described for homo-
geneous societies were repeated using different percentage mix-
tures of the various strategies. In particular, different percent-
ages of selfish agents (25%, 50%, and 75%) were introduced
into societies of the other decision-making attitudes with the re-
source pressure kept at a constant level. We are especially in-
terested in the impact of selfish agents since these should have
the greatest detrimental effect on the performance of socially
rational societies. To this end, we wish to explore the following
hypotheses.

1) The performance of selfless agents will decrease rapidly as
more selfish agents are introduced.

Fig. 3. System performance.

2) The performance of balanced agents will be resilient to the
introduction of selfish agents.

3) Mixing selfish and socially motivated agents in one society
may produce system performance that is superior to that of
the homogeneous societies of either type.

Fig. 4(a) shows both the average individual performance of
selfless and selfish agents in societies in which the percentage of
selfish agents is steadily increased and Fig. 4(b) a similar graph
but with societies that are a mixture of balanced and selfish
agents. The individual performance of both the selfless and the
balanced agents suffer as the number of selfish agents is in-
creased. However, the balanced agents are less susceptible to
the increase in the number of selfish agents since they have an
inbuilt concern for their own utility (hypothesis 5). This means
they will not unquestioningly give resources to others if they
can profit from retaining them. It can also be seen that the per-
formance of the selfless agents decrease more rapidly than the
balanced agents as more selfish agents are introduced (hypoth-
esis 4).

Fig. 5 demonstrates how the mixed societies perform on a
system level. The gradual introduction of more selfish agents
decreases overall system performance for both mixtures. How-
ever, the society consisting of balanced agents shows a more
steady decline in performance than the one containing selfless
agents. Again this occurs because balanced agents are more
concerned for the overall system and not just for individual or
altruistic concerns. One point to note is the initial performance
improvement of the selfless/selfish society. When there are
a small number of selfish agents, and several selfless agents
willing to accede to requests, overall performance improves
since resources in the system are being distributed more
effectively than would be the case if the system consisted solely
of selfless agents. This can be related to hypothesis 6 where
we expected that system performance would actually improve
with some mixtures of agents. As the number of selfish agents
increases, however, there are fewer opportunities for these
agents to gain resources, so performance again deteriorates.

The above results demonstrate the advantage of considering
both individual and social needs when making decisions. They
also show the factors that can affect the outcome of the decision.
For example, an agent adopting different strategies in different
resource bounded environments can produce different perfor-
mance characteristics. The composition of strategies within the
system also has an impact on performance. The results shown
above indicate that using some mixtures of different strategy
types can produce better results than others. Finally, agents do
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Fig. 4. Individual performance in (a) selfish/selfless and (b) selfish/balanced societies.

Fig. 5. System performance of heterogeneous societies.

not learn how to best interact with other agents. Rather, they
simply follow the same strategy regardless of whether a positive
or a negative response was obtained from an agent in a previous
encounter.

Given these results, we modified the design of the Phoenix
agents to take the above points into consideration. A metacon-
trol mechanism was designed to sit above the agent’s decision-
making mechanism to aid it to reason about what is the best
strategy to adopt depending on what the resource context is. This
metalevel takes information about the number of resources an
agent has and the state of the environment to determine what it
needs to do to tackle its fires.

IV. M ETACONTROL OFSOCIAL REASONING

We can identify several ways in which the decision-making
mechanism of the agents can be changed to improve their
performance. First of all, by adopting a static decision-making
strategy, the agent can either miss out on gaining extra help
because it is too selfless, or persist in trying to attain resources
when it is obvious that it is wasting its time (this can be seen
in the selfish strategy case in Figs. 2 and 3). This suggests that
there are times when having the ability to dynamically vary
one’s strategy is useful. Second, agents may waste valuable
time measuring the social implications of their actions, when
they should be taking action. For example, when the agent is
faced with a serious fire that needs immediate action, time
can be wasted by calculating the full social implications of
all the different alternatives. A more appropriate solution is
to minimize the calculation of social welfare to only include

relevant or important agents. Finally, agents currently do not
learn from their interactions with others, so they do not take
into account whether asking a particular agent for resources
is more profitable than asking others. The sending of such
requests and the waiting for replies also results in time being
wasted when the outcome of the request is failure to secure
extra resources. Agents can thus save time by pinpointing
the agents with whom they can interact successfully as well
as determining what strategy may be appropriate given the
responses they have received from others in the system.

Based on these observations, the design of the agent was
modified to include a metalevel that controls the amount of so-
cial reasoning that is performed by the agent. Metareasoning
has been used in a variety of systems to overcome problems of
bounded rationality [9]. The general idea is that a computational
level (metalevel) sits above the basic decision-making mecha-
nism of the agent and controls how much computation should
be devoted to deciding what to do. In our case, fires occur at
different times and with varying ferocity. Fireboss agents may
therefore need to make quick decisions as to how to tackle a fire
when fires are high risk and spread quickly. However, for less
serious fires, they may be able to plan firefighting in a more de-
tailed and reasoned way.

A. Metalevel Architecture

From the previous set of experiments, the following summa-
rizes the points that were noted to affect the performance of the
fireboss agents.

• How resource constrained the agents are in terms of

1) how many resources they have (zero, one, two, or
three bulldozers);

2) how many fires there are and what is the ferocity of
each (this is related to the number of bulldozers that
are available).

Together these represent how resource-bounded the agent
is. Performance improves the more resources that an agent
has at its disposal (Figs. 2 and 3).

• The constituency of the types of agents in the system. This
is because the performance of the agents is related to the
possibility of loaning resources from other agents (Figs. 4
and 5). Attempting to loan resources from a selfish agent
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Fig. 6. Metalevel design.

is not likely to be successful and results in a waste of time
asking.

These points contribute to the metalevel design (see Fig. 6).
The figure shows how a metalevel was designed to sit above
the decision-making mechanism of the agent controlling the
strategy adopted when making decisions. Information about the
state of the environment such as number of bulldozers and state
of the fire is used to choose the social weighting, the peers to
consider asking, and peers to include in the calculation of so-
cial utility. This information is used to change the focus of the
decision-making strategy by adapting the amount of social rea-
soning that is undertaken (changing the peers considered) as
well as modifying the weights used in the equation. In more
detail, the metalevel uses the following information:

• the number of resources an agent has at its disposal;
• the environmental conditions (this provides information

about the state of the environment, such as wind speed and
direction);

• classification of fires (this gives the agent a measure of
how serious the fire is); this measure is based on the initial
size of the fire and how fast it is predicted to grow; fires
are classified to be of low risk, medium risk, or high risk);

• the previous requests for this fire (this ensures that the
agent does not ask the same firebosses again).

To test whether this design offers an improvement on the basic
strategies compared in the first set of experiments, the following
empirical evaluation was performed.

B. Empirical Evaluation

To test the effectiveness of this extra reasoning level, the fol-
lowing hypothesis was proposed.

1) Adding a metalevel component that helps the agent direct
its reasoning will improve the performance of the individual
agent over corresponding agents that do not possess such a
component. This improvement will be apparent at both the
individual level and the system level.

To test this hypothesis, experiments were carried out to
compare the performance of agents who adapt their deci-
sion-making depending on how resource constrained they were
to other strategies. In order to test how effective the metacontrol
strategy is, it was compared to two strategies from the previous
set of experiments: balanced (social) and selfish. These were

Fig. 7. Metalevel: Individual agent performance.

Fig. 8. Metalevel: Overall system results.

chosen in order to perform a comparison with the best and
worst strategies previously tested.

Fig. 7 shows the results of the experiments to compare selfish,
social, and metalevel strategies. The graph shows the land lost
for an individual agent averaged over a set of firefighting sce-
narios and over different levels of resource availability. It can be
seen, as hypothesized, that implementing a control level above
that of the basic reasoning level does indeed produce an im-
provement in the performance of the individual agent. This is
true over the scenarios when the fireboss agents have one, two,
or three bulldozers at their disposal. Not only this, but the im-
provement in performance is quite marked; in some contexts,
it represents an almost 50% improvement. This is due to the
fact that the agent is adapting its strategy when faced with dif-
ferent contexts, which it is not doing in the other two strategies.
This is useful as the agent may not always be able to attain re-
sources from others since they are fighting their own fires, or
have adopted a selfish attitude due to the high probability of
another fire occurring. In addition, calculating the social utility
over only a subset of the possible number of agents affected re-
duces the amount of time that the agent spends reasoning, so
the agent gets on and fights the fire quicker. This subset, also
directs the agent to reason about more profitable interactions
with others, such as those who would be more inclined to lend
it resources. Again this reduces the amount of calculation that
needs to be done on the social welfare as there are fewer action
alternatives to consider.

Fig. 8 shows the variation on system performance of the
selfish, social, and metacontrol strategies. Here, the system as
a whole also performed better when the agents are changing
their strategies depending on what resource context they find
themselves in. All metasocial agents attempted to adapt their
strategy based on 1) the strategies of others and 2) how resource
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constrained they were. This meant that there was a much more
overall efficient utilization of resources (especially time) in the
system.

The above results show that controlling what reasoning is
done has a marked effect on the performance of the agents.
By taking into account what the state of the environment and
availability of resources are, the agent can tailor its reasoning to
adapt to different situations. Thus, when resources are scarce,
the agent can adopt a strategy that reduces the amount of com-
putation that needs to be done and indicates what agents may
be more likely to lend resources when requested to. When re-
sources are plentiful, it can include all agents in its calculation
of social welfare, ensuring that the full implications of its ac-
tions are considered. The next section considers the affect of
further enhancing the metalevel control of the agent by adding
a learning element to its design.

V. ADAPTIVE METALEVEL CONTROL OFSOCIAL REASONING

The previous section considered the improvements that could
be made to the Phoenix agent design. One of the weaknesses of
the original system is that the agent adopts a static strategy when
making decisions and that it would be appropriate for the agent
to adapt its reasoning to deal with different resource bounded
contexts. The experiments described in Section IV dealt with
this issue. A second weakness was the fact that agents do not
learn from their previous interactions. Thus, agents repeatedly
ask for a loan of resources from an agent that is simply not
willing to accede to the request. To overcome this, it is clear
that learning is needed to allow the agent to further improve its
reasoning by utilizing information about the success or failure of
previous interactions. The agent can learn what sort of responses
it is likely to get from others by using the replies it has received
from previous resource requests. This information can then be
used to determine what agents are likely to give the agent extra
resources and those that will not and to help the agent compile
a list of agents that it may ask for help and receive a favorable
response.

In this work, the method of learning chosen is reinforcement
based, and in particular-learning [14]. This was adopted be-
cause of its natural use of feedback information from acting
within the environment from the fact that learning can be done
as the agents interact together and that no explicit model of the
environment is necessary.

The basic idea is that the agent acts within its world to achieve
its goals by taking actions which allows it to move within
the state space. It receives feedback from its various actions
when it traverses from one state to another (see Fig. 9).
The goal is for the agent to learn a control policy that
chooses an action in state that maximizes the accumulative
reward. The accumulative reward can be defined as the sum of
the rewards from the current state to the goal state.

In -learning, an agent keeps a table of action state pairs,
that tell it the value of taking action in state . In

Phoenix, fireboss agents can learn who are the best firebosses
to ask for a loan of firefighting resources. Each fireboss will
have a -value for asking all other firebosses in the system.
Every time an agent requests resources from another fireboss,

Fig. 9. BasicQ-learning model.

the agent can update its -value representing the value of
asking based on whether the agent says yes or no. This infor-
mation can then be used by the agent to help decide who to ask
for resources. -values are updated by the following:

(5)

where
-value of the th action trial;

reward given after the action has completed;
learning rate of the agent.

If a low learning rate is used, the agent is slow to react to changes
in the environment, whereas a high learning rate means that the
agent reacts quickly to changes.

A simple means of choosing what action is right to perform,
would be to simply choose the action that has the best-value.
In doing this, the agent may commit itself to choosing actions
which initially have high -values, perhaps failing to explore
other actions which may in the long run have higher-values
and so be more profitable. Therefore, for action choice, it is
common to use a probabilistic approach [15].

(6)

where is the probability of choosing actionin state and
is a temperature used to produce different degrees of explo-

ration. A higher value of means that the agent chooses actions
with more equal probability, so is more inclined to explore dif-
ferent action alternatives. A low value ofproduces behavior
which sees the agent choosing the more highly valued actions
and exposes the agent to the possibility of being stuck in local
maxima.

A. Experiments

Experimentation with the -learning was split into two parts.
The first part of this phase of experimentation was to test how
agents using -learning in conjunction with the metalevel con-
trol compared to agents who simply used the metalevel control.
Hence, in the first set of experiments the learning rate and ex-
ploration was kept constant to simply see how the performance
compares. Each fireboss agent keeps a table of-values for
each of its peers. Each time it makes a request to a certain peer,
it updates the -value of that peer using the amount of land that
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Fig. 10. Comparison of metalevel and adaptive strategies: Individual results.

would be saved as a result of the request as a basis for calcu-
lating the reward.

In the experiments, the land lost was recorded for various
levels of resource availability for both metacontrolled and
learning agents. We propose the following hypothesis.

1) Providing the agents with the basic ability to learn from
previous interactions provides a means of improving deci-
sion-making.

The second part of these experiments investigates the ef-
fect of changing the learning rate and the exploration con-
stant on performance. Different values of the learning rate
and temperature were used. Three different learning rates
were used: low, medium, and high. In addition to this, dif-
ferent values of were used to indicate a low, a medium, or
a high degree of exploration. Here, the following hypotheses
were adopted.

2) Increasing the rate of learning should improve performance
since agents learn the beneficial actions more quickly.

3) Increasing the degree of exploration will improve perfor-
mance in resource constrained situations, though there will
be a point at which greater exploration will degrade perfor-
mance in some situations.

In order to provide a good indication of the strengths of the
learning mechanism, different compositions of agents were used
in which there was a percentage of selfish agents in the system.
These different mixes included

1) a system comprising completely of adaptive agents;
2) a system consisting of 50% of adaptive agents;
3) a system where there was a single adaptive agent.

Due to the fact that selfish agents never provide assistance,
placing adaptive agents in this setting provides a means of
really testing the effectiveness of learning what agents are best
to request resources from. All of the results of the adaptive
experiments are given below.

B. Results

Fig. 10 compares the performance of agents using a metalevel
strategy and ones, which in addition, adopt the-learning
strategy. Here, adaptive agents perform even better than the
metalevel ones. This is because these agents not only adapt to
varying levels of resource pressure, but also learn from pre-
vious experience to know who are the firebosses that are more
likely to provide assistance. They make the assumption that
agents that have been helpful in the past will be helpful in the
future. The adaptive agents can thus finetune their metacontrol

Fig. 11. Comparison of metalevel and adaptive strategies: System results.

Fig. 12. Increasing�: Individual performance.

Fig. 13. Increasing�: System performance.

strategy, becoming more prudent with regards to who to ask for
loans as well as who to include in their decision-making.

Fig. 11 shows the results at the system level. Again, the adap-
tive metacontrolled layer shows an improvement over the meta-
controlled layer over all levels of resource availability. This is
due to the fact that all agents learn that particular agents are
better to request resources from than others.

Figs. 12 and 13 show the effect of increasing the learning
rate on the performance of the individual and the system. As
can be seen, agents using a higher learning rate perform better
as proposed in hypothesis 2. This is because agents learn more
quickly what other agents are likely to give them resources and
so they can identify them more quickly and attain extra re-
sources from them in future fires. In the case where resources are
scarce (number of bulldozers is equal to one), there is a sharper
increase in performance than in the other two resource cases.
In such situations, it is more important for agents to be able to
identify to whom they should make a request for resources, as
they need to be able to get on and fight the fire quickly.
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Fig. 14. Increasing� : Individual performance.

Fig. 15. Increasing� : System performance.

The performance of the adaptive agents using different tem-
perature values are shown in Figs. 14 and 15. As the temperature
parameter is increased, the agents are more inclined to explore
alternative agents to ask for resources rather than simply the
ones that have been helpful in the past. Here we see that in this
environment, the more exploration that is performed the worse
the performance of the agents becomes. This is especially true
when resources are scarce. There is, however, a slight improve-
ment in performance when agents engage in a medium degree
of exploration. This can be explained by the fact that agents can
benefit from asking others but may waste time in trying out dif-
ferent agents, some of which may be further away from the fire.
Being further away from the fire means that bulldozers will take
longer to travel to the fire, in which time, the fire has expanded.

The final graphs show how the performance varies over the
different values of and within different compositions of
systems. Fig. 16 shows how the increase ofaffects the per-
formance of the agents in different mixes of agent system. The
system containing all adaptive agents performs the best out of
the three mixes since all agents improve their decision-making
by adopting the metacontrolled learning strategy. In the case
where there is only one adaptive agent, performance is much
poorer than in the other two cases. This is because the adap-
tive agent does not have any opportunity to improve its perfor-
mance as there are no means of doing so as the system consists
of selfish agents. In addition, the improvement in performance
is slight as is increased. Again, learning may teach the agent
that it is better not to ask the other agents for resources, though
this means that the agent relies on dealing with the fire with its

Fig. 16. Increasing�: Individual performance in different mixes.

Fig. 17. Increasing� : Individual performance in different mixes.

own resources rather than gaining an advantage from obtaining
a loan of resources from others. In all cases, as the learning rate
is increased, the performance of the agents improved. This is be-
cause as in Figs. 12 and 13, as the learning rate increases, agents
learn more quickly what other agents are good and bad sources
of gaining extra resources.

Fig. 17 shows how performance is affected by changing the
temperature parameter. In the case of only one adaptive agent,
increasing the degree of exploration has little effect on perfor-
mance as there is little value to be gained from asking any other
firebosses. When there is a 50–50 mix, increasinginitially de-
grades performance then slightly improves it. This is because
the agent needs to engage in a certain level of exploration in
order to find the agents that are more willing to assist it. Below
this level, the agent misses out on the opportunity of gaining
extra resources as it is less likely to find agents that are willing
to help. Above this level, the agent has more chance of being
successful in finding an agent that will lend it resources since
it is more likely to try a wider variety of different agents. In
the all-adaptive case, increasingslowly degrades performance,
as the agent engages in more exploration. Again, as above, in-
creasing the degree of exploration results in the agent consid-
ering others that may be less suitable, due to their distance away
from the fire.

The above set of experiments have shown that adding a met-
alevel control component to the agent architecture has distinct
advantages over allowing the agent to follow a static decision-
making strategy over different resource-bounded contexts. This
shows that in order to maintain a high degree of performance,
the agent needs to tailor its decision-making to correspond to
the amount of resources that are available to it. By adapting its
decision-making strategy the agent can choose the best course
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of action applicable to the circumstances. In addition, giving the
agent the ability to learn from previous interactions can provide
invaluable feedback to the metalevel. The information learned
can be used to fine tune the metacontrol mechanism, providing
information that will enable the agent to pinpoint the agents with
which it is most beneficial to interact, as well as what strategy
to adopt when making decisions.

VI. RELATED WORK

Rationality has been widely debated and studied in the field
of agent research [1]. Decision theory [16] has emerged as the
dominant descriptive and normative theory of rational decision-
making. The fundamental principle of decision theory is the
maximization of the agent’s utility function under certain ax-
ioms of uncertainty and utility [17]. Game theory is also con-
cerned with the rational behavior between two or more inter-
acting individuals [18]. Each agent has a payoff or utility func-
tion that they attempt to maximize based on the information they
have about the strategy of the other individual(s). This payoff
function represents the preferences of the individual, though
it can be based on altruistic motives in the case where more
global/social concerns are the dominant philosophy. There are,
however, a number of problems with game theory with regards
to the social aspects of decision-making. One is the inability to
deal adequately with some social notions such as cooperation
[19]. In fact, without the introduction of some binding force en-
suring cooperation, the theory can produce suboptimal results,
as shown by the prisoners’ dilemma example. Furthermore, al-
though both game and decision theory provide simple and at-
tractive formalisms of individual action choice, they have been
criticized on the grounds that they reveal nothing about the mo-
tivations of the agents making the decisions [19]. For example,
both disciplines can produce socially acceptable results if the
utility functions used incorporate some social information, but
these theories provide no answers as tohow this can be done
or evenwhy this should be done. This, in turn, is of little use
when attempting to understand, describe, and ultimately build
socially intelligent agents. Thus, we adopt some of the funda-
mental principles of these theories but expand these ideas to ex-
plore our ideas of social reasoning.

A consistent theme in the work of Castelfranchi [3], [20] is
the concept that sociality is derived from the individual mind
and social action. Social rationality, and in particular an agent’s
social power, is described via manipulation of dependence rela-
tionships between agents. Agents may interfere, influence, and
adopt goals of their acquaintances as a result of the manipulation
of these relationships. Such notions can then form the basis of
a variety of social actions. Although underlining the need to ex-
plore and emphasize the social aspects of an agent’s make-up,
this line of work addresses the philosophical rather than prac-
tical questions of how this should be achieved. Building on
this, Cestaet al. [21] explore the practicalities of social deci-
sion-making by experimenting with a variety of social attitudes.
Their work mainly covers simple, rather rigid, agent systems
and concentrates on how the introduction of exploiters into a
society effects system performance. Their results are consistent
with our findings regarding the introduction of what we have

called selfish agents. When exploiters (selfish agents) are in-
troduced into their system, the performance of the system de-
creases, a result which is magnified as resource pressure is ex-
erted. Although they look at some effects of resource bounds,
this is not the main thrust of the work. Also, there is no discus-
sion of how individual autonomy is balanced with social con-
cerns in such contexts.

In [22], Brainov defined a range of social decision-making
strategies that differ in their attitudes toward other agents.

1) Altruistic agents consider other agents in their decision-
making;

2) Self-interested agents never consider other agents when
making decisions;

3) Envious agents consider others, but in a negative sense.

In [23], Brainov extends this work by comparing the use of
these different attitudes in multi-agent planning and negotiation.
Our different social attitudes are consistent with his basic def-
initions, but are grounded in a particular utility configuration:
that of Harsanyi’s welfare function. This provides a means of
moving the theory into practice and allows us to begin our in-
vestigations into resource bounded social agents.

Using the shared plans intention-reconcilation (SPIRE)
agent framework, Glass and Grosz investigate how a social
commitment incentive scheme, which they call the Brownie
point model, affects agent performance over time [24]. An
agent makes a decision based on a weighted combination of
the actual value of doing the task and the brownie points it is
rewarded. They manipulate this weighting to produce agents
that are more group committed by giving a higher weighting
to the brownie points part of the function. Their results show
that agents striking a balance between group commitments and
monetary gains perform better than ones who have a high level
of group commitment. They also look at how environmental
factors influence the performance of agents under this model,
but admit that further analysis and empirical investigation
is needed. Like the social rationality work presented here,
they experiment with various social strategies, but differ by
examining the effect on performance of how much time the
agent is committed to group tasks.

Jennings and Campos [5] define a social equivalent of
Newell’s conceptualization of individual agent rationality that
they term the principle of social rationality. Social rationality is
defined as the action choice of an individual based on global
concerns. To add substance to this definition, Kalenka and
Jennings [25] describe several social attitudes that can be
ascribed to agents under this principle. Their work provides
a framework for defining the different social attitudes that an
agent may possess, including helpfulness and cooperativity.
However, the missing element in their work is the practical
consideration of resource bounds on the performance of social
agents. Their framework also restricts the level of analysis
that can be performed with regards to an agent’s different
relationships in the society. For instance, there is no mechanism
to employ when the agent finds itself as a member of multiple
groups or coalitions.

More socially minded decision-making attitudes have been
investigated in the socio-economic literature under the umbrella
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of social welfare functions (also collective choice rules or pref-
erence aggregation rules) [7]. Here, the main emphasis is on how
a group of human agents can collectively make decisions. The
decision maker can either be several agents making a joint de-
cision or an individual making a decision that has global conse-
quences. These functions have been shown to have the advan-
tage of Pareto optimality, but have the disadvantage that equity
is not preserved in the group, i.e., the decision is not fair to ev-
eryone, for example in the case of the distribution of wealth.
There are also concerns as to how the utility functions are de-
rived and how they should be combined in an overall function
to reflect group choice. These issues are also important when
we consider software agents, and at present, there are no com-
prehensive solutions to these problems. However, we do be-
lieve that practical assumptions can be made about the origin
and structure of the utility functions used by agents, as we have
demonstrated in this work, and that with further experimenta-
tion into these issues, useful insights can be found.

VII. CONCLUSIONS ANDFUTURE WORK

This paper has outlined the case for a more socially aware
approach to decision-making in a multiple agent context and
how this should be tempered to deal with problems of resource
boundedness. A novel agent decision-making framework,
incorporating insights from work on social welfare functions,
has been devised to tackle the problem of decision-making by
socially intelligent agents. This framework provides a means
of describing and analyzing how an individual agent may
approach the task of making socially acceptable decisions in
a social system. More importantly, perhaps, is the empirical
demonstration of the effectiveness of various socially aware
decision functions in a range of problem solving scenarios.
Our results indicate that decision attitudes based on social
concerns perform better in resource-bounded contexts than
the more traditional, self-interested attitudes. In particular,
our results for balanced agents demonstrate the importance of
considering both the individual and system consequences of
decision-making. Furthermore, this work investigated the effect
of having several different decision-making attitudes in the
same system. Here again, we highlighted the importance and
effectiveness of basing decisions on both individual and social
concerns by demonstrating the robustness of balanced agents
in the face of exploitation by selfish agents. These experiments
also demonstrate the importance of social decision-making
to the performance of the individual and the system, of the
mixture of strategies used by the participating agents, and how
this must be considered in the individual’s decision-making
function.

This prompted an addition to the decision-making machinery
of the agent that took the above points into consideration. A
metalevel was implemented to help the agent determine what
strategy was best to follow in a certain context. The results
show that the addition of such a metalevel controller produces
an improvement in both individual and system performance.
This controller enables the agent to be aware of what current re-
source pressures it must address and then to adapt its reasoning
to handle this. In Phoenix, this means the agent modifies how

it considers others in the system when making decisions. This
is in terms of whether 1) it should consider asking others for
help or 2) whether it should loan resources to other agents. Re-
source pressures dictate that the agent needs to address the de-
gree of social reasoning it should undertake. For example, two
extremes would be whether it should eliminate social reasoning
altogether, i.e., consider only its own benefit, or take into ac-
count everyone, i.e., think about the value all the other agents
attribute to a particular course of action. Thus, the metalevel out-
lined in this paper allows the agent to modify its social reasoning
to eliminate agents considered in the social welfare function.

Another important aspect of agent performance is whether it
retains information and learns from its interactions. To this end,
this paper has also evaluated adding a learning component to
the agent’s reasoning mechanism. Results show that by giving
agents the ability to learn from previous interactions a further
increase in performance is produced. In addition to this, modi-
fying the learning equation’s parameters can affect the agents’
performance.

In terms of extending our work, we need to further investi-
gate how socially intelligent agents can dynamically build rela-
tionships with one another and then use this knowledge to learn
how to operate more efficiently. An example of how this could
be achieved was given in this paper in the form of learning who
it was worth asking for resources. Another important point to
consider is how an agent decides what peers it includes in its so-
cial welfare function. This is especially useful when the agent
is faced with heavy time pressures since it need only perform
calculations for the acquaintances that it deems important, but
then the problem is to determine which peers are important or
relevant to the decision. We are also interested in how agents
manage activities between different subgroups or coalitions that
they might be a part of. At the present, only the balance be-
tween individual and system concerns have been investigated.
We would like to explore in a more detailed way, how an agent
balances its own needs and the needs of the various groups of
which it is a part.

Finally, we believe that our socially rational agents are ide-
ally suited to participating in hybrid systems in which there
is a mixture of humans and artificial agents working together
(e.g., in computer supported cooperative work or group deci-
sion-making applications). In such systems, the artificial agent
needs to be able to act both to achieve individual objectives and
cooperate with humans in order to complement their problem
solving activities.
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