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Abstract|A spatial diversity reception assisted multiuser
CDMA detector based on genetic algorithms (GAs) is pro-
posed. Two di�erent diversity selection strategies are con-
sidered. In our �rst approach the so-called individuals of
the GA are chosen for selection based purely on the sum
of their corresponding �gures of merit associated with the
individual antennas, an approach which is analogous to em-
ploying the conventional log-likelihood function (LLF) for
diversity reception. According to our second strategy, the
individuals are chosen for selection based on the concept of
the so-called Pareto optimality, which uses the information
from the individual antennas independently. Computer sim-
ulations showed that the GAs employing the latter strategy
achieve a lower BER as compared to the former approach.

I. Introduction

It is well known that the multiple access interference
(MAI) present in code division multiple access (CDMA) [1,
2] systems can seriously deteriorate the quality of recep-
tion. An attractive solution for eliminating or reducing
the e�ects of MAI is multiuser detection [3]. The optimum
multiuser detector [4] { which is based on the maximum
likelihood (ML) rule in the context of synchronous CDMA
systems { searches exhaustively for the speci�c sequence
of the users' transmitted bits that maximises the so-called
log-likelihood function (LLF). Since the number of possible
bit sequence combinations is exponentially proportional to
the number of users, the optimum multiuser detector has
a computational complexity that is exponentially increas-
ing with the number of users. Hence it is impractical to
implement. This limitation led to numerous so-called sub-
optimal multiuser detection proposals, highlighted in [5]
and in the references therein, which sacri�ce performance
for the sake of a reduced complexity.

Genetic algorithms (GAs) [6, 7] have been employed for
solving many complex optimization problems in numer-
ous �elds. While GAs are by no means perfect, i.e. they
do not always �nd the optimal point in the optimization
space, they are very eÆcient in attaining near-optimal solu-
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tions signi�cantly faster, than conventional point-by-point
exhaustive search techniques, especially in large solution
spaces. GA-based multiuser detection has been �rst pro-
posed in [8,9], where the analysis was based on the AWGN
channel without invoking diversity techniques. In [10],
Rayleigh fading channels were considered, again, in the ab-
sence of diversity techniques.
In this contribution, we present a novel approach to the

problem of multiuser detection in DS/CDMA over 
at-
fading channels assisted by antenna diversity [11] based
on a genetic algorithm innovation. The antennas are as-
sumed to be suÆciently separated such that the received
signals at the antennas are faded independently, resulting
in an independent LLF for each antenna. This imposes a
problem on the optimization process due to the fact that
while a speci�c bit sequence may optimize the LLF of one
antenna, the same bit sequence may not necessarily opti-
mize the LLF of the other antenna. In order to resolve this
dilemma two di�erent GA-based diversity selection strate-
gies are considered. In our �rst approach, the individuals
of the GA are chosen for selection based purely on the
sum of their corresponding �gures of merit from the two
antennas, an approach which is analogous to invoking the
conventional LLF for diversity reception [12]. According
to our second strategy, the individuals associated with the
GA are chosen for selection based on the concept of the
so-called Pareto optimality [6], which uses the information
from the antennas independently.
This paper is organized as follows. Section II describes

our synchronous CDMA system communicating over un-
correlated non-frequency-selective fading channels using
two antennas. Section III describes the GAs used for im-
plementing our proposed detector in conjunction with di-
versity reception. Our simulation results are presented in
Section IV, while Section V concludes the paper.

II. System Description

We consider a symbol-synchronous CDMA system,
where K users are simultaneously transmitting binary
phase shift keying (BPSK) modulated bits having a period
Tb. Each bit is spread by a user-speci�c signature sequence
having a chip period Tc, hence the processing gain of the
system becomes Nc = Tb=Tc.
The receiver shown in Fig. 1 consists of two antennas
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Fig. 1. Block diagram of the receiver model

separated spatially, such that the signals received are sta-
tistically independent. Asumming ideal lowpass �ltering,
the baseband received signal at the ith antenna is given
by :

ri(t) = aT (t)�Cib+ ni(t); 0 � t < Tb (1)

where a(t) = [a1(t) a2(t) : : : aK(t)]
T

is the sig-
nature sequence vector for the K users, � =
diag

�p
�1
p
�2 : : :

p
�K
�
is the received bit energy matrix

of the K users during the bit-interval considered, Ci =
diag

�
�1;ie

j�1;i �2;ie
j�2;i : : : �K;ie

j�K;i
�
is the CIR matrix

describing a frequency-nonselective slowly Rayleigh fad-
ing channel of each of the K users, b = [b1 b2 : : : bK ]

T
is

the transmitted bit vector of the K users in the bit inter-
val concerned and ni(t) is the zero-mean complex Additive
White Gaussian Noise (AWGN) with independent real and
imaginary components, each having a double-sided power
spectral density of N0=2. The average received bit energy-
to-noise ratio of the kth user is given by :

�
k =
�
E
�
�2k;1

�
+E

�
�2k;2

�	

k; (2)

where 
k = �k=N0 is the received bit signal-to-noise ratio
(SNR) in the absence of fading. The path amplitudes are

normalized, such that E
h
�2k;1

i
+ E

h
�2k;2

i
= 1 for k =

1; 2; : : : ;K.
At each antenna, a bank of �lters matched to the corre-

sponding set of the users' signature sequences is sampled
at the end of each bit interval. Hence, the output zi of the
matched �lter bank at the ith diversity antenna is given by
the vector :

zi = [z1;i z2;i : : : zK;i]
T
= R�Cib+ ni; (3)

where R =
R Tb
0 a(t)aT (t) is a K � K user signature se-

quence cross-correlation matrix.

Based on the observation vector zi given in Eq. (3), it
can be shown that the LLF for the ith antenna is given
by [13] :

�i (b) = 2<
n
bTC�

i �z
o
� bTCi�R�C

�

i b; for i = 1; 2: (4)

The decision rule for the optimum multiuser detector as-
sociated with the ith antenna is to choose the bit vector
b̂, which maximises the LLF given in Eq. (4). Hence, the
estimated transmitted bit vector of the K users is given
by :

b̂ = arg

�
max
b

[�i (b)]

�
: (5)

Since the channel characteristics for each antenna are sta-
tistically independent, we have typically �1 (b) 6= �2 (b) for
the LLFs of the two antennae. In certain scenarios such as
during deep fades, the above inequality implies that :

arg

�
max
b

[�1 (b)]

�
= b̂ 6= arg

�
max
b

[�2 (b)]

�
(6)

or vice versa. This creates a so-called multi-objective opti-
mization problem, since the optimization of both LLFs can
sometimes lead to two possible solutions. Note that in the
conventional optimum detector [12], the LLFs correspond-
ing to the two diversity antennas are summed in order to
produce a scalar �gure of merit, as given by [12] :

� (b) =
2X

i=1

�i (b)

= 2<
n
~b
T ~C

�~�~z
o
� ~b

T ~C~�~R~�~C
�~b; (7)

where ~b = [b1 b1 : : : bK bK ]
T and ~z = [z1;1 z1;2 : : : zK;1 zK;2]

T

are vectors of dimension 2K � 1, while ~C =
diag

�
�1;1e

j�1;1 �1;2e
j�1;2 : : : �K;1e

j�K;1 �K;2e
j�K;2

�
and ~� =

diag
�p

�1
p
�1 : : :

p
�K

p
�K
�
are diagonal matrices of di-

mension 2K � 2K. The decision rule is then to �nd the
estimated transmitted bit vector b̂ that maximizes � (b).
In the next section we will highlight the philosophy of our

GA-assisted diversity-aided multiuser detector with em-
phasis on the diversity selection strategy, in order to detect
the users' transmitted bits.

III. Genetic Algorithm based Multiuser

Detection with Diversity Reception

GAs [6, 7] can be invoked in robust global search and
optimization procedures that are well suited for solving
complex optimization problems. In this contribution, we
will employ GAs in order to detect the estimated transmit-
ted bit vector b̂, where the so-called objective function is
de�ned by the LLF of Eq. (4) for the two antennas.
GAs commence their search for the optimum solution at

the so-called 0th generation by randomly creating P num-
ber of sequences, each consisting ofK antipodal bits, where
P is known as the population size, which may assume values
between 1 and 2K . These sequences are commonly referred
to in GA terminology as individuals and each individual



represents a possible solution of b̂. We shall express the

pth individual here as ~b
(y)

p =
h
~b
(y)
p;1;

~b
(y)
p;2; : : : ;

~b
(y)
p;K

i
, where y

denotes the yth generation.
Associated with each individual we have two �gures of

merit, which are associated with the two antennas and
are referred to as the so-called �tness values of the GA.
These antenna-speci�c �tness values are derived by eval-
uating Eq. (4) with b as de�ned by the individual. The
diversity-based �tness value of the pth individual is denoted

as f
�
~b
(y)

p

�
=
h
�1

�
~b
(y)

p

�
�2

�
~b
(y)

p

�i
, which is a function

of the LLFs associated with the two antennas. Based on
the evaluated diversity-speci�c �tness, the population of
P individuals at the yth generation of the GA evolves, in
order to create a new population of P individuals for the
(y + 1)th generation. The above-mentioned evolution of
a population involves several processes, which are referred
to in GA parlance as selection, crossover, mutation and
elitism [6].
As suggested by the terminology, the selection process

selects two so-called parents from a mating pool consisting
of T individuals { where 2 � T < P { in order to produce
two so-called o�spring for the next generation population.

We shall denote the individuals in the mating pool as �b
(y)

q

for q = 1; : : : ; T . Two di�erent GA-assisted diversity com-
bining strategies are evaluated here, in order to determine,
which T out of the P individuals in a population are placed
in the mating pool. A straightforward strategy is to simply
sum the two antenna-speci�c �tness values of each individ-
ual in order to produce a diversity-combined �tness value,

denoted here as �
�
~b
(y)

p

�
= �1

�
~b
(y)

p

�
+ �2

�
~b
(y)

p

�
, which

was stated explicitly also in Eq. (7), for p = 1; : : : ; P . In-
dividuals having the T highest diversity-combined �tness
values in the population are then placed in the mating pool.
Hence our GA-aided optimization employing this strategy
is based on the conventional LLF-assisted diversity recep-
tion [12]. Intuitively, we can see that this strategy relies
more on the exploitation rather than on the exploration of
the solution space, since the algorithm always favours in-
dividuals having the highest �tness, particularly if T � P .
On the other hand, choosing a higher T value may allow
certain low-�tness individuals to be placed in the mating
pool and hence may reduce the rate of convergence. The ef-
fect of the mating pool size T is investigated in Section IV.
Our second GA-assisted diversity combining strategy is

based on the concept of the so-called Pareto optimality [6].
This strategy favours the so-called non-dominated individ-
uals and ignores the so-called dominated individuals. The
pth individual is considered to be dominated by the qth
individual i� the latter has a higher �gure of merit, such
as the LLF of Eq. (4), which is formulated as [14]:

8i 2 f1; 2g : �i

�
~b
(y)

q

�
� �i

�
~b
(y)

p

�
^

9i 2 f1; 2g : �j

�
~b
(y)

q

�
> �j

�
~b
(y)

p

�
: (8)

If an individual is not dominated in the sense of Eq. (8) by
any other individuals in the population, by de�nition it is
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Fig. 2. An example of uniform crossover between two parent bits
strings

considered to be non-dominated. According to our second
diversity combining strategy, all the non-dominated indi-
viduals are placed in the mating pool. Hence the value of
T in this case is not �xed, since it depends on the num-
ber of non-dominated individuals. Observe that the latter
strategy uses the information from both antennas indepen-
dently, in order to decide which individuals are placed in
the mating pool. By contrast, our former strategy based
its decisions on a single metric by combining the antenna-
speci�c �gures of merit according to Eq. (7).
The individuals in the mating pool are selected as par-

ents according to a probabilistic function based on their

corresponding �gure of merit �
�
�b
(y)

q

�
. In order to prevent

premature convergence to a `local optimum' without ex-
ploring the global solution space, the so-called sigma scal-
ing [7] is employed. Under sigma scaling, the selection

probability p
�
�b
(y)

q

�
of an individual is a function of its own

�tness as well as that of the mating pool's mean �tness ��
and its associated standard deviation ��, as formulated
below [7] :

p
�
�b
(y)

q

�
=

8<
: 1:0 +

�

�
�b
(y)

q

�
�
��

2��
if �� 6= 0

1:0 if �� = 0;

(9)

where

�� =
1

T

TX
q=1

�
�
�b
(y)

q

�
; �� =

vuutPT

q=1

h
�
�
�b
(y)

q

�
� ��

i2
T � 1

:

(10)
The antipodal bits of the parent vectors are then exchanged
using the so-called uniform crossover [15] process with a
probability pc in order to produce two o�spring. Speci�-
cally, uniform crossover invokes a so-called crossover mask,
which is a sequence consisting of K randomly generated 1s
and 0s. Antipodal bits are exchanged between the pair of
parents at locations corresponding to a 1 in the crossover
mask. An illustration of the uniform crossover process is
shown in Fig. 2. The selection of parents from the mating
pool is repeated until a new population of P o�spring is
produced in order to perform the crossover process.
The mutation process refers to the alteration of the value

of an antipodal bit in the o�spring from 1 to -1 or vice
versa, with a probability pm. Finally, under elitism [7], we
identify the lowest-merit o�spring in the population and
replace it with the highest-merit individual from the mat-
ing pool. This will ensure that the highest-merit individual
is propagated throughout the evolution process.
The GA terminates after Y number of generations. The

individual corresponding to the highest scalar �tness value
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is the detected K number of users' bit sequence associated
with the bit-interval considered. For a given population
size P , the number of LLF evaluations required to detect
b̂ is equal to P � Y � 2 for a twin-antenna based diversity
scheme. Hence the complexity of the proposed detector is
not directly related to the number of users. The values
of P and Y can be adaptively selected, in order to �nd a
trade-o� between computational complexity and optimum
performance.

IV. Simulation Results

In this section our simulation results are presented, in or-
der to characterize the Bit Error Rate (BER) performance
of the GA-based multiuser detector employing the above
two GA-based diversity selection strategies highlighted in
the previous section. The strategy based on the sum of the
�gures of merit from both antennas is denoted as S1, while
the strategy based on the Pareto optimality is denoted as
S2. All the results in this section were based on evaluating
the BER performance of a bit-synchronous 10-user CDMA
system employing twin-antenna based diversity reception
over uncorrelated slowly Rayleigh fading channels. The
processing gain was Nc = 31 and the signature sequences
were randomly generated.
Fig. 3 shows the e�ects of the mating pool size T on the

BER performance using the selection strategy S1. While
the e�ects of the pool size were negligible at an SNR of
�
k = 10dB, the deterioration of the BER performance upon
increasing T is signi�cant at �
k = 20dB and P = 20.
Furthermore, we can see that the value of T required
for achieving the best BER performance was di�erent for
diÆerent values of P , although the dependence on T was
not pronounced. According to Fig. 3, T = 3 and T = 5 gave
the best results for P = 20 and P = 30, respectively. We
will use this result for our subsequent performance studies.

Fig. 4 shows the BER performance against the SNR �
k
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ceived energy at the antennas was assumed to be equal,

i.e. E
�
�2
k;i

�
= 0:5 for i = 1; 2 and k = 1; : : : ;K. The GA param-

eters used are the probability of crossover given by pc = 1, the
probability of mutation speci�ed by pm = 0:1 and the evolution
was terminated after Y = 10 generations

for the GA-based K=10-user detector employing selection
strategy S1 and S2 with equal average received energy at

the two antennas, i.e. for E
h
�2k;1

i
= E

h
�2k;2

i
= 0:5. Per-

fect power control and CIR estimation was assumed. The
single user bound, which assumed equal average received
energy at both antennas, was computed using the following
equation [13] :

P2 =

�
1

2
(1� �)

�2
(2 + �) ; (11)

where � =
q

�
k
1+�
k

. An error 
oor is observed for the results

shown in the �gure. As mentioned in Section I, GAs do
not always �nd the optimal solution. In this multiuser
scenario it was the GA that caused the error 
oor and not
the multiuser interference. It is seen in Fig. 4 that the
BER performance improved, when the population size was
increased from P = 20 to P = 30. However, this also
increased the computational complexity. Hence the values
of P can be selected, in order to �nd a trade-o� between
computational complexity and performance. We also see
from Fig. 4 that the GA employing S2 performs better,
exhibiting a lower error 
oor, as compared to employing
S1. Nevertheless, both strategies were capable of matching
the single-user bound performance up to �
k = 16dB and
�
k = 24dB for P = 20 and P = 30, respectively.
We then investigated the BER performance of the GA-

based multiuser detector employing selection strategy S1
and S2 with unequal average received energy at the two an-

tennas, setting E
h
�2k;1

i
= 0:8 and E

h
�2k;2

i
= 0:2. Perfect

power control and CIR estimation was assumed again. The
results were shown in Fig. 5 in comparison to the single-
user bound given by Eq. (11). Again, we can see that
GAs invoking strategy S2 exhibit a lower BER compared
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to strategy S1.
Finally, the near-far resistence of the GA-based multiuser

detector is demonstrated in Fig. 6 for the desired user. The
average energy-to-noise ratio of the desired user �
1 is set to
16 dB, while the energies of all other users were varied in
the range of 0-12dB higher, than that of the desired user.
Perfect CIR estimation was assumed and the average re-
ceived energy at both antennas were similar. We can see
that at population size P = 20, the BER performance de-
teriorates slightly, as the interfering users' energy becomes
higher relative to the desired user. On the other hand, the
BER performance associated with P = 30 remains almost
the same, even when the interfering users' energy is 10 dB
higher than that of the reference user.

V. Conclusions

In conclusion, we developed a suboptimal multiuser de-
tector based on GAs in order to circumvent the compu-
tational complexity problem present in the optimum mul-
tiuser detector [4]. To mitigate the e�ects of fading, dual
antenna diversity techniques were used. Two diversity se-
lection strategies were highlighted for the GAs. In our �rst
solution the mating pool was formed based on the combi-
nation of the statistics derived from the diversity antennas
and we had a �xed mating pool size. According to our sec-
ond strategy, the statistics were treated independently, in
order to select the non-dominated individuals to form the
mating pool. Hence, the mating pool size was not �xed.
We have shown that GAs employing the latter strategy al-
ways exhibit a lower BER compared to those employing
the former strategy. We have also shown that the BER
performance can be improved by increasing the population
size. The GA-based detector is also near-far resistent. Our
future work will attempt to extend these advances to adap-
tive beam-steering assisted asynchronous CDMA systems,
as well as to invoking space-time coding.
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