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Abstract

Electrical Impedance Tomography can provide images with well-defined characteristics using a fully
non-linear reconstruction process when appropriate constraints are imposed on the solution to allow the
ill-posed inverse problem to be solved. Using appropriate finite element discretizations for forward
solution and inverse problem offers additional advantages in the image reconstruction process, such as (a)
inclusion of prior knowledge, (b) generic model templating to adapt to, for example, individual head
shapes, and (c) obtaining accurate results without unnecessary computational overhead.

We have developed an efficient 3D non-linear reconstruction algorithm based on a regularized inverse
conjugate gradient solver which incorporates (a) local image smoothness constraints, and (b) a number of
optimisations which reduce the computing power required to obtain an accurate solution. We show results
from applying this to various problems which arise in medical resistivity reconstruction given only
surface potential measurements and demonstrate the importance of the FE discretization.
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1. Introduction

Recent medical interest is focused on accurately representing geometric objects (Gibson et al, 2000) and
on near real-time reconstruction. We discuss how our algorithm, which is based on the finite element
method, can be applied to these problems. In particular, the optimizations we have implemented, such as
the use of adaptive meshing to improve the reconstruction resolution and parallel computing methods
(Blott et al, 2000), are highly applicable.

Electrical Impedance Tomography algorithms in two dimensions are well established. Many different
flavours of algorithms have been devised to enable fast and accurate 2D reconstructions. Several of these
algorithms can be applied or at least extended three-dimensional problems. In three dimensional EIT the
main problems to be overcome are

¢ accurate boundary shape representation

¢ suitable algorithms for general 3D imaging (non-circular, no application of dedicated interpolation
functions such as Bessel functions)

¢ high reconstruction time caused by large dense matrices
¢ resolution inaccuracies caused by deficient element quality

Jain et al (1997) showed for 2D circular problems that inaccurate modelled object boundaries can cause
large errors in the material reconstruction. In particular, a circular representation of an elliptic boundary
caused 37% additional error in the reconstruction. We summarise the requirements for an efficient
reconstruction algorithm in table 1.

In this paper, we demonstrate the importance of using a high-quality finite element object representation.



Speed application of sparse matrix storage schemes and solver techniques
problem-adapted mesh density

parallelization of code

Accuracy usage of high-quality domain discretization
robustness with respect to noise
minimal influence of constraints and regularization on solution accuragy

suitable algorithm for the problem’s non-linear nature

Flexibility accurate modelling of complex 2D and 3D geometries
allow for easy application of differing boundary conditions

FE mesh templating and node relocation for dynamic imaging

Table 1 Requirements for an efficient reconstruction algorithm

2. Method

Our reconstruction of a conductivity distributianwithin a volume conductor? by means of Electrical
Tomography is based on a least square minimization of a functigpmeich

(a) employs a\-weightedy?-statistic incorporating the difference between computed and measured
electrode voltages;*°""-U;"***and accounting for the measurement edidf"**

(b) includes a term based on image properties, such as image smoothioggs), to determine a
well-defined reconstruction:
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This system is equivalent for two- and three-dimensional problems. To solve the above equations for the
unknown conductivity distributioro; we have employed a conjugate gradient algorithm based on a
modified Newton-Raphson scheme for which Yorkey et al (1987) showed fastest convergence of a
number of EIT reconstruction processes. For more details about the algorithm please refer to the paper of
Blott et al in these proceedings.

The correct presentation of parameters involved in the reconstruction process is essential. This includes
the correct modelling of the object’s boundary, the correct location of electrodes and the application of a
suitable discretization of the object for the numerical procedure.

2.1 Finite Element Discretization

Since there exist no analytic solutions to the generalized problem, the object under investigation needs to
be discretized to enable the application of numerical techniques. We employ the well-known and most
suitable Finite Element (FE) Method which provides many advantages over other methods in the
reconstruction process.

Finite element techniques are well studied and understood (Burnett, 1987) and in comparison with Finite
Difference methods produce piecewise solutions on the domain (compared to only pointwise in FD).
Boundary Elements are applicable only in certain cases where the volume contains only few differing
materials (Webster, 1990).

The main advantages of Finite Element discretizations are flexibility in terms of geometry and in the
application of different types of boundary conditions. However, the speed and accuracy of the imaging
process — the reconstruction of conductivities given only surface potential measurements — highly
depends on the underlying FE discretization.

A finite element discretization appropriate to a certain problem, allows for additional advantages in the
imaging procedure:



1) Inclusion of prior image knowledg®rior knowledge about the problem or object can be included in
the reconstruction process, for example image smoothness (Blott et al, 1998)

2) Inclusion of prior material and geometric informatioReatures extracted from MRI or CT scans can
be used to improve the image iteration process by constraining it to respect certain boundaries (skull,
bone, gray matter) or by applying an approximate extracted conductivity distribution as algorithm
starting vector or prior (Vauhkonen, 1997).

3) Problem adapted element densiBre-defined element density at locations where there are expected to
be high current density gradients (eg around electrodes or the optical nerve)

4) Generic model templatingWe will call the preparation of generic models for application to
individually differing shapes/patients Finite Element mésmplating This does not form part of the
actual reconstruction process, however, if these templates are applied, it must be assured that elements
are not distorted. Templates simplify the incorporation of the above-mentioned features.

5) Adaptive meshing techniqueiccurate results can be obtained without computational overhead when
the elements are only added where necessary during image reconstruction (Molinari et al, 2000)

3. 3D non-linear solver optimisations

We have employed the following optimisations to our 3D reconstruction algorithm to reduce the required
computing power and obtain an accurate solution:

High quality mesh generatiorAn initial high quality discretization of the object is carried out with a
suitable Finite Element mesh generator (eg. Netgen, Geompack, Bubble meshing method).

Three-dimensional adaptive mesh refinement methadaptive Meshing method in three dimensions are
much more complex than in two dimensions and require the application of appropriate strategies such as,
for example, Bubble Meshing (Cingoski et al, 1997).

Conjugate gradient solveiThe conjugate gradient solver is one of the most suitable solvers for ill-posed
large scale problems. It scales withr®®) in 2D and O6™) in 3D wheren is the number of elements per

row in a matrix used in the reconstruction (Jacobian or sensitivity matrix). An additional advantage is that
the non-linear conjugate gradient algorithm can easily be parallelized onto several processors.

Local image smoothness constrainte ill-conditioning of the problem makes it important to regularize
the algorithm to stabilize it and to improve convergence. Regularization can either be carried out by
standard Tikhonov regularization or, preferably, by applying the above presented objective function
which uses the smoothness of image as a property constraining the reconstruction process.

Parallel computing method<Parallel computing methods are highly applicable to our reconstruction
algorithm. We have demonstrated that a solution of the forward problem can be obtained using a cluster
of computers working in parallel (Blott et al, 2000). In particular, the conjugate gradient solver is very
efficient in a parallelised version (Hake, 1992). Current work involves the implementation of these
techniques in Object oriented C++ code using MPI (Message Passing Interface) programming.

Visualization The visual representation of values such as potentials, current densities, reconstructed
material is much more demanding in three dimensions compared to two-dimensional imaging.
Visualization using software such as Matlab or graphics libraries, for example OpenGL implementations,
enables us to image isosurfaces, isopotentials, 3D material distributions, etc. based on the used or derived
finite element mesh.

4. Results

We show results from simulated reconstructions applying an algorithm which incorporates some of the
above optimisations. We have computed several reconstructions of a simple head model with three
conductivity parameters. We assumed a head filled with cranio-spinal fluid (CSF, 1.55 S/m) and a mouth
cave region (0.01 S/m) as well as a blood clot (6.67 S/m) in a central region behind the left eye of the
patient.



Figure 1: (Left) Our 3D ‘dummy’ head to investigate the effects of boundary distortion on the
reconstruction. (Right) interpolated isosurface of the reconstructed conductivity distribution.

We have investigated the effect of inaccurate volume discretization on the reconstruction. For this, we
used the mesh for the forward simulation and distorted it for the reconstruction by a small fraction. The
resulting error in conductivities was obtained ustg |gU"distorted mesh gdistorted mesp /. sundistorted megh T

2 shows the results in comparison to an undistorted mesh, figure 2 shows the result grajihisaie —

almost constant — average of the elemental quality distribution ® R/R, where D denotes the
dimension of the problem,;Rhe inscribed radius and,Rhe circumscribed radius of elemen{Golias

and Dutton, 1997). As only few elements were used to ensure a good reconstruction, the quality was quite
low as the complex boundary causes high variations in mesh density.

Geometric Quality Q Reconstruction errde o
distortion y relative to ‘no distortion’ i
0 0.67 0 e
1% 0.67 2.0 % 5
2% 0.67 18.4 % g :
3% 0.67 26.4 % i =
5% 0.67 36.2 % T
10 % 0.67 32.8%
12 % 0.66 40.8 % P
% boosdsry dissoriionn
15% 0.66 96.7 %*

(Left) Table 2: Effects of geometric modelling inaccuracies of the head boundary on the reconstructed
conductivity distribution using a mesh with 409 nodes and 1495 elements.
(Right) Figure 2: Error of reconstruction on meshes with distorted geometry (*'electrode dislocation’)

Mesh templating can cause elements and object boundaries to deform. In order to preserve the ‘built-in’
features such as the element density and quality, we need to utilize specific techniques (for example
Bubble Meshing) when applying the template to a different shape/patient. As shown above, a mesh
template used without these corrections will cause large errors.
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Figure 3: Mesh templates: From one mesh to many patients

5. Conclusions

We have shown that accurate presentation of the boundary of objects is essential for good reconstructions.
It is also very important to employ quality finite elements in order not to deteriorate the possible
reconstruction accuracy. To obtain these, a quality improving bubble meshing technique can be applied.
This technique is also useful for reshaping meshes as used in Mesh Templating. We have discussed
optimisations of the non-linear solver to obtain an efficient reconstruction and accurate results based on
optimised finite element meshes. Adaptive finite element techniques can save a large amount of
computation time by refining the mesh density only where necessary for a model accurate for the
numerical process.

Further work will apply parallel computing methods which will then enable closer real-time imaging in
the context of patient monitoring.
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