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Vortex dynamics in two-dimensional systems at high driving forces
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We study numerically the dynamics of two-dimensional vortex systems at zero temperature. In addition to
pinned states and turbulent plastic flow, we find motion of vortices in rough channels along the direction of the
driving force. In this decoupled channel regime we demonstrate how topological defects mediate the phase slip
of different channels moving with different velocities. We thus provide important confirmation of recent
analytical work describing vortex dynamics at high driving forces such as the moving glass theory of Giama-
rchi and Le Doussal. For the largest driving forces we find that the channels couple and observe elastic motion.
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I. INTRODUCTION

Vortex dynamics in the presence of disordering pinning
show a variety of nonequilibrium physics and dynamic
phase transitions. Experiments,]"7 numerical,g’12 and
analytical'*~!® work suggest that a disordered static system
of vortices shows ordering at higher driving forces. Koshelev
and Vinokur'® predicted a dynamic phase transition between
plastic sliding for driving forces just above depinning and
coherent motion of crystalline structures at high driving
forces. Subsequently, Giamarchi and Le Doussal'* predicted
that the strongly driven and reordered system would be a
moving glass, where vortices move elastically-coupled along
static channels, such that they flow in the direction of the
driving force along well-defined, nearly parallel paths in the
pinning potential. These optimal channels (in two dimen-
sions) or sheets (in three dimensions) show a roughness and
are predicted to be a static and reproducible feature of the
disorder configuration.

Balents, Marchetti, and Radzihovsky argued that in ad-
dition to elastically-coupled channels (no topological defects
in the system) at intermediate velocities a transverse-moving
smectic'>!® would exist in which motion of vortices in dif-
ferent channels is decoupled (topological defects between the
channels). Later work'*~!® mainly supported the initial find-
ings of Giamarchi and Le Doussal with the addition of the
moving smectic as predicted by Balents, Marchetti and
Radzihovsky."> Different names are in common use: the
moving transverse glass'® (MTG), moving smectic'® and de-
coupled channels'” refer to the decoupled channel motion,
and the moving Bragg glass'® (MBG), moving lattice'® and
coherent phase!” refer to the regime of elastically coupled
channels.

The theoretical descriptions of these dynamic phases
are based on elastic theory and assume either the absence
(for the MBG) or the irrelevance (for the MTG) of topologi-
cal defects. In fact, the theory of Giamarchi and Le
Doussal'*!® describes both regimes with the same equation,
which is (nearly) exact for the MBG and remains an effective
description for the MTG. In this work we investigate the role
of topological defects in the MTG to check the validity of
assumptions entering the theory of Giamarchi and Le Dous-
sal, and find them to be justified.

We review the dynamic phase diagram for a two-
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dimensional 2D vortex system in the presence of random
disorder varying on a length scale much smaller than the
vortex-vortex spacing. Our model describes rigid vortices in
thin films or decoupled pancake vortices in layered materials.
We employ a modified cutoff'® to the appropriate interaction
force that corresponds to a logarithmic vortex-vortex inter-
action potential?® After annealing a vortex system to zero
temperature, we apply an increasing driving force and study
the dynamics of the system systematically for different pin-
ning strengths.

Section II describes the simulation and the computational
details. In Sec. III we present a dynamic phase diagram and
give an overview of the observed dynamic phases (LIl A).
These phases are a pinned vortex glass (III B), different
kinds of turbulent plastic flow (III C), a decoupled channel
regime (III D), and coherently moving structures (III E). In
Sec. IV we consider the decoupled channel regime in detail:
we report on the dependence of the spatial distribution of
velocities in the different channels on the pinning landscape
(IV A), we show how topological defects between the chan-
nels mediate the phase slip between channels while preserv-
ing the transverse periodicity of the system (IV B), and we
give information on the transverse depinning in the decou-
pled channel regime (IV C). Finally, we draw our conclu-
sions in Sec. V. The Appendix contains technical information
on the smooth cutoff used.

II. THE SIMULATION
A. Equation of motion

We consider a two-dimensional vortex system and model
the vortex motion with overdamped Langevin dynamics. The
total force F; acting on vortex i is given by

F;=— v+ F-+F+ FP+ FFm=), (1)

where 7 is the Bardeen-Stephen®! viscosity coefficient, v;
the velocity, F* the Lorentz force acting equally on all vor-
tices, F}" the vortex-vortex interaction, F;P the vortex-
pinning interaction, and F™™ a stochastic noise term to
model temperature.?? The vortex-vortex interaction force for
rigid vortices in thin films and pancakes in decoupled
layers of multilayer materials experienced by vortex i at
position r; is®

©2001 The American Physical Society




HANS FANGOHR, SIMON J. COX, AND PETER A. J. d¢ GROOT

Dls r,—T;
. @
27 pgh® Fi 1=

vV __
F)'=

The constant @, is the magnetic flux quantum, s the length
of the vortex, u, the vacuum permeability, and A the London
penetration depth. We employ periodic boundary conditions
and cut off the logarithmic vortex-vortex repulsion potential
smoothly.!” The important feature of this modified interac-
tion potential is that it does not introduce numerical artifacts,
such as topological defects that can result from using a naive
cutoff potential. Details can be found in the Appendix and
Ref. 19. The cutoff distance is min(L,/2,L,/2) where L, and
L, are the lengths of the sides of the rectangular simulation
cell. The lengths L, and L, are chosen such that a hexagonal
lattice fits perfectly in the simulation cell.

We investigate systems with a magnetic induction of B
=1 T and a penetration depth of A=1400 A that yields a
vortex density of ~10/\? representative of typical cuprate
superconductors. The random pinning potential we have em-
ployed varies smoothly on a length scale of N/25, which is of
the order of the coherence length &. This is a representation
of random pinning on the atomic length scale (for example,
due to oxygen vacancies or small clusters of oxygen vacan-
cies) since the vortex cores effectively smooth the pinning
potential over a length scale of the core diameter 2£. Fig.
1(a) demonstrates the construction of the pinning potential in
one dimension. Figure 1(b) shows a part of the pinning struc-
ture used for the two-dimensional system. System sizes from
100 to 3000 vortices have been investigated. We measure
lengths in units of A=1400 A, and forces in units of the
force f, that two vortices separated by \ experience. We
express time in units of t4=7\/fo= 77271-;;,0)\4/(1)33 which

is in line with other simulations.'%??

B. Observables

To distinguish different dynamic phases we monitor the
topological defect density n4 (defined as the fraction of vor-
tices with less or more than six nearest neighbors in the
Delaunay triangulation®®) and the distribution T'((v)) of
time-averaged velocities (v;)(£)=|[r;(¢+o) —ri(to)V/¢| of
individual vortices i over time f. We also observe the struc-
ture factor of the system (the Fourier transform of the vortex
positions), a measure for local hexagonal order (using bond
angles §; from the Delaunay triangulation we compute Vg
= (1/npond) |2} exp(i6.6,)], Where 7yop is the number of
angles in the Delaunay triangulation), the frequency spec-
trum of the center-of-mass velocity, and the paths of motion
of vortices (two-dimensional histogram of vortex positions).
We create movies of time snap-shots of vortex positions to
visualize the behavior of the system.

III. THE DYNAMIC PHASES

Initially, we anneal the vortex system from a molten state
to zero temperature in the presence of the random pinning
potential. The pinning forces are obtained by numerically
differentiating the potential. The root mean square value of
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FIG. 1. A sample pinning potential. Distances are given in mul-
tiples of the vortex lattice spacing, a,. (a) Demonstration of con-
struction of the pinning potential in one dimension: First, we assign
random pinning energies at discrete sites (shown as open circles)
with spacing w. Secondly, we interpolate between those sites using
cubic splines to obtain an effectively continous pinning potential.
This results in a random pinning potential with a short-range cor-
relator V(r)V(r')=g(r—r") of range w. We follow an analogous
procedure in two dimensions. (b) A part of a pinning potential as
used in the simulations. The seven black cylinders indicate vortex
lines separated by a, to demonstrate the length scale.

the pinning force field is denoted by F}2 . An annealed vor-
tex configuration is shown in Fig. 2. After annealing, a driv-
ing force is applied that is subsequently increased every
4% 10* time steps. This yields force-velocity characteristics
that correspond to experimentally obtainable current-voltage
characteristics (at zero temperature). The driving force F" is
related to the current density j via Fl=sjX ®,, and the vor-
tex velocity to the induced electric field E via E=BXyv,
where B is the magnetic induction and v the vortex velocity.
We investigate the modes of motion at different driving
forces and pinning strengths using the observables specified
in Sec. II B.

A. The phase diagram

The different observed modes of plastic and elastic mo-
tion are summarized in Table I. The second column of the
table shows the expressions used for each mode of motion
and a reference to the section in which it is described. The
third and fourth columns show the criterion used to identify
and distinguish the modes, and the fifth column gives further
observations.

We describe now briefly the phase diagram shown in Fig.
3. For weak pinning (F2,<0.8fy) a pinned vortex glass
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FIG. 2. A pinned vortex glass at pinning strength F1p = 1.2f,.
The system has been annealed from molten to zero temperature.
The figure shows the Delaunay®* triangulation of vortex positions.
Here, ny=0.46, i.e., 46% of the 576 vortices are topological defects
(having more or less than six nearest neighbors) and are highlighted
by open circles.

(Fig. 2) undergoes plastic flow (PF) and ordering plastic flow
(OPF) for an increasing driving force (Sec. III C). In OPF, in
contrast to PF, the density of topological defects, 4, is lower
than the density of the static system, n§""°. We summarize
PF and OPF as turbulent plastic flow because in both modes
the motion of vortices is turbulent rather than laminar, i.e.,
the motion of different vortices is hardly correlated. This
helps us to distinguish between the turbulent (chaotic) plastic
flow of PF and OPF and the (laminar) plastic motion of
vortices in the decoupled channel regime (Sec. III D, Sec.
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FIG. 3. Dynamic phase diagram of the vortex state as a function

of disordering pinning strength F}P. and strength of the driving
force (at zero temperature).

IV). At high driving forces the vortices move elastically as a
coherently moving structure, i.e., every vortex keeps its near-
est neighbors for all times (Sec. III E).

For the weakest pinning strength of Fyb .~ 0.04f, the an-
nealed system is a defect-free Bragg glass®® and changes
directly from the pinned Bragg glass to MBG (Ref. 14) with-
out undergoing plastic motion. However, since the initial
configuration is annealed from random positions, this MBG
is, in general, not aligned with the direction of the driving
force, and the pinning is too weak to reorientate it. This very

TABLE L. Overview of observed plastic and elastic modes of motion. I'({v)) is the distribution of time-averaged vortex velocities, and
nq is the density of topological defects (Sec. II B). The topological defect density of the annealed system without any applied driving force

static

is ny
Name Criterion Observations
NGO
Plastic ~ PF and some vortices permanently ~ Broad, and ng= nfi“‘tic Turbulent flow, system partly pinned.
modes  pinned Sec. I C peak at zero

PF and no vortices permanently Broad ng=niic Turbulent flow, peak at zero in instantaneous velocity

pinned Sec. III C distribution (i.e., some stationary vortices).

OPF Sec. I C Broad ng<ne Turbulent flow, no vortices have zero velocity in
instantaneous velocity distribution & “‘crinkle
motion”” (i.e., all vortices moving).

Decoupled channels, MTG Sec. IV Separated G<nd<n§mi° Motion in uncoupled channels in direction of

& peaks driving force, topological defects between channels,
critical transverse force.
Elastic  Coherently moving structure Single ng=0 Motion in coupled channels in direction of driving
modes  without defects, MBG, Sec. IIl E & peak force, washboard frequency in noise spectrum,
critical transverse force.

Coherently moving structure Single 0<ng<n$™©  Vortices generally aligned with the direction of the

with defects, Sec. Il E 6 peak driving force
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weak pinning regime has not been studied in detail in the
framework of this investigation.

For stronger pinning (F;F.=0.8f,) there is an intermedi-
ate regime between turbulent plastic flow and coherently
moving structures in which rows of vortices are aligned with
the driving force and vortices move in preferred channels.
However, these channels are decoupled: vortices in different
channels move with different velocities (Sec. IV). The
change from the decoupled channel regime to a coherently
moving structure depends on the history of the system: in the
mixed regime both modes of motion can be found depending
on whether the driving force is increased or decreased.

Related numerical work on dynamic phases has been per-
formed by Moon, Scalettar and Zimanyi,” Ryu ef al.'® and
Olson, Reichhardt and Nori.!? It was found in Ref. 9 that as
the driving force is increased, first the pinned vortex glass
exhibits plastic flow and finally moves as a “moving glass”
that is very likely to be the decoupled channel regime. Ref.
10 found an elastically moving structure with topological
defects at high driving forces. In contrast to this work in
which we have used logarithmic interactions and have varied
the strength of the pinning forces, in Ref. 12 the strength of
an exponentially decaying vortex-vortex interaction has been
varied in a system with a smaller vortex density. However,
the results can be compared qualitatively, and Ref. 12 dem-
onstrates similar findings on plastic flow, decoupled channels
and coupled channels.

B. Pinned vortex system

For sufficiently small driving forces the system is pinned
and the velocity distribution shows a single peak at zero
velocity. For pinning strengths above =~0.04f, we see the

number of topological defects increasing with pinning
strength and no long-range order exists. We thus refer to the
pinned system as a vortex glass, and such a configuration is
shown in Fig. 2.

C. Turbulent plastic flow

Vortices start moving if the driving force exceeds a criti-
cal value. We distinguish two different kinds of motion,
which we refer to as PF and OPF. Both types of motions
show a broad distribution of time-averaged vortex velocities
as shown in the inset in Fig. 4(a), which, for very small
driving forces, has another peak at zero velocity. We call the
motion OPF if the density of topological defects, 4, is be-
low the defect density, nfj‘a‘w, the system would have if no
driving force was applied. Otherwise we call it PF (Table I).

We observe PF for driving forces just above the critical
depinning force. The topological defect density is higher
than for the static system because some vortices are station-
ary and others are squeezing past them. Within the PF regime
we find two modes of motion: For driving forces just above
the depinning current we find a bimodal distribution in the
time-averaged vortex velocity showing a peak at zero veloc-
ity. Thus, there are some vortices that are permanently
pinned (at least over the simulated time). By contrast, for
higher driving forces, whilst at any one time some vortices
may be stationary, no vortices are permanently pinned. These
data confirm earlier findings of Spencer and Jensen'! em-
ploying a simpler model. For clarity, Fig, 3 does not distin-
guish between these two types of PF.

In the OPF regime, where the topological defect density,
ng, is lower than for the static system, we observe that the
instantaneous velocity distribution shows no peak at zero
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FIG. 5. The moving Bragg
glass. Left: Histogram of vortex
positions. The driving force is act-
ing from left to right along the x
direction, and vortices move in
rough channels, like beads on a
string. The inset shows a slightly
enlarged version of the channels
and positions of vortices for one
time step are shown as circles.
Right: Delaunay configuration of
one snap shot of the same system.
Although the channels in the left
plot are rough, there are no topo-
logical defects in the moving
Bragg glass.
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velocity (i.e., all vortices are in motion), whereas this is not
the case for both types of PF described in the last paragraph.
Faleski, Marchetti, and Middleton?® used the term crinkle
flow to describe motion of vortices via correlated displace-
ments of patches of vortices. Our observations of OPF sug-
gest that the definition used here for OPF (n4<n3"") is
equivalent to the definition of crinkle flow introduced by
Faleski, Marchetti, and Middleton®® (absence of a peak at
zero velocity in the instantaneous velocity distribution).

D. Decoupled channels

For sufficiently strong pinning and intermediate driving
forces (Fig. 3) we find that vortices arrange in lines orien-
tated along the direction of the driving force (Fig. 4). These
lines move with different velocities in the direction of the
driving force. This type of motion is described in detail in
Sec. IV and is called decoupled channel motion.

E. Coherently moving structure

We observe two different kinds of coherently moving
structures: (i) either a MBG (Ref. 14), which is free of topo-
logical defects (Fig. 5), or (ii) a hexagonal system similarly
aligned with the direction of the driving force but with a few
dislocations (Fig. 6). Both configurations move elastically,
i.e., each vortex keeps its nearest neighbors for all times.

For strong pinning (F;2.:20.8f,) and increasing driving
force the transition from the decoupled channel regime to a
coherently moving structure results in a MBG if the groups
of coupied channeis have the same vortex line density (see
Sec. IV B). If the groups of coupled channels have different
line densities then the dislocations between them are frozen
into the coherently moving structure. For weak pinning
(FP.=0.8f,) the vortices do not move in decoupled chan-
nels for intermediate driving forces, and the system changes
directly from OPF to a coherently moving structure. Again,
elastically-moving systems with and without topological de-
fects are observed. Our data from simulating current-voltage
characteristics with increasing driving force suggest that the

configuration at high driving forces is usually a hexagonal
system aligned with the driving force with a few disloca-
tions. However, a MBG configuration is occasionally
observed.

The coherently moving structures we observe are always
aligned with the direction of the driving force for pinning
strengths =0.8f,. For smaller pinning strengths, configura-
tions develop occasionally, which are not aligned with the
driving force. It has been argued'®'®*"?8 that this alignment
minimizes power dissipation, and our results are in agree-
ment with other numerical investigations®'® in which the
high-velocity configurations are generally aligned with the
driving force.

For a MBG we find peaks at multiples of the washboard
frequency wy=2m(vp)/ay in the Fourier spectrum of the
center-of-mass velocity vq,(?) of the system, where () de-
notes a time average and a is the lattice constant of the
vortex lattice. Whereas this temporal periodicity is not exis-
tent for the velocity of an individual vortex, we also find it in
the energy of the system. Clear peaks in the Fourier spectrum
can be observed up to frequencies of ~100w,. For a single
particle the washboard frequency is observable if it slides
through a periodic potential. Here, we have a random poten-
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FIG. 6. A coherently moving structure with six dislocations (12
topological defects).
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tial, but a periodic system. One thus finds the washboard
frequency in observables that depend on all vortices, such as
the center-of-mass velocity or the energy, but not for indi-
vidual vortices. The washboard frequency has been found
experimentally in ac (Refs. 29-31) and dc (Ref. 32) mea-
surements, and numerically'? in a similar regime.

In summary, we observe occasionally a MBG at high
driving forces, but most of the final configurations are hex-
agonal systems aligned with the driving force with a few
dislocations pairs. However, it could well be that finite tem-
peratures or larger systems would favor the creation of a
MBG at high driving forces: as yet, it is not clear what is the
“dynamic ground state” of these systems. Our data cannot
be used to decide whether a MBG exists in two dimensions
or whether the MTG is the only stable phase,'®!8 since for a
system of a given size if the velocity is sufficiently large then
all channels couple and appear to be a MBG. Another open
question is whether periodic boundary conditions can favor a
reordering of a disordered vortex system.>® The exploration
of these questions is computationally expensive though new
methods for evaluating interactions in the system may make
this feasible.'***

IV. DECOUPLED CHANNELS

This section describes a plastic mode of motion that, due
to its quite different properties, is separated from the Sec.
I C on turbulent plastic flow. As visible in the dynamic
phase diagram in Fig. 3 the decoupled channels are only
observed for sufficiently strong pinning.

Increasing the driving force (which acts in the x direction)
from the turbulent plastic flow regime further, transforms the
time-averaged velocity distribution from a broad peak as ob-
served for turbulent plastic flow to several clearly distinct
peaks as shown in Fig. 4(a). In Fig. 4(b) four different ve-
locity levels are visible, each of these corresponding to one
peak in the velocity histogram. Thus, vortices move in four
groups of coupled channels and, within a group, all channels
travel with a constant velocity in the direction of the driving
force. Plot 4(c) shows the lattice structure of (b) in a two-
dimensional projection. Vortices with more or less than six
nearest neighbors are highlighted by a gray shade. We see
that the groups of coupled channels are separated from each
other by one 5-7 dislocation (a pair of vortices one having 5
and the other 7 nearest neighbors).

Plot 4(d) shows the initial (@) and final ( X) positions of
vortices in the frame of reference of one of the vortices in
group C, and the initial and final positions are connected by
a straight line, demonstrating that vortices never change the
channels in which they move. This is a particularly interest-
ing point since the moving glass theory'® assumes that the
topological defects (which are hard to treat analytically) be-
tween groups of coupled channel do not destroy transverse
periodicity. Thus, the observation that these topological de-
fects do not introduce chaotic motion of vortices and that the
defects just decouple the different channels supports the
theory of Giamarchi and Le Doussal.!

A series of runs shows that generally for larger driving
forces the number of channels (and thus the size of each
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FIG. 7. This plot shows for the decoupled channel regime
in which areas of the simulation vortices prefer to travel. On a
700X 700 cell grid, a two-dimensional histogram of vortex posi-
tions has been created. The darker a cell, the more vortices have
been counted within that cell over the duration of the simulation.

group) that are coupled and move with the same velocity
increases, until the system shows elastic motion. For de-
creasing driving forces the number of coupled channels de-
creases until each group of coupled channels exists of only
one or two channels. For even smaller driving force, the
systems exhibit turbulent plastic flow.

For the mixed regime shown in Fig. 3 we find that the
mode of motion depends on the history of the system: In-
creasing the driving force for a system in the decoupled
channel regime into the mixed regime results in motion in
decoupled channels. On the other hand, reducing the driving
force for a MBG into the mixed regime, yields elastic mo-
tion. For driving forces above the dotted line in Fig. 3 all
systems show elastic motion and below the dash-dotted line
all systems show smectic motion. The data suggest that both
the MBG and the decoupled channels are metastable steady
states that are separated by an energy barrier. In future we
will explore whether finite temperatures are able to overcome
this barrier.

Figure 7 shows an accumulation of vortex positions using
a grid of 700X 700 cells. It demonstrates that the channels in
which vortices move are not strictly static but slightly broad-
ened (see, for example, y=~3), although vortices never
change channels. Further analysis in Sec. IV B shows that
the 5-7 dislocations highlighted in Fig. 4(c) move with time
in the x direction parallel to the driving force. Presumably
this requires slight corrections of the static channels, which
results in their blurred form visible in Fig. 7. This is sup-
ported by results given in Fig. 5 which show that for the
MBG in the absence of dislocations the resulting channels
are strictly static (and not blurred). This may indicate that the
theoretical model'® predicting strictly static channels for the
MTG may be too simple.

Figure 8 shows the square modulus of the structure factor
for two k vectors for the MTG. The large value of the (01)
peak indicates the transverse order of the system. The small
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FIG. 8. Intensity of two Bragg peaks for the moving transverse
glass shown in Fig. 4. The (01) peak is relative constant at a value
of approximately 0.85 and it measures the order along the y direc-
tion. In contrast, the peak (10) measures also order along the x
direction, and oscillates strongly. The variations are due to the dif-
ferent groups of coupled channels sliding past each other. The de-
viation of the (01) peak from 1.0 (as for a perfect lattice) is due to
the roughness of the channels. The inset shows the lattice vectors
used to label the peaks.

and oscillating (10) peak shows the strongly reduced order in
the x direction. A time Fourier transform of the (10) signal
reveals the frequencies with which the different groups over-
take each other by one lattice spacing. This is exactly what is
expected for a MTG in a finite system and is in agreement
with the theoretical prediction'>!® for the smectic regime
that any peaks in the structure factor with a nonzero
x-component should vanish in an infinitely large system.
The data shown are in agreement with the theoretically

predicted moving smectic'>!¢ that is also called MTG,'® and
decoupled channel regime.!” A MTG has previously been
identified by a numerical study of Olson, Reichhardt and
Nori,'? and the Delaunay triangulation of a snap shot of their
system looks qualitatively like Fig. 4(c). Kolton, Dominguez
and Grénbech-Jensen numerically found smectic states,*
and earlier the numerical studies of Moon, Scalettar and T.
Zimanyi® on moving vortex systems suggested the possibility
of phase slips of different channels. Further new results on
the MTG are presented in the next two sections concerning
the spatial distribution of vortex channel velocities depend-
ing on the pinning landscape (Sec. IV A), the mechanism of
uncoupled channels sliding past each other (Sec. IV B), and
the transverse depinning (Sec. IV C).

A. Dependence of the spatial velocity distribution
on pinning landscape

We find a correlation between the particular pinning po-
tential employed (representing details of the microstructure
causing vortex pinning in the material) and the positions and
velocities of the different groups of coupled channels. It
should be noted that, although for the data shown in Fig. 4(b)
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FIG. 9. Dislocation mediated phase slip in decoupled channel
regime for different longitudinal vortex densities showing snap
shots of 9 time steps. The open circles in each plot mark two fixed
vortices, and the upper one defines the frame of reference. The
Lorentz force acts from left to right. The upper two lines of vortices
visible in each plot belong to group C in Fig. 4 and the lower to
lines to group D. Thus, in the relative frame of reference, the lower
two lines move to the left. The two black filled circles indicate
topological defects in each snap-shot and represent a dislocation.
These mediate the phase slip while moving to the left as can be seen
by comparing the open circles in plots 1 and 9.

the vortices with the maximum velocity are located in the
central region of the sample (y~0*1.5), this is not an edge
effect: for other samples the maximum is located at different
y positions. Remarkably, in both the decoupled channel re-
gime (Fig. 4) and the turbulent plastic flow regime (not
shown here) the fastest flow is located in the same part of the
simulated material.

It has been suggested®® that the different velocities ob-
served in the decoupled channel regime and shown in Fig. 4
may be related to the experimentally observed fingerprint
effect.* In fact, it seems that for both the turbulent plastic
flow and the decoupled channel regime the same areas of the
pinning potential allow for better (or worse) pinning. This is
not obvious since in the turbulent plastic flow regime vorti-
ces flow more or less individually along highly tortuous
paths whereas in the decoupled channel regime they move in
a much more correlated way.

B. Channel sliding mechanisms

Figure 4 shows that the number of vortices per line of
vortices (the line density) differs from group to group by 1,
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FIG. 10. Dislocation mediated phase slip in decoupled channel regime for equal longitudinal vortex densities. The open circles mark four
fixed vortices and black filled circles show topological defects. Here, in the relative frame of reference, the lower two lines move to the right.
The phase slip is realized by two dislocations consisting of a 5-7 and a 7-5-disclination pair (counting first the nearest neighbors for the upper
disclination). These emerge from a pair-antipair creation process in plot 2. The 5-7-dislocation on the left moves to the left and the
7-5-dislocation to the right-hand side. In this process they allow the lower lines to pass a lattice spacing to the right. Between plots 6 and 7
the 7-5-dislocation leaves the simulation cell at the right-hand side and enters it again on the left-hand side. Finally, in plot 10, the two
dislocations meet again and annihilate each other. The topological defect in the lowest row is not important here.

and exactly one dislocation between the groups is required to
accommodate this difference [Fig. 4(c)]. In Fig. 9 a time
series of Delaunay®® triangulations of snap shots of a part of
Fig. 4 is shown, demonstrating how a moving dislocation
allows group C to move faster than group D.

Figure 10 shows this process for two neighboring chan-
nels having the same longitudinal vortex density. Again the
phase slip is mediated by dislocations that travel along the
channel. However, since initially there are no dislocations
between the channels a dislocation pair is created. These
dislocations travel away from each other, allowing the phase
slip between the upper and lower two lines. When the dislo-
cations meet again (due to periodic boundary conditions)
they annihilate.

Only the two mechanisms shown in Figs. 9 and 10 have
been observed. The situation with the same longitudinal vor-
tex density has been observed less frequently that may indi-
cate that this is energetically more expensive. However, in
macroscopic systems the two mechanisms described are less
distinguishable and may coexist: the local vortex line density
differs around each of the dislocations in Fig. 10. Thus, the
process shown in Fig. 9 may just be a more detailed study
of the phase slipping process in Fig. 10 for each of the
dislocations.

From a figure in the work of Olson, Reichhardt and Nori'?
we identify varying longitudinal vortex densities and Burgers

vectors®’ parallel to the driving force, both in agreement with
our results.

In conclusion, as far as we know, the detailed mechanism
of decoupled channels moving past each other has been iden-
tified for the first time. The phase slip is mediated by discli-
nation pairs which either exist between separate groups of
coupled channels with locally different line densities of vor-
tices, or the disclination pairs are created dynamically and in
pairs when sufficient shear stress has built up. These results
may help in finding a starting point for a theoretical descrip-
tion of the dynamics of dislocations, such as a
Kosterlitz-Thouless®® theory for nonequilibrium systems.

C. Transverse depinning

Following the theory of Giamarchi and Le Doussal,!* at
zero temperature, a nonanalytical response of the vortex sys-
tem to a small transverse force is expected for the moving
glass, i.e., for the MBG and the MTG. In agreement with our
results in both the MBG and the MTG the existence of such
transverse barriers have been observed in
simulations.>!%**40 The transverse depinning of the MBG
has recently been described® and here we report on the
transverse depinning of the MTG. We have found that the
transverse depinning of a MTG may happen in two ways:
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Mechanism A. At a certain strength of the transverse force
(below the transverse depinning force), some vortices change
the rows in which they have moved so far, such that after this
first step the different groups of coupled channels 4, B, C,
and D (in Fig. 4) have the same number of vortices in each
row. Then, all these rows move with the same velocity, i.e.,
the system has changed from a MTG to a MBG. This MBG
does not (yet) move in the transverse direction. Only when
the transverse driving force is increased even further, the
system depins in the transverse direction, and moves elasti-
cally in the longitudinal and the transverse direction as de-
scribed in Ref. 39.

Mechanism B. At the transverse depinning force the sys-
tem rearranges plastically such that the rows of vortices
(which are aligned with the x axis in Fig. 4) become orien-
tated with an angle to the x axis after the change. The new
direction of the rows is not the same as the direction of the
total driving force (adding the small transverse force to the
main driving force along the x axis).

We have found that the critical transverse force is higher
for mechanism A. Our early investigations have shown that
the transverse depinning of the MTG is an intricate matter
and further studies are required to reveal under which cir-
cumstances mechanism 4 or B appears.

V. CONCLUSIONS

We have modeled the dynamics of vortices in two dimen-
sions using overdamped Langevin dynamics with a logarith-
mic vortex-vortex interaction potential that includes a modi-
fied cutoff'” to avoid introducing numerical artifacts into the
simulation. We have computed a dynamic phase diagram as a
function of pinning strength and driving force. We find
pinned vortex systems, different kinds of turbulent plastic
flow, and for large driving forces motion of vortices in rough
channels along the direction of the driving force. Depending
on pinning strength and driving force the motion in different
channels can either be coupled or decoupled. These phases
can be identified with the predicted MBG [Ref. 14] and
the MTG [Ref. 15] as described in recent theoretical
models.!4~18

We have studied the MTG in detail and report on the
dependence of the vortex channel velocities on the pinning
landscape. We have identified how topological defects medi-
ate the phase slip between channels moving with different
velocities, and we have shown that vortices never change the
channels in which they are moving, i.e., the dislocations in
the system do not produce chaotic motion of vortices, thus
preserving transverse periodicity. Together with the observed
critical transverse force for the MTG and the MBG in these
simulations, our findings strongly support the moving glass
theory of Giamarchi and Le Doussal'® that assumes that the
dislocations in the MTG do not introduce additional effects
that may destroy transverse periodicity (and thus the critical
transverse force) in the MTG.

Our findings may also help in finding an extension to the
Kosterlitz-Thouless®® theory for nonequilibrium systems.
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FIG. 11. Demonstrating the shape of the interpolating polyno-
mial p(r) (thick line) that smoothly reduces the vortex-vortex in-
teraction force f(r) to zero. For clarity we have chosen f(r)
=1/r. The interpolation starts at the fading distance a=7.54, and
reduces the interaction force to zero at the cutoff distance b
=10.5a,, where a, is the average vortex lattice spacing. See text
for details.
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APPENDIX: SMOOTH CUTOFF

We employ a smooth cutoff for the vortex-vortex interac-
tion following the ideas described in Ref. 19. Here we
give details on the particular interpolating function we have
chosen.

The vortex-vortex interaction has to be cutoff for dis-
tances greater than a cutoff distance b. Assume the interac-
tion force is given by f(r). For short-ranged interactions it is
sufficient to use an interaction f(r) which is f(r) for r<b
and zero otherwise:

. f(r), r<b
Jr)= 0, r>b.

For long-ranged forces this approach results in artificial
configurations.'® However, those problems can be overcome
by reducing f(r) smoothly to zero near the cutoff distance b.
One needs to introduce another distance a, and a polynomial
p(r), such that a<b and that p(r) interpolates between f(a)
at a and and zero at b:

Sr),  r<a
fry=3 p(r), a<rsb
0, r>b.

It is required'® that 7(r) shows C' continuity at g and b, and
its derivative at b to be zero:

fla)y=p(a)}, (Ala)
p(b)=0, (Alb)
df dp
?d—r_ r=a—2; r=a’ (Alc)
dp
I r=b—0. (A1d)

We have used a third-order polynomial
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3
p(x)=20 cixi=c3x3+czx2+c1x+c0
=

and the coefficients c; are completely determined by Eqgs. (Ala)—(Ald). Writing f”(#) for df/dr(r) one finds

c3 f'(a)a—f"(a)b—2 f(a)
¢ 1| =/ (@)a*+3 fla)(a+b)—af' (a)b+2 f'(a)b?
ci| (a-b)?| (2f(a)a*—af'(a)b—6 f(a)a—['(a)b*)b
co —f’(a)b2a2+3f(a)ab2+f'(a)ab3——b3f(a)

The cutoff distance b is determined by geometrical constraints (see Sec. II A). We follow Ref. 19 and choose the distance b
— a over which the interaction is reduced to zero to be three lattice spacings, so that a=5b-—3ay. In this work f(r)1/r. Figure
11 shows a schematic plot of the smooth cutoff and the interpolating polynomial.

To compute the potential energy of the system it is required to integrate —p(x) to represent the smoothed interaction
potential for <7< b. The integration constant is determined by requiring continuity of the interaction potential at r=a.
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