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Abstract—Socially intelligent agents are autonomous problem the benefits, to both the individual and the overall system, of
solvers that have to achieve their objectives by interacting with 3 more social perspective on decision-making are beginning

other similarly autonomous entities. A major concern, therefore, is to be realized [3], [4] and notions of social rationality [5], [6]
with the design of the decision-making mechanism that such agents ’ '

employ in order to determine which actions to take to achieve their are emerglng.. The not_lon of SOC|aIIy_ agceptablt_e deC|§|ons h.as
goals. An attractive and much sought after property of this mech- 10ng been of interest in human societies and in particular in
anism is that it produces decisions that areational from the per-  the field of socio-economics [7]. However, to date, there has
spective of the individual agent. However, such agents are also in- peen comparatively little cross fertilization with agent-based
herently social. Moreover, individual and social concems often con- - ting research (except notably [8]). To help rectify this
flict, leading to the possibility of inefficient performance of the in- . . . - . .
dividual and the system. To address these problems we proposes'tuat'on’_ this rese_arch seeks _to _exa_lmlne the link with humgn
a framework for making socially acceptable decisions, based on Style social reasoning and use its insights to explore the conflict
social welfare functions, that combines social and individual per- between individual and global concerns in designing and
spectives in a unified and flexible manner. The framework is real- building socially intelligent artificial agents.

ized in an exemplar computational setting and an empirical anal- | aqgition to balancing individual and social concerns, so-
ysis is made of the relative performance of/aryingly sociable de- ’

cision-makingfunctions in a range of environments. This analysis cially intelligent agents typically need to _op_erate_ in a resource-
is then used to design an agent that adapts its decision-making to bounded manner. They do not have unlimited time or compu-
reflect the resource constraints that it faces at any given time. A tational resources. Moreover, such bounded rationality should
further round of empirical evaluation shows how adding such a pe responsive to fluctuations in the amount of resources avail-
metalevel mechanism enhances the performance of the agent byapie Hence, agents should be able to modify how they make
directing reasoning to adopt different strategies in different con- decisions based on their current context. In our case, this means
texts. Finally, the possibility and efficacy of making the metalevel ; : - ’
mechanism adaptive, so that experience of past encounters can beagents should be able to dynamically vary their balance between
factored into the decision-making, is demonstrated. individual and social considerations depending on the amount of
Index Terms—ntelligent agents, social reasoning. resources availablein the syste_m. Moreover, because computing
the social effects of action choices consumes resources, agents
need to be able to vary the effort they expend on this task. Thus,

. INTRODUCTION when resources are plentiful an agent may wish to expend a sig-

OCIALLY intelligent agents are autonomous pr0b|enﬁ1ifi(_:ant amount o_f effort computing the social implications of
Ssolvers that have to achieve their objectives by interacti important choice. However, when resources become scarce,
with other similarly autonomous entities (be they other artil® same agent may choose to adopt a computationally cheaper
ficial agents or humans). When designing and building su@®Proach to the same decision.
agents, a major concern is, therefore, with the decision-making! NiS paper investigates the feasibility and efficacgofially
apparatus that they should use. Traditionally, designers h&gdonal decision-makingie define a decision-making frame-
sought to make their agents rational so that they can “do tH@rk based on work found in socio-economics (in particular
right thing” [1]. To this end, a major strand of research ha2ocial welfare functions) that explicitly characterizes how
adopted an economic viewpoint and looked at self-interestB@€nts can determine which action to perform in terms of a
agents [2] that consider what action to take solely in ternkglance between individual and social concerns. By being
of its worth to themselves. However, this is only part of th€Xplicit about the constituent components, the framework
story. When an agent is situated in a social context, its actiofvides the flexibility to enable agents to dynamically tune
can often have nonlocal effects. For example, the actions !Bgir operation in order to be as rational as possible in the
different agents can conflict or result in duplication of actiorPrevailing circumstances. This framework is implemented in
This can lead to undesirable results and inefficient utilizatici? €xeémplar social setting and the ensuing empirical evalua-
of common resources. This may have implications for bof#pn highlights the effectiveness of various decision-making

the performance of the individual and of others. Consequentfjrategies in different problem solving environments. These
results are then used to design a metalevel controller that adapts

the agent’s social strategy to the resource constraints that it
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through empirical evaluation. Finally, the metalevel controlleare not only important for the analysis of agent behavior, but
is made adaptive, using@-Learning model, so that the agentalso provide a vital tool to designers when building complex
can use its experience of previous encounters to adapt its sosi@tems. Therefore, we advocate an approach that provides de-
behavior to best fit with that of the other agents. Again, th@iled guidance as to how social agents may be constructed.
benefits of this mechanism are highlighted empirically. Making the theory of social decision-making finer grained in
This work makes a number of important contributions to thiis manner is also essential for progress on the issue of bounded
state-of-the-art in socially intelligent agents. First, it describe®cial rationality. Here, parallels can be drawn between con-
a marriage of socio-economic and agent-based techniqueséptions of metareasoning [9] and the idea of controlling the
demonstrate how social reasoning can be effectively employahount of social reasoning that should be performed by con-
by an agent situated in a multiple agent system. Second, thetedeting and expanding the set of acquaintances the agent con-
fectiveness of a number of social reasoning strategies is ewters in its reasoning.
uated as a dependent of the problem solving environment and
the types of other agents it contains. Third, the design, impl&: Social Decision-Making Framework

. . is, the agent needs to empathize with
tive are demonstrated. When taken together, this work can . others value (i.e., know how others value states and be able

seen as bringing _tlogether t'h(lel main”_constituent componentst@hake interpersonal comparisons). In this case, the social de-
desE]nmg apd bui ?'?\g socla ylnte igent agefntIT. . cision framework developed here builds upon and extends the
The remainder of the paper is structured as follows. Sectiondl,5 of social rationality proposed by Jennings and Campos [5]
details the socially rational decision-making framework angl, s hased on Harsanyi's social welfare function [10]. Social
introduces the multi-agent platform used in our empirical eVale|are functions were first introduced by sociologists and they
uation. Section Il describes the experiments we pe_rformedagm with choice by a group of individuals in a society. The de-
assess our hypotheses about_ soma_lly rat|0.nal decision-makifgdion maker can either be a group making a joint decision or
Section IV expands the basic design to include a metaleve] i qiviqual making a choice that has global consequences.

module that allows the agent to deal with the problems §4,¢ general theory of social welfare is formalized as follows.
bounded rationality and builds on the results of the experimemns;. o agentsi = {4, A,} must produce a collective
in Section IIl. Section V investigates the addition of a leamingeision over a set of alt’ern:;\tivné social Situatigns, . . . a,,}

) , X ,Slggch individual has a preference ordering of the alternatives
in Schon VI, followed by the conclusions and future work Mthis could be a simple ordinal ranking or a cardinal utility func-
Section VII. tion). The group preference ordering, or social choice function,
is some functiori¥, such tha#¥ represents the preferences of
II. INDIVIDUAL AND SociAL NEEDS the group. In Harsanyi's formulation of social choice, each in-
dividual's preferences are represented by a von Neumann—Mor-
To date, the dominant decision-making philosophy in agegénstern cardinal utility function that obeys the standard ax-
design has been to equate rationality with the notion of gmns of Bayesian rationality [11]. In particuld® is defined to

individual maximizing a self-biased utility function. Thuspe the weighted summation of the individual utilities
an agent's motivation is the maximization of benefits with

regards to its own goals. However, in a multi-agent setting, Wilaz) = Z A1 (1)
for the reasons outlined above, a more social perspective on o

decision-making is often desirable. Traditionally, this has res

been achieved by making the overall system the primary umihere

of concern. This has the consequence of subordinating an individual agent;

agent’s autonomy to the needs of the system. For this reason),  weight given to agent’s utility function in the overall
we believe such top—down approaches fail to exploit the full equation;

potential of the agent-oriented approach; therefore, we propose;, ~ action under consideration.
an alternative means of achieving the same end. Thus, we wighbe socially rational, an individual maximiz#s over the dif-
to build agents from the micro to macro level, but still retain thierent alternatives. This function represents how an individual
benefits of a more social perspective. To this end, our approagent may judge states of the world from a moral or social per-
is to incorporate an element of social consideration into easpective by taking into consideration the benefit to others of
agent’s individual decision-making function. its course of action and weighing it against its own benefits.
One means of achieving good system performance from tHarsanyi [10] has shown that his social welfare function sat-
micro level is to incorporate all the necessary social informatigsfies the following important postulates. First, the utility func-
into a single, amorphous utility function. This is the method thaibns of all the individuals satisfy the axioms of rational behavior
would be followed by advocates of traditional decision theoretinder risk. Second, the social preference function of the agent
approaches. However, such an approach conceals importantades satisfies these axioms. Finally, if all individuals are indif-
tails of how (and why) the agent actually reasons. Such detdisent between any two alternatives, from the viewpoint of their
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personal preferences, then an individinaill be indifferent be- By fross

tween them from the standpoint of its social preference func 73 & a_ﬂ&

tion. This provides an invaluable link between conceptions o| B m W buldo

individual and social rationality. B ke
Our work adopts the basic mechanism of social choice de

fined in (1) (although see [12] for variants) as the means o & e

ensuring that individual agents make socially responsible de

cisions. Using this formulation of social welfare, an individual

has two separate preference orderings: its individual preferenc "Rg

(indicating an agent's own preference structure) and its soci¢| 8y
preferences (representing what an agent believes is best for t
society in which it is situated). The task of analyzing how the
agent decides what action to perform can be formulated by o9
ferentiating how the agent makes decisions in terms of what it

expects to get out of the action itself and what effect the all® Park is policed by several firebosses, each of which is re-

tion has on others. The effect that an action has on other agetREnsible for a specific geographic region (see Fig. 1).

can be determined by examining their utility functions. This is a Firebosses control a number of firefighting resources (bull-
feasible method for agent systems consisting of tens of age/f{gzers), that can be exchanged as and when necessary. The goal
which is our primary target. However, when the number gro the firebosses is to prevent fires cla|n_1_|ng_ too _much _Iand.

to hundreds or even thousands, agents will have large acqualfince the success of an agent, and the ut|||t}/ itachieves, is mea-
tance sets and the calculation of all the necessary utility furitdred as afunction of land loss. The system'’s overall utility can
tions will be computationally prohibitive in most cases. In suclf’\ISO be measured in this way (i.e., land lost in the whole park).

circumstances, the agent will need to control this calculatidil ©rder to use the framework described in.Section II-A, we as-

by considering how resource bounded it currently is (see SE&ME that the agents’ utility functions are comparabfetire-

tion IV for a further discussion of this point). A further poten0SS can estimate, given the current environmental conditions,
tial difficulty with the approach we have advocated stems frofPW @ fire is likely to spread and it can, therefore, choose the
the inclusion of the acquaintances’ utility functions. In an ideé’ﬂost effec“"? allocation of |t_s firefighting resources. These_pro-
world, each agent would know the utility function of all the othefections provide the agent with a means of determining the likely

agents. However, in practice this is infeasible. Thus, in the qutcomes of different courses of action. Thus, for example, an

periments, each agent uses an approximation of these functiGi€nt can ascertain whether asking for a loan of resources from
ther fireboss is likely to be profitable. This choice is affected

based on information it extracts from the interactions that it h35° >
with others. by the uncertainty of the reply of the other agents, and hence,

In terms of the balance between individual and social needf3® decision maker will use a probability distribution based on
(1) can be rewritten as whether the agent believes that 1) there is a fire in th_e qther
agent’s part of the park and 2) whether the other agent is likely
Wi(ar) = Awiar) + Z A (ag)- ) to give resources if it is possible for it to do so. _
jelAi} In what follows, we assume all agents are motivated toward
the goal of reducing the amount of land lost as a result of fires.
By setting the weighting of a specific utility function to zero, anf an action results in a large land loss, then that action has
agent can eliminate the influence of that acquaintance on its ¢kess utility in comparison with an action that produces lower
cision-making. For example, setting the agent’s own weightirignd loss. Attaining more resources allows the agent to com-
A; to zero removes any personal utility benefit consideratigiete fighting the fire more quickly and so is preferred to simply
from its decisions. In this way, the agent can tailor its functiofighting the fire with its current resources. However, asking for
to give more weighting to either individual or social concerngxtra resources from another fireboss decreases that fireboss'’s
Thus, we can say at a coarse level, the above equation becosfesttiveness (and utility) when it is faced with a fire of its own.
Therefore, agents need to be able to estimate the likely utility of
Wi(ar) = Aui(ar) + Asoc Z wj(a) (3) aparticular resource distribution to their acquaintances in terms
jc{Aa—i) of predicted land lost in their region. Agents do this by assessing
i o ) i . whether a fire is likely to occur in the acquaintance’s area of the
whereA, is the weighting given to the social utility part of the o and what effect particular resource distributions will have
function (i.e., how much one cares about the needs of othetg)}. ;o agent in this context (based on the acquaintance’s es-

To gain a perspective on the feasibility of using such a mechgs, 5i04 ility function). This is then used in (3) to determine
nism in practical systems, the above decision-making functigh i1, 2ction is socially preferred

PEIIIS been implemented in a multi-agent testbed and evaluated ag, jjystrate the nature of social decision-making in Phoenix,
ollows. consider a scenario involving three agemts B, andC), 2 each

Distributed Phoenix environment.

B. Experimental Domain 1This is acceptable if we assume that the agents’ utility functions are compa-
o . . rable up to an affine transformation [7].
The deC'S'On'makmg framework was evaluated by apply'nngor reasons of clarity, the example scenario considers just three of the sys-
it to the Phoenix fire fighting multi-agent simulation [13]. Heretems’ agents.
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of which has control over two bulldozers. If a fire breaks out ¢ The number of firefighting resources each agent controls,

in A’s area,A must decide whether to agk or C for extra re- i.e., one, two, or three bulldozers. In this context, three
sources or proceed to fight the fire with its current resources. By  represents as many as the agent ever needs to fight a single
obtaining an extra bulldozed will probably reduce the amount fire).

of land it loses and hence increase its utility. However, taking « How fast each fireboss can make a decision (slow,
a bulldozer fromB or C reduces their firefighting power and medium, or fast).

hence decreases their expected utility in the event of afire. In adResource pressure is exerted by 1) altering the number of re-
dition, sharing bulldozers involves overheads based on the tis®urces an agent controls and 2) manipulating how quickly an
it takes to communicate, as well as the delay of waiting for ttegent can make its decisions. A given simulation run involves
extra resource(s) to arrive. Furthermarkis not certain that its specifying when and where fires occur, how large they are ini-
request will be granted, hence time may be wasted if its requéatly, and what the environmental conditions are (wind speed
is refused. Against this background's decision can be formu- etc.). Each run is randomly generated, involving between two
lated in the following manner: and six fires. Statistically significant results are obtained by av-
eraging over 12 runs. There are six firebosses in these exper-
W(ask:) = Aaua(aske) + Asoc > w(ask:) (4) iments; although this number represents a fairly small muilti-
ke{B,C} agent system, it nevertheless provides a reasonable indication
of the feasibility of our decision-making mechanism.
Two broad types of experiments were carried out. First, ones
where all agents used the same decision-making attitude (Sec-
tion 11I-A). This is to ascertain the performance profile of the

where
W (ask-) social welfare function of agem asking agent
C for a loan of resources;

A weightingA gives to its own utility function; various attitudes under varying resource constraints. Second
Asoc We'gh.““‘-?’ given to the social part of the lJtIIItythose in which agents have different attitudes (Section 111-B).
equation; T . A .
o : . This is to ascertain the robustness of the decision-making at-
Uk expected utility function of firebosk.

. ) . ..._titudes against a range of heterogeneous opponents. In all the
The utility functionsw4 andw; capture the domain specific ; L S .

. . . o experiments, individual utility is measured as a function of land
considerations detailed above, such as the likelihood of s C_tand svstem utility is measured as a function of the land lost
cess and the communication overheads involved in request,ﬁ he enti);e ark Thye latter is calculated as the aggregation of
a bulldozer. Each agent uses a discrete probability distributign park. . 99reg

Lo . ﬁ]& land lost by all the firebosses.
to represent the likelihood that a resource request is accepted.
Initially all agents use the same distribution, but these are up- o
dated over time as a result of interaction and resource exchahgeHomogeneous Agent Societies

between the agents (e.g., when resource requests are acceptgfege experiments seek to test the following hypotheses
or rejected). Agentl will compute similar formulations for its 5p0ut social decision-making.

other options (ask and fight the fire with current resources) . . _
and then select the action that maximizes the social welfare. 1 Th? performance (_)f the §elf-b|ased attltude_s (_s_elﬂsh,
selfish tendency) will deteriorate, both at the individual

and system level, as the number of resources in the

system are reduced.

2) The performance of the society-based attitudes (selfless,
Our aim is to evaluate the effectiveness of different decision-  balanced, and social tendency) will slowly degrade as re-
making attitudes under varying levels of resource pressure. To  sources are reduced, but not as much as the self-interested

this end, the experimental control variables are the following. types.

« The utility function weightings); and A\, from (3). 3) Balanced agents will achieve the best system level perfor-
These values can be altered to implement a wide range mance since their decisions are based upon the welfare of
of decision-making strategies. Here we use the following  the whole system.
values: Fig. 2 shows how the average individual performance, for one

» 0:1 Selfless care nothing about their own utility. sample agent, of the different agent strategies is affected when
These agents will not ask for help, but will grant anyesource pressure is exerted on the system. Runs using different
resource request that they receive (provided they anaes of thinking (the other form of resource pressure) produce
able to do so); similar results but, because of space limitations, are not shown

« 1:0 Selfish care only about their own utility. They here. It can be seen that self-biased agents, as predicted in hy-
will ask for resources from others, but will not loanpothesis 1, perform poorly in times of scarce resources. This is
out their own resources; because they waste time trying to obtain extra resources when 1)

« 0.5:0.5Balancedplace equal concern on individualitis perhaps unnecessary and 2) the systemis comprised of agents
and social needs; of the same type that will not provide assistance in any case. Fur-

» 0.25:0.75Social tendencyare more social than thermore, we can see their performance degrades more rapidly
selfish; than those with social tendencies as stated in hypothesis 2.

» 0.75:0.25Selfish tendencyare more selfish than so- The selfish tendency strategy is better than the purely selfish
cial. one because requests for extra resources are only made if they

I1l. EVALUATING THE EFFECTIVENESS OFSOCIAL
DECISION-MAKING
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are likely to have a noticeable benefit. The surprising result @ The performance of balanced agents will be resilient to the
that agents with a social tendency perform very badly in times introduction of selfish agents. _ _
of scarce resources. This is due to the fact that in times of scarde Mixing selfish and socially motivated agents in one society
resources when resources are more valuable, the value of thosén@y produce system performance that is superior to that of
extra resources outweighs any social considerations an agentin€ homogeneous societies of either type.
may have and so requests are more likely to be made. In turnfig- 4(2) shows both the average individual performance of
the acquaintances are less likely to loan out their resources &€ff/ess and selfish agents in societies in which the percentage of
is too costly for them on an individual basis. This introduce€lfish agents is steadily increased and Fig. 4(b) a similar graph
a delay in the fire fighting and so means more land is lodput with soc!eug; that are a mixture of balanced and selfish
Balanced agents perform well since all utilities are consider8d€nts. The individual performance of both the selfless and the
equally and so the costs of asking for resources and loaning the@gnced agents suffer as the number of selfish agents is in-
out play an important role in the decision. This means balancgi@ased. However, the balanced agents are less susceptible to
agents ask for and loan out resources, but only if it is clearij)e increase in the number of selfish agents since they have an
beneficial. In times of plentiful resources, the performance 8fbuilt concern for their own utility (hypothesis 5). This means
the different types becomes less disparate since agents gelgy Will not unquestioningly give resources to others if they
ally have sufficient resources to minimize the impact of soci§fn profit from retaining them. It can also be seen that the per-
interchange. formance of the selfless agents decrease more rapidly than the
Fig. 3 shows the cumulative land loss of the entire syste@lanced agents as more selfish agents are introduced (hypoth-
Here, agents with social tendencies generally perform well &8iS 4)- _ o
they explicitly attempt to assess the system-wide implication Fi9- 5 demonstrates how the mixed societies perform on a
of their choices. We can also see that balanced agents perféftém level. The gradual introduction of more selfish agents
the best (hypothesis 3) as they work toward overall uti"tgecreases overall system performance for both mixtures. How-
maximization. However, selfless agents perform worse th&Mer, the society consisting of balanced agents shows a more
the balanced or social tendency agents because they missStegdy decline in.performance than the one containing selfless
opportunity of attaining available resources from elsewher@gents. Again this occurs because baIanped agents are more
i.e., balanced/social tendency attitudes. They do, howevépncerned for the overall system and not just for individual or
perform better than the self-biased strategies as they do altguistic concerns. One point to note is the initial performance
waste time asking for resources unless they really need to, iiBprovement of the selfless/selfish society. When there are

when they have no resources, and simply get on with the tagiemall number of selfish agents, and several selfless agents
at hand. willing to accede to requests, overall performance improves

since resources in the system are being distributed more
effectively than would be the case if the system consisted solely
of selfless agents. This can be related to hypothesis 6 where
To investigate the performance of a system comprising @ expected that system performance would actually improve
agents using different strategies, the runs described for hom@gth some mixtures of agents. As the number of selfish agents
geneous societies were repeated using different percentage mijgreases, however, there are fewer opportunities for these
tures of the various Strategies. In partiCUlar, different perce@gents to gain resources, so performance again deteriorates.
ages of selfish agents (25%, 50%, and 75%) were introducedrhe above results demonstrate the advantage of considering
into societies of the other decision-making attitudes with the rgoth individual and social needs when making decisions. They
source pressure kept at a constant level. We are especiallygp show the factors that can affect the outcome of the decision.
terested in the impaCt of selfish agents since these should hﬁw examp|e, an agent adopting different Strategies in different
the greatest detrimental effect on the performance of sociafysource bounded environments can produce different perfor-
rational societies. To this end, we wish to explore the followinghance characteristics. The composition of strategies within the
hypotheses. system also has an impact on performance. The results shown
1) The performance of selfless agents will decrease rapidlyasove indicate that using some mixtures of different strategy
more selfish agents are introduced. types can produce better results than others. Finally, agents do

B. Heterogeneous Agent Societies
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relevant or important agents. Finally, agents currently do not

learn from their interactions with others, so they do not take

into account whether asking a particular agent for resources

La““;“t is more profitable than asking others. The sending of such
=10 requests and the waiting for replies also results in time being
wasted when the outcome of the request is failure to secure

(D ” O/ extra resources. Agents can thgs save time by pinpointing

4 A ° the agents with whom they can interact successfully as well

. “c, oo Q . . . .

Society  pa® 100% Percentage of Selfish Agants as determining what strgtegy may be approprlate given the
Mixture responses they have received from others in the system.

Based on these observations, the design of the agent was
modified to include a metalevel that controls the amount of so-
not learn how to best interact with other agents. Rather, th gial reasoning t-hat 'S performed by the agent. Metareasoning

. ..Has been used in a variety of systems to overcome problems of
simply follow the same strategy regardless of whether a positive . : : . .
. . . .pounded rationality [9]. The general idea is that a computational
or a negative response was obtained from an agentin a previpis 4 : - ;
evel (metalevel) sits above the basic decision-making mecha-
encounter. . .
. o . nism of the agent and controls how much computation should

Given these results, we modified the design of the Phoergx - .

e devoted to deciding what to do. In our case, fires occur at

agents to take the above points into consideration. A metacon; . : . . .
) i ; , ._.different times and with varying ferocity. Fireboss agents may

trol mechanism was designed to sit above the agent’s decisign- . - :
cgrefore need to make quick decisions as to how to tackle a fire

making mechanism to aid it to reason about what is the beshen fires are high risk and spread quickly. However, for less

strategyto adopt_dependl_ng on whatthe resource contextis, fﬁe“?’lous fires, they may be able to plan firefighting in a more de-
metalevel takes information about the number of resources a

. . tailed and reasoned way.
agent has and the state of the environment to determine what

needs to do to tackle its fires.

Fig. 5. System performance of heterogeneous societies.

A. Metalevel Architecture

IV. METACONTROL OFSOCIAL REASONING From the previous set of experiments, the following summa-

We can identify several ways in which the decision-makinrlfso?:gggsgthat were noted to affect the performance of the

mechanism of the agents can be changed to improve their . )
performance. First of all, by adopting a static decision-making * HOW resource constrained the agents are in terms of
strategy, the agent can either miss out on gaining extra help 1) how many resources they have (zero, one, two, or

because it is too selfless, or persist in trying to attain resources three bulldozers);

when it is obvious that it is wasting its time (this can be seen 2) how many fires there are and what is the ferocity of
in the selfish strategy case in Figs. 2 and 3). This suggests that each (this is related to the number of bulldozers that
there are times when having the ability to dynamically vary are available).

one’s strategy is useful. Second, agents may waste valuable Together these represent how resource-bounded the agent
time measuring the social implications of their actions, when is. Performance improves the more resources that an agent
they should be taking action. For example, when the agent is has at its disposal (Figs. 2 and 3).

faced with a serious fire that needs immediate action, time ¢ The constituency of the types of agents in the system. This
can be wasted by calculating the full social implications of is because the performance of the agents is related to the
all the different alternatives. A more appropriate solution is  possibility of loaning resources from other agents (Figs. 4
to minimize the calculation of social welfare to only include and 5). Attempting to loan resources from a selfish agent
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l Fig. 7. Metalevel: Individual agent performance.

to ask for help

and if so who 30

Fig. 6. Metalevel design. ®

land fost 20
is not likely to be successful and results in a waste of tim: q¢®
asking.

These points contribute to the metalevel design (see Fig. €
The figure shows how a metalevel was designed to sit abo
the decision-making mechanism of the agent controlling th
strategy adopted when making decisions. Information about tt 3 melasiEl  Categy
state of the environment such as number of bulldozers and stawe ~ "MPer ofbulldozers
of the fire is used to choose the social weighting, the peersgg g wetalevel: Overall system resuits.
consider asking, and peers to include in the calculation of so-
cial utility. This information is used to change the focus of thghosen in order to perform a comparison with the best and

decision-making strategy by adapting the amount of social reéd- i strategies previously tested.

soning that is undertaken (changing the peers considered) alg‘ig. 7 shows the results of the experiments to compare selfish,

well as modifying the weights useq n _the equgthn. In morseocial, and metalevel strategies. The graph shows the land lost
detail, the metalevel uses the following information:

o for an individual agent averaged over a set of firefighting sce-
* the number of resources an agent has at its disposal; \arios and over different levels of resource availability. It can be
* the environmental conditions (this provides informatioQeen a5 hypothesized, that implementing a control level above
about the state of the environment, such as wind speed g of the basic reasoning level does indeed produce an im-
direction); _ o provement in the performance of the individual agent. This is
* classification of fires (this gives the agent a measure gi,o oyer the scenarios when the fireboss agents have one, two,
how serious the fire is); this measure is based on the initigl 1 ree pulldozers at their disposal. Not only this, but the im-
size of the fire and how fast it is predicted to grow; fire$, oy ement in performance is quite marked: in some contexts,
are classified to be of low risk, medium risk, or high risk)i¢ renresents an almost 50% improvement. This is due to the
* the previous requests for this fire (this ensures that the. ihat the agent is adapting its strategy when faced with dif-
agent does not ask the same firebosses again). ferent contexts, which it is not doing in the other two strategies.

Totestwhether this design offers animprovement on the basig;s js useful as the agent may not always be able to attain re-
stratggies compa_red in the first set of experiments, the followiggrces from others since they are fighting their own fires, or
empirical evaluation was performed. have adopted a selfish attitude due to the high probability of
another fire occurring. In addition, calculating the social utility
over only a subset of the possible number of agents affected re-

To test the effectiveness of this extra reasoning Ievel, the f@uces the amount of time that the agent Spends reasoning, e}
lowing hypothesis was proposed. the agent gets on and fights the fire quicker. This subset, also
1) Adding a metalevel component that helps the agent diraitects the agent to reason about more profitable interactions

its reasoning will improve the performance of the individualith others, such as those who would be more inclined to lend
agent over corresponding agents that do not possess sudtr@sources. Again this reduces the amount of calculation that
component. This improvement will be apparent at both threeeds to be done on the social welfare as there are fewer action
individual level and the system level. alternatives to consider.

To test this hypothesis, experiments were carried out toFig. 8 shows the variation on system performance of the
compare the performance of agents who adapt their desglfish, social, and metacontrol strategies. Here, the system as
sion-making depending on how resource constrained they wargvhole also performed better when the agents are changing
to other strategies. In order to test how effective the metaconttoéir strategies depending on what resource context they find
strategy is, it was compared to two strategies from the previoiemselves in. All metasocial agents attempted to adapt their
set of experiments: balanced (social) and selfish. These weteategy based on 1) the strategies of others and 2) how resource

selfish

sacial

B. Empirical Evaluation
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constrained they were. This meant that there was a much more

overall efficient utilization of resources (especially time) inthe  Feedback Agent _

system. (new state) action
The above results show that controlling what reasoning is

done has a marked effect on the performance of the agents.

By taking into account what the state of the environment and

availability of resources are, the agent can tailor its reasoning to

adapt to different situations. Thus, when resources are scarce, B .

the agent can adopt a strategy that reduces the amount of com- ™° s T "

putation that needs to be done and indicates what agents may

be more likely to lend resources when requested to. When re- _ ,

. . . . . Fig. 9. Basic)-learning model.

sources are plentiful, it can include all agents in its calculatior’

of social welfare, ensuring that the full implications of its ac-

tions are considered. The next section considers the affecttted agent can update it9-value representing the value of

further enhancing the metalevel control of the agent by addiagking based on whether the agent says yes or no. This infor-

a learning element to its design. mation can then be used by the agent to help decide who to ask

for resources@-values are updated by the following:

Ty r I

V. ADAPTIVE METALEVEL CONTROL OF SOCIAL REASONING
Qr(a) = Qr—1(a) + a(rrt1 — Qr—1(a)) (5)

The previous section considered the improvements that could
be made to the Phoenix agent design. One of the weaknessegdre
the original system is that the agent adopts a static strategy whegq),,  (-value of thekth action trial;

making decisions and that it would be appropriate for the agent,. reward given after the action has completed;
to adapt its reasoning to deal with different resource bounded,, learning rate of the agent.

cr:)_nt_exts. Tze expe(r;mentks descnbedhm fSecnr(])n v dealtdW|H1a low learning rate is used, the agent is slow to react to changes
this Issue. A second weakness was the fact that agents do;fgf,q environment, whereas a high learning rate means that the
learn from their previous interactions. Thus, agents repeate %{ent reacts quickly to changes

ask for a loan of resources from an agent that is simply Oty gimpie means of choosing what action is right to perform,
willing to _acc_ede to the request. To overcome thls,_ it is Cle_WouId be to simply choose the action that has the Gesalue.

that Iea_rnlng IS _n_e_ede_d to alloyv the agent to further IMProve doing this, the agent may commiit itself to choosing actions
reasoning by utilizing information about the success or failure hich initially have highQ-values, perhaps failing to explore

previous interactions. The agent can learn what sort of responges.. 4ctions which may in the long run have higtpvalues
it is likely to get from others by using the replies it has receive d so be more profitable. Therefore, for action choice, it is
from previous resource requests. This information can then $mmon to use a probabilistic approach [15]

used to determine what agents are likely to give the agent extra
resources and those that will not and to help the agent compile

a list of agents that it may ask for help and receive a favorable P(als;)
response.

In this work, the method of learning chosen is reinforcementh
based, and in particula@p-learning [14]. This was adopted be-" ereP
cause of its natural use of feedback information from actinic
within the environment from the fact that learning can be dodl

as the agents interact together and that no explicit model of i : .
g 9 P erent action alternatives. A low value ofproduces behavior

environment is necessary. which sees the agent choosing the more highly valued actions
The basic idea is that the agent acts within its world to achieve 9 9 gnly

its goals by taking actions € 4 which allows it to move within and exposes the agent to the possibility of being stuck in local
the state space. It receives feedback, from its various actions maxima.

when it traverses from one statg to another,, 1 (see Fig. 9). )

The goalis for the agent to learn a control policy S — Athat A EXperiments

chooses an action in states; that maximizes the accumulative Experimentation with thé&-learning was split into two parts.
reward. The accumulative reward can be defined as the sunTbk first part of this phase of experimentation was to test how
the rewards from the current state to the goal state. agents usin@)-learning in conjunction with the metalevel con-

In Q-learning, an agent keeps a table of action state paitgl compared to agents who simply used the metalevel control.
{a, s) that tell it the value of taking actiom in states. In Hence, in the first set of experiments the learning rate and ex-
Phoenix, fireboss agents can learn who are the best firebogslesation was kept constant to simply see how the performance
to ask for a loan of firefighting resources. Each fireboss wilompares. Each fireboss agent keeps a tabl@-whlues for
have aQ-value for asking all other firebosses in the systeneach of its peers. Each time it makes a request to a certain peer,
Every time an agent requests resources from another firebasspdates th&)-value of that peer using the amount of land that

_ e)(pQ(St’a)/‘r (6)
B Eepr(sf:”')/T

(a) is the probability of choosing actienin states; and

is a temperature used to produce different degrees of explo-
tion. A higher value of means that the agent chooses actions
gh more equal probability, so is more inclined to explore dif-
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land lost
x10°

meta-social
adaptive
number of bulldozers
strategy 5
numberofbulldozers meta-social
Fig. 10. Comparison of metalevel and adaptive strategies: Individual results adaptive

strategy

would be saved as a result of the request as a basis for cafdg-11. Comparison of metalevel and adaptive strategies: System results.
lating the reward.

In the experiments, the land lost was recorded for various *
levels of resource availability for both metacontrolled and ., 4 10st
learning agents. We propose the following hypothesis. :
1) Providing the agents with the basic ability to learn from

previous interactions provides a means of improving deci-

sion-making. .

The second part of these experiments investigates the ef-

fect of changing the learning rate and the exploration con- number of learning rate

stant on performance. Different values of the learningdate bulldozers

and temperature were used. Three different learning rates

were used: low, medium, and high. In addition to this, diff'9- 12. Increasing: Individual performance.

ferent values of were used to indicate a low, a medium, or

a high degree of exploration. Here, the following hypotheses 1

were adopted. 10
2) Increasing the rate of learning should improve performance 12nd lost

since agents learn the beneficial actions more quickly. x 10°
3) Increasing the degree of exploration will improve perfor-

mance in resource constrained situations, though there will 7

be a point at which greater exploration will degrade perfor- s e .

mance in some situations. 1 2 "

In order to provide a good indication of the strengths of the
learning mechanism, different compositions of agents were used
in which there was a percentage of selfish agents in the syst@g.13. increasing:: System performance.
These different mixes included

1) a system comprising completely of adaptive agents;

x10°

g5 0.1

numhber of bulldozers learning rate

- ) strategy, becoming more prudent with regards to who to ask for

2) asystem consisting of 50% Of. adaptive agents; loans as well as who to include in their decision-making.

3) asystem where the.re was a single adapt|\{e agent.. Fig. 11 shows the results at the system level. Again, the adap-
Due to the fact that selfish agents never provide assistangge metacontrolled layer shows an improvement over the meta-
placing adaptive agents in this setting provides a means @fntrolled layer over all levels of resource availability. This is
really testing the effectiveness of learning what agents are bggk to the fact that all agents learn that particular agents are
to request resources from. All of the results of the adaptiygtter to request resources from than others.

experiments are given below. Figs. 12 and 13 show the effect of increasing the learning
rate on the performance of the individual and the system. As
B. Results can be seen, agents using a higher learning rate perform better

Fig. 10 compares the performance of agents using a metaleagproposed in hypothesis 2. This is because agents learn more
strategy and ones, which in addition, adopt tdearning quickly what other agents are likely to give them resources and
strategy. Here, adaptive agents perform even better than sieethey can identify them more quickly and attain extra re-
metalevel ones. This is because these agents not only adamaiarces from them in future fires. In the case where resources are
varying levels of resource pressure, but also learn from piearce (number of bulldozers is equal to one), there is a sharper
vious experience to know who are the firebosses that are maverease in performance than in the other two resource cases.
likely to provide assistance. They make the assumption thHatsuch situations, it is more important for agents to be able to
agents that have been helpful in the past will be helpful in théentify to whom they should make a request for resources, as
future. The adaptive agents can thus finetune their metacontiwy need to be able to get on and fight the fire quickly.
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3
land lost land lost
3
x10° x10°

2 iy

1

o ; ne adaptive

: i erzpns B a0 percent
1 = - . us aq alladaptive
number of low learning rate composition

bulldozers Fig. 16. Increasingv: Individual performance in different mixes.

Fig. 14. Increasing: Individual performance. s

12

land lost *
10 x10° 3
land lost g
6 2
x10 5
1
4 : .
o el one adaptive
24 hi { 50 percent
medium all adaptive
o tau low composition
number of Fig. 17. Increasing: Individual performance in different mixes.

bulldozers tau
own resources rather than gaining an advantage from obtaining
Fig. 15. Increasing: System performance. a loan of resources from others. In all cases, as the learning rate
isincreased, the performance of the agents improved. This is be-
The performance of the adaptive agents using different tecause as in Figs. 12 and 13, as the learning rate increases, agents
perature values are shown in Figs. 14 and 15. As the temperatiesggn more quickly what other agents are good and bad sources
parameter is increased, the agents are more inclined to explofrgaining extra resources.
alternative agents to ask for resources rather than simply thé=ig. 17 shows how performance is affected by changing the
ones that have been helpful in the past. Here we see that in teis\perature parameter. In the case of only one adaptive agent,
environment, the more exploration that is performed the worsereasing the degree of exploration has little effect on perfor-
the performance of the agents becomes. This is especially tmance as there is little value to be gained from asking any other
when resources are scarce. There is, however, a slight imprdiebosses. When there is a 50-50 mix, increasingtially de-
ment in performance when agents engage in a medium deggezdes performance then slightly improves it. This is because
of exploration. This can be explained by the fact that agents ciduie agent needs to engage in a certain level of exploration in
benefit from asking others but may waste time in trying out difirder to find the agents that are more willing to assist it. Below
ferent agents, some of which may be further away from the firénis level, the agent misses out on the opportunity of gaining
Being further away from the fire means that bulldozers will takextra resources as it is less likely to find agents that are willing
longer to travel to the fire, in which time, the fire has expandetb help. Above this level, the agent has more chance of being
The final graphs show how the performance varies over teaccessful in finding an agent that will lend it resources since
different values ofa and = within different compositions of it is more likely to try a wider variety of different agents. In
systems. Fig. 16 shows how the increasevddffects the per- the all-adaptive case, increasinglowly degrades performance,
formance of the agents in different mixes of agent system. The the agent engages in more exploration. Again, as above, in-
system containing all adaptive agents performs the best outcoéasing the degree of exploration results in the agent consid-
the three mixes since all agents improve their decision-makiagng others that may be less suitable, due to their distance away
by adopting the metacontrolled learning strategy. In the cafsem the fire.
where there is only one adaptive agent, performance is muctThe above set of experiments have shown that adding a met-
poorer than in the other two cases. This is because the adalpvel control component to the agent architecture has distinct
tive agent does not have any opportunity to improve its perfadvantages over allowing the agent to follow a static decision-
mance as there are no means of doing so as the system consistsng strategy over different resource-bounded contexts. This
of selfish agents. In addition, the improvement in performansiows that in order to maintain a high degree of performance,
is slight as« is increased. Again, learning may teach the agetite agent needs to tailor its decision-making to correspond to
that it is better not to ask the other agents for resources, thougk amount of resources that are available to it. By adapting its
this means that the agent relies on dealing with the fire with itkecision-making strategy the agent can choose the best course
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of action applicable to the circumstances. In addition, giving ttoalled selfish agents. When exploiters (selfish agents) are in-
agent the ability to learn from previous interactions can provideoduced into their system, the performance of the system de-
invaluable feedback to the metalevel. The information learneceases, a result which is magnified as resource pressure is ex-
can be used to fine tune the metacontrol mechanism, providieged. Although they look at some effects of resource bounds,
information that will enable the agent to pinpoint the agents withis is not the main thrust of the work. Also, there is no discus-
which it is most beneficial to interact, as well as what strategjon of how individual autonomy is balanced with social con-
to adopt when making decisions. cerns in such contexts.

In [22], Brainov defined a range of social decision-making

VI. RELATED WORK strategies that differ in their attitudes toward other agents.

1) Altruistic agents consider other agents in their decision-
Rationality has been widely debated and studied in the field ) making: 9 g

of agent research [1]. Decision theory [16] has emerged as the?) Self-interested agents never consider other agents when
dominant descriptive and normative theory of rational decision- making decisions:

making. The fundamental prin.c_iple of (_jecision theory.is the 3) Envious agents consider others, but in a negative sense.
maximization of the agent’s utility function under certain ax-
ioms of uncertainty and utility [17]. Game theory is also con [23], Brainov extends this work by comparing the use of
cerned with the rational behavior between two or more inteiffese different attitudes in multi-agent planning and negotiation.
acting individuals [18]. Each agent has a payoff or utility funcOur different social attitudes are consistent with his basic def-
tion that they attempt to maximize based on the information théyjtions, but are grounded in a particular utility configuration:
have about the strategy of the other individual(s). This paydfiat of Harsanyi's welfare function. This provides a means of
function represents the preferences of the individual, thougVving the theory into practice and allows us to begin our in-
it can be based on altruistic motives in the case where mof@stigations into resource bounded social agents.
global/social concerns are the dominant philosophy. There arelJsing the shared plans intention-reconcilation (SPIRE)
however, a number of problems with game theory with regardgent framework, Glass and Grosz investigate how a social
to the social aspects of decision-making. One is the inability @@mmitment incentive scheme, which they call the Brownie
deal adequately with some social notions such as cooperatigint model, affects agent performance over time [24]. An
[19]. In fact, without the introduction of some binding force enagent makes a decision based on a weighted combination of
suring cooperation, the theory can produce suboptimal resutty actual value of doing the task and the brownie points it is
as shown by the prisoners’ dilemma example. Furthermore, egwarded. They manipulate this weighting to produce agents
though both game and decision theory provide simple and tiat are more group committed by giving a higher weighting
tractive formalisms of individual action choice, they have beda the brownie points part of the function. Their results show
criticized on the grounds that they reveal nothing about the midvat agents striking a balance between group commitments and
tivations of the agents making the decisions [19]. For exampl@onetary gains perform better than ones who have a high level
both disciplines can produce socially acceptable results if th& group commitment. They also look at how environmental
utility functions used incorporate some social information, bdiactors influence the performance of agents under this model,
these theories provide no answers anidav this can be done but admit that further analysis and empirical investigation
or evenwhy this should be done. This, in turn, is of little usés needed. Like the social rationality work presented here,
when attempting to understand, describe, and ultimately buiftey experiment with various social strategies, but differ by
socially intelligent agents. Thus, we adopt some of the fund@xamining the effect on performance of how much time the
mental principles of these theories but expand these ideas to@gent is committed to group tasks.
plore our ideas of social reasoning. Jennings and Campos [5] define a social equivalent of
A consistent theme in the work of Castelfranchi [3], [20] i?Newell's conceptualization of individual agent rationality that
the concept that sociality is derived from the individual minthey term the principle of social rationality. Social rationality is
and social action. Social rationality, and in particular an agentiefined as the action choice of an individual based on global
social power, is described via manipulation of dependence retancerns. To add substance to this definition, Kalenka and
tionships between agents. Agents may interfere, influence, alehnings [25] describe several social attitudes that can be
adopt goals of their acquaintances as a result of the manipulatastribed to agents under this principle. Their work provides
of these relationships. Such notions can then form the basisaoframework for defining the different social attitudes that an
a variety of social actions. Although underlining the need to eagent may possess, including helpfulness and cooperativity.
plore and emphasize the social aspects of an agent's makeHpyever, the missing element in their work is the practical
this line of work addresses the philosophical rather than prammnsideration of resource bounds on the performance of social
tical questions of how this should be achieved. Building omgents. Their framework also restricts the level of analysis
this, Cesteet al. [21] explore the practicalities of social deci-that can be performed with regards to an agent's different
sion-making by experimenting with a variety of social attitudeselationships in the society. For instance, there is no mechanism
Their work mainly covers simple, rather rigid, agent systenie employ when the agent finds itself as a member of multiple
and concentrates on how the introduction of exploiters intogaoups or coalitions.
society effects system performance. Their results are consisterilore socially minded decision-making attitudes have been
with our findings regarding the introduction of what we havewvestigated in the socio-economic literature under the umbrella



392 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 31, NO. 5, SEPTEMBER 2001

of social welfare functions (also collective choice rules or preft considers others in the system when making decisions. This
erence aggregation rules) [7]. Here, the main emphasis is on hievin terms of whether 1) it should consider asking others for
a group of human agents can collectively make decisions. Thelp or 2) whether it should loan resources to other agents. Re-
decision maker can either be several agents making a joint deurce pressures dictate that the agent needs to address the de-
cision or an individual making a decision that has global consgree of social reasoning it should undertake. For example, two
guences. These functions have been shown to have the adeatremes would be whether it should eliminate social reasoning
tage of Pareto optimality, but have the disadvantage that equatyogether, i.e., consider only its own benefit, or take into ac-
is not preserved in the group, i.e., the decision is not fair to eweunt everyone, i.e., think about the value all the other agents
eryone, for example in the case of the distribution of wealthttribute to a particular course of action. Thus, the metalevel out-
There are also concerns as to how the utility functions are dimed in this paper allows the agent to modify its social reasoning
rived and how they should be combined in an overall functido eliminate agents considered in the social welfare function.
to reflect group choice. These issues are also important wher\nother important aspect of agent performance is whether it
we consider software agents, and at present, there are no cogtains information and learns from its interactions. To this end,
prehensive solutions to these problems. However, we do lieis paper has also evaluated adding a learning component to
lieve that practical assumptions can be made about the oritfie agent’s reasoning mechanism. Results show that by giving
and structure of the utility functions used by agents, as we haagents the ability to learn from previous interactions a further
demonstrated in this work, and that with further experimentacrease in performance is produced. In addition to this, modi-
tion into these issues, useful insights can be found. fying the learning equation’s parameters can affect the agents’
performance.

In terms of extending our work, we need to further investi-
gate how socially intelligent agents can dynamically build rela-

This paper has outlined the case for a more socially awdi@nships with one another and then use this knowledge to learn
approach to decision-making in a multiple agent context aR@w to operate more efficiently. An example of how this could
how this should be tempered to deal with problems of resour@e achieved was given in this paper in the form of learning who
boundedness. A novel agent decision-making framewoikwas worth asking for resources. Another important point to
incorporating insights from work on social welfare functionszonsider is how an agent decides what peers it includes in its so-
has been devised to tackle the problem of decision-making &l welfare function. This is especially useful when the agent
socially intelligent agents. This framework provides a meats faced with heavy time pressures since it need only perform
of describing and analyzing how an individual agent mag§@lculations for the acquaintances that it deems important, but
approach the task of making socially acceptable decisionstiien the problem is to determine which peers are important or
a social system. More importantly, perhaps, is the empiricdlevant to the decision. We are also interested in how agents
demonstration of the effectiveness of various socially awaféanage activities between different subgroups or coalitions that
decision functions in a range of problem solving scenarioiey might be a part of. At the present, only the balance be-
Our results indicate that decision attitudes based on sodieen individual and system concerns have been investigated.
concerns perform better in resource-bounded contexts tH&R would like to explore in a more detailed way, how an agent
the more traditional, self-interested attitudes. In particulde@lances its own needs and the needs of the various groups of
our results for balanced agents demonstrate the importancévéich it is a part.
considering both the individual and system consequences ofinally, we believe that our socially rational agents are ide-
decision-making. Furthermore, this work investigated the effeaily suited to participating in hybrid systems in which there
of having several different decision-making attitudes in thé a mixture of humans and artificial agents working together
same system. Here again, we highlighted the importance d@eJ., in computer supported cooperative work or group deci-
effectiveness of basing decisions on both individual and socfg®n-making applications). In such systems, the artificial agent
concerns by demonstrating the robustness of balanced agé\Q@,dS to be able to act both to achieve individual objectives and
in the face of exploitation by selfish agents. These experime@operate with humans in order to complement their problem
also demonstrate the importance of social decision-makifglving activities.
to the performance of the individual and the system, of the
mixture of strategies used by the participating agents, and how ACKNOWLEDGMENT
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