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Optimizing the Jiles–Atherton Model of Hysteresis
by a Genetic Algorithm
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Abstract—Modeling magnetic components for simulation in
electric circuits requires an accurate model of the hysteresis loop
of the core material used. It is important that the parameters
extracted for the hysteresis model be optimized across the range
of operating conditions that may occur in circuit simulation.
This paper shows how to extract optimal parameters for the
Jiles–Atherton model of hysteresis by the genetic algorithm ap-
proach. It compares performance with the well-known simulated
annealing method and demonstrates that improved results may
be obtained with the genetic algorithm. It also shows that a
combination of the genetic algorithm and the simulated annealing
method can provide an even more accurate solution than either
method on its own. A statistical analysis shows that the optimiza-
tion obtained by the genetic algorithm is better on average, not
just on a one-off test basis. The paper introduces and applies
the concept of simultaneous optimization for major and minor
hysteresis loops to ensure accurate model optimization over a wide
variety of operating conditions. It proposes a modification to the
Jiles–Atherton model to allow improved accuracy in the modeling
of the major loop.

Index Terms—Circuit simulation, genetic algorithm, hysteresis,
Jiles–Atherton, magnetic component modeling, optimization.

I. INTRODUCTION

T RANSFORMERS and inductors are essential components
in a wide variety of power and communications applica-

tions, and the accurate modeling of these devices for use in cir-
cuit simulation is essential to predict design performance. It is
required to accurately represent the hysteresis behavior of the
magnetic core material used in these components in the sim-
ulation model. One model that has been used quite widely is
that of Jiles and Atherton [1], [2]. Jileset al. [7] show how the
parameters for the model may be extracted from a set of mea-
sured data for a major hysteresis loop but do not consider arbi-
trary loop sizes, and Prozygy [8] has established the effects of
parameter variations on the major loop. Optimization methods
applied to fit the Jiles–Atherton hysteresis loops to measured
data have been investigated by Schmidt and Guldner [9], and
Ledereret al. [10] using the well-known simulated annealing
approach. Genetic algorithms provide an alternative approach
to optimization which may have some advantages, especially
when considering the more complex problem of fitting several
loops simultaneously.
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The use of genetic, or evolutionary, algorithms to solve
difficult engineering problems is a relatively recent innova-
tion. Holland [3] and Goldberg [4] are two of the pioneers
of this technique, and the last 10 yr have seen a plethora of
applications for genetic algorithms from systems design to
topology analysis [5]. The fundamental difference between
genetic algorithms and conventional optimization techniques,
such as simulated annealing [6], is that in certain problems, the
computational effort involved in a standard exhaustive search
method would be prohibitive. The random nature of genetic
algorithms may not find the absolute best solution, but it has a
greater chance of finding a good solution, quickly, for difficult
problems. This randomness also works well for problems with
chaotic or ill-defined behavior difficult to classify, and those
problems with local maxima or minima that would perhaps trap
a conventional search algorithm.

The optimization of magnetic materials is a problem which
has aspects suited to the application of genetic algorithms. Even
though the Jiles–Atherton [1] model of hysteresis is well under-
stood mathematically, the parameters are interlinked in such a
way that the set of possible combinations of parameters may
be large. Significant changes in the shape of the hysteresis loop
may result from small parameter variations. These two aspects
give a relatively high risk of local maxima or minima being
found or instabilities in a conventional algorithm. Other ap-
proaches for modeling magnetic materials such as the Preisach
[11] model have no direct link between behavior and material
physical properties so are natural potential targets for the ge-
netic algorithm approach.

II. OUTLINE OF THE GENETIC ALGORITHM METHOD

A. Overview

The flowchart of a generic genetic algorithm is shown in
Fig. 1. The algorithm is based on the concept of natural selec-
tion. The first step is to define an initial population of individ-
uals, or set of magnetic model parameters, which is the first gen-
eration for the algorithm. In this application, the initial popula-
tion is formed by taking an initial set of parameters which are
then subjected to random variations.

B. Choosing Parents

For each generation, there will be a number of children cre-
ated by combining the characteristics of two parent individuals.
The choice of parents is determined by random and selective
methods. First, a set of possible parents is randomly chosen from
the current generation. The prospective parents are then ranked
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Fig. 1. Generic genetic algorithm method.

in terms of a fitness function to find the best individual, which is
then chosen as the first parent. In this case, the fitness function
is a measure of how closely the BH (flux density-B versus mag-
netic field strength-H) curve matches the target. This process
is repeated with a new set of possible parents to find the second
parent. Once the two parents have been selected, then their char-
acteristics can be combined to create a new individual (child).

C. Creating New Children

A new child is created by the random combination of the
characteristics of the parents. The overall set of parameters is
defined as a string (chromosome) made up of individual param-
eters (genes). Each parameter is represented by a floating-point
binary number. The child’s chromosome is then constructed by

Fig. 2. Genetic algorithm crossover.

combining the genes of the parents using a crossover method, il-
lustrated in Fig. 2. The selection of parents and creation of new
individuals (children) is then repeated until the specified number
of children is achieved.

As in natural reproduction, there is a risk of mutation during
the crossover process. This is implemented by adding random
changes to a proportion of the children created.

D. Renewing the Population

Once the required number of children has been created, the
population as a whole is adjusted, in this case keeping the size
of the population constant. To do this, the parent’s generation is
tested for fitness, ranked, and the worst individuals replaced by
the children.

The new generation is again ranked using the fitness function,
and the best individual is evaluated to see if it meets the require-
ments of the goal function, and if so, the algorithm stops; oth-
erwise, the algorithm can continue.

III. FITNESS ORGOAL FUNCTIONS

The fitness, or goal, function that defines the performance
of the model is based on a simple least squares error approach
comparing the curve(s) with the target on a point-by-point basis.
An alternative goal function described by Wilson and Ross [12]
has been implemented based on performance metrics such as
initial permeability, saturation flux, and energy loss. By using
weighting of metrics, the goal function is made appropriate for
the ultimate application.

IV. OPTIMIZING THE JILES–ATHERTONMODEL OFHYSTERESIS

A. Jiles–Atherton Model

The Jiles and Atherton [1], [2] model of hysteresis is a phys-
ically based approach for modeling magnetic hysteresis. The
parameters of the model are related to physical features in the
model such as the saturation magnetization, summarized as fol-
lows:

irreversible loss;
anhysteretic behavior;
reversible/irreversible proportions;
effective field;
saturation magnetization.
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Unfortunately, these parameters will only provide an accurate
fit for specific sigmoid forms of the hysteresis loop but is inad-
equate for accurate modeling of early closure of the hysteresis
loop or square loops.

B. Improvement of the Jiles–Atherton Model

There is no fundamental reason why the parameters should be
fixed, and they can therefore be made functions of the applied
field or the flux density to obtain a better fit with measured data.
Jiles and Atherton [2] explain that the parameter which defines
the loss can be made a function of the applied field or the flux
density and propose a linear function. It was found, however,
that a Gaussian function of the form shown in (1) gave excellent
results, and this was therefore used in this paper. This function
has the added advantage of no discontinuity around zero when
the applied field changes polarity which improves simulation
convergence.

(1)

where
default value of the parameter;
applied field;
standard deviation of the Gaussian function.

Tests with materials such as 3F3 and N30 have demonstrated
a significant improvement in the accuracy of the modeled
curves.

C. Applying the Genetic Algorithm Approach

A toroid made of the Siemens N30 material was tested, and
the resulting BH loop used for optimization. The Jiles–Atherton
model was optimized using the classical model and also the im-
proved model utilizing the variableparameter. The optimiza-
tion was carried out using the well-understood simulated an-
nealing method as a control and also with a genetic algorithm
approach. The simulated annealing approach was carried out
with a variation of 10%, a control factor of 0.001, and 2500 it-
erations used. The genetic algorithm used 50 generations of a
population including 50 individuals (50 times 50 giving a rough
equivalent of 2500 iterations). Each generation produced 40
children of whom 20 were mutated. A variation of 10% was in-
troduced in the mutation process. In each case, the fitness func-
tion used the least squares error approach.

The resulting mean errors between the simulated and mea-
sured results are summarized in Table I and Fig. 3. Table I shows
the error is significantly reduced for the genetic algorithm and
that the variable parameter makes a significant difference for
both optimization methods. Fig. 3 shows the error versus the
number of iterations and again clearly, the genetic algorithm
with the Gaussian modification of is the best result.

Interestingly, when a combination of simulated annealing
and the genetic algorithm was applied, an even better result
was achieved. This can be explained with the fact that the two
methods have different strengths. The genetic algorithm is very
good at finding the correct area of the solution, tolerant of local
maxima and minima, and the simulated annealing method is
excellent at refining a solution systematically to the nearest
maximum or minimum.

TABLE I
JILES–ATHERTON MODEL PARAMETERS AND ERROR FORSIMULATED

ANNEALING AND GENETIC ALGORITHM OPTIMIZATION

Fig. 3. Comparison of simulated annealing and genetic algorithm error
functions.

Fig. 4. Comparison of measured, simulated annealing and genetic algorithm
+ simulated annealingBH curves.

The results of the optimization are perhaps best visualized by
observing the resulting loops. Fig. 4 shows the optimized

loop using the original Jiles–Atherton model with no mod-
ification and also the optimized curve with a Gaussian variation
of using a combination of genetic algorithm and simulated an-
nealing optimization.
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Fig. 5. Statistical comparison of the performance of the simulated annealing
and genetic algorithm approaches for optimization of the Jiles–Atherton
magnetic material model.

Fig. 6. Multiple loop optimization results for Siemens N30 (major loop).

V. STATISTICAL ANALYSIS OF OPTIMIZATION RESULTS

Although the individual optimization results previously
shown are encouraging, due to the random nature of the
optimization process in both simulated annealing and genetic
algorithm approaches, it is appropriate to investigate the perfor-
mance of the respective methods statistically. The optimizations
were therefore repeated over a number of runs (20) and the
resulting errors compared. The simulated annealing approach
was carried out with a variation of 10%, a control factor of
0.001, and 2000 iterations used. The genetic algorithm used
40 generations of a population including 50 individuals (40
times 50 giving a rough equivalent of 2000 iterations). Each
generation produced 40 children of whom 20 were mutated. A
variation of 20% was introduced in the mutation process. The
simulated annealing approach gave a mean value for the error
of 0.0219, with a standard deviation of 0.003, while the genetic
algorithm gave a mean value for the error of 0.0148, with a
standard deviation of 0.009. Fig. 5 shows the histogram of the
respective errors for the two methods.

VI. M ULTIPLE LOOPOPTIMIZATION

In practice, for circuit simulation, the resulting optimized
model for a magnetic material must be accurate over a wide

Fig. 7. Multiple loop optimization results for Siemens N30 (medium loop).

Fig. 8. Multiple loop optimization results for Siemens N30 (minor loop).

variety of operating conditions. To ensure this is the case,
the optimization goal function was extended to allow the
optimization of a set of loops rather than a single major
loop. Each loop in the set has its own weighting, so if it is
essential that the minor loop has a high level of accuracy, but
the major loop is not significant, then the weighting can be
increased for the minor loop accordingly. An example of this
is shown in Figs. 6–8, where the minor loop weighting was set
to 5 to improve the relative optimization for the smaller loops.
The resulting family of curves show a good match for the minor
loop, a reasonable match for the major loop, but a poor match
for the medium-sized loops.

VII. CONCLUSION

This paper has demonstrated that it is possible to apply the
genetic algorithm technique to the optimization of parameters
for the Jiles–Atherton model. It is shown that a small modifica-
tion to the Jiles–Atherton model gives an improved matching of
the major loop.

Statistical analysis shows that the genetic algorithm approach
provides an optimized model, which is more accurate than using
the simulated annealing approach.
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The method of multiple loop optimization is introduced,
which shows how models can be optimized for a range of
loops such as minor, medium, and major loops. This method
is appropriate for the optimization of model parameters to be
used in circuit simulation where a wide variety of operating
conditions occur.
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