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Super-Resolution Target Identification from Remotely
Sensed Images Using a Hopfield Neural Network

Andrew J. Tatem, Hugh G. Lewis, Peter M. Atkinson, and Mark S. Nixon

Abstract—Fuzzy classification techniques have been developedhave attributes that make remote sensing suitable for target
recently to estimate the class composition of image pixels, buttheir jdentification, and the short orbit times of many sensors (of the
output provides no indication of how these classes are distributed order of 3 h to 16 days) means a temporal sequence of images

spatially within the instantaneous field of view represented by the b ired. aiding th itori f ific feat
pixel. As such, while the accuracy of land cover target identification can be acquired, aiding the monioring oF SPECiic Ieatlies.

has been improved using fuzzy classification, it remains for robust AlSO, the large spatial coverage that can be obtained with im-
techniques that provide better spatial representation of land cover agery from satellite sensors (e.qg., of the order of 10° km?)

to be developed. Such techniques could provide more accurate land provides an advantage over costly and time-consuming ground
cover metrics for determining social or environmental policy, for survey. Many remote sensors measure ground reflectance at

example. The use of a Hopfield neural network to map the spa- fi tral luti d f tt t identificati
tial distribution of classes more reliably using prior information a line Spectral resoiltion and ior Mmost target iaentncation

of pixel composition determined from fuzzy classification was in- applications, this provides sufficient information to identify
vestigated. An approach was adopted that used the output from a accurately features of interest. Finally, remote sensing has the
fuzzy classification to constrain a Hopfield neural network formu-  potential to provide land cover target information at a variety
lated as an energy minimization tool. The network converges to a of scales (e.g., from< 1 m to 1 km). These aspects make

minimum of an energy function, defined as a goal and several con- t t identification f tel di ttracti
straints. Extracting the spatial distribution of target class compo- arget iaentincation from remotely sensed imagery attractive.

nents within each pixel was, therefore, formulated as a constraint However, there exist several practical limitations.

satisfaction problem with an optimal solution determined by the Perhaps the biggest drawback of target identification from re-
minimum of the energy function. This energy minimum represents motely sensed images relates to that of scale. Spatial scale is a
a “best guess” map of the spatial distribution of class components yqy factor in the interpretation of remotely sensed land cover

in each pixel. The technique was applied to both synthetic and sim- . . . .
ulated Landsat TM imagery, and the resultant maps provided an data [1], and the information obtainable from such imagery can

accurate and improved representation of the land covers studied, vary greatly depending on the spatial variation in the observed
with root mean square errors (RMSEs) for Landsat imagery of the land cover and the specific terrain characteristics under consid-
order of 0.09 pixels in the new fine resolution image recorded. As eration. There also exist practical limits to the level of detail that
such, we show how, by using a Hopfield neural network, more accu- o, e jdentified by each remote sensor and these limits are de-
rate measures of Ianq cover targets can be obtained compared Wlth fined by th Ut fh t - t o f
those determined using the proportion images alone. The Hopfield Ined Dy the resolutions o e_ remote 59”5'”9_53(5 em. _ne o
neural network used in this way represents a simple, robust, and the commonest measures of image characteristic used is spa-
efficient technique, and results suggest that it is a useful tool for tial resolution, which determines the level of spatial detail de-
identifying land cover targets from remotely sensed imagery atthe picted in an image. This measure is a function of the instan-
subpixel scale. taneous field-of-view (IFOV) of a sensor, defined as the cone
Index Terms—Fuzzy image classification, Hopfield networks, angle within which incident energy is focused on the detec-
image resolution, land cover, optimization methods, super-resolu- tors [2]. In turn, the IFOV leads to a ground resolution element
tion object detection. (GRE) on the surface of the Earth (this GRE should not be con-
fused with the pixel, which is the output product to which a ra-
|. INTRODUCTION diance value is assigned).

NFORMATION on land cover features is required for mans The pixel represents the smallest element of a digital image

agement and understanding of the environment. Accurzfalnd has, therefore, traditionally represented a limit to the spa-

. o . '35 detail obtainable in target feature extractions from remotely
identification and extraction of target land cover features is a . o . S
.sensed imagery. Within remotely sensed images, a significant

vital procedure for many areas of work, e.g., military intelli: . . . : :
rr]?portlon of pixels is often of mixed land cover class composi-

gence, agricultural planning, and water resource managem .
. : . s . flon, and their presence can adversely affect the performance of
Remote sensing has the potential to provide this informatian. . ) : . )
) . : Image analysis operations [3]. The solution to the mixed pixel
Imagery derived from aircraft and satellite-mounted sensors . P .
problem typically centres on fuzzy classification. Subpixel class

composition is estimated through the use of techniques such
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most cases, this results in a more appropriate and informat
representation of targets than that produced using a hard,
class per-pixel classification. However, while the class comp
sition of every pixel is estimated, the spatial distribution of thes T
class components within the pixel remains unknown. L
The work in this paper, along with other work in the litera |
ture, demonstrates that it is possible to identify land cover tau-
gets at the subpixel scale (super-resolution). Fisher [3] argues ;.
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Example of Fisher's argument.

that within remotely sensed images, the pixel can only be subdi-

vided by creating repetitive information and Fig. 1 demonstrates

this argument, with the Spatia| resolution of x2 pixe| image of Straight boundary features within Landsat TM scenes, and
containing four classes (A, B, C and D) being increased to &8rves as a preprocessing step prior to automatic pixel-by-pixel
x 4 pixel image. The finer resolution means that all new pixeland cover classification. With knowledge of pure pixel values
fit within the old pixels and take the same value. However, thather side of a boundary, a model is defined for each 3 by 3
technique described in this paper suggests that the use of phlarck of pixels, the model then uses parameters such as pure
information allows greater precision. Such a land cover targsikel values, boundary angle, and distance of boundary from
identification technique potentially leads to several useful aghe centre pixel. Using least squares adjustment, the most ap-
plications. propriate parameters are chosen to locate a subpixel boundary

1)

2)

3)

4)

A. Previous Work

To identify land cover targets at a fine spatial reso- that divides mixed pixels into their respective pure components.
lution from any remote sensing systemWhile sensors Improvements on this technique were described in [9] which
on satellites such as IKONOS (up to 1 m spatial resolused a neural network to speed up processing and [10], [11] and
tion) can provide sufficient spatial detail for accurate lanfi 2] put forward algorithmic improvements, along with the ad-
cover target extraction, the cost and availability of suchition of a vector segmentation step. The technique represents
data may prohibit its use in many areas of work. By ap; syccessful, automated and simplistic pre-processing step for
plying the developed technique to cheaper, more readily:reasing the spatial resolution of satellite imagery. However,
available data, for example SPOT HRV (up to 10 m spatigk application is limited to features with straight boundaries at
resolution) d"’?ta’ S”.“"ar Ievels_of accuracy for land COVE{ certain spatial resolution and the models used still have prob-
target extraction might .be achleved.' lems resolving image pixels containing more than two classes
To apply such a technique to obtain more accurate [13]
land cover metrics from remotely sensed imagery. ' .

Flack et al. [14] also concentrated on super-resolution target

By increasing the spatial resolution of land cover target ificati h ¢ aaricultural fiel h el
maps derived from medium-resolution sensors such identification at the borders of agricultural fields, where pixels

the Landsat thematic mapper (TM) or the SPOT high ref mixed clgss composition occur. E(.dge. detection ar.1d segmen-
olution visible sensor, the potential exists to, for exampl&ation technigues were used to identify field boundaries and the
more accurately locate field boundaries or define aref®ugh transform [15] was applied to identify the straight, sub-
of semi-natural vegetation. Such information would beixel boundaries. These vector boundaries were superimposed
of use in determining environmental or social policy, fopn a subsampled version of the image, and the mixed pixels were
example. reassigned each side of the boundaries. By altering the image
For fine detail urban target identification. With the ad- subsampling, the degree to which the spatial resolution was in-
vent of satellites such as IKONOS and Orbview, and tt@eased could be controlled. However, no validation or further
more common use of airborne remote sensing, imagerywbrk was carried out, and so the success of the technique re-
spatial resolution less than 5 m is becoming widely avaimains unclear.
able. Application of a technique to produce super-reso- aplin et al. [16] also made use of subpixel scale vector
lution maps of land cover targets from these source daigundary information, along with fine resolution satellite
would allow urban land cover target extraction and maRensor imagery to identify land cover targets. By utilizing Ord-
ping of an unprecedented fine detail romremotely sensgd e Survey land line vector data and undertaking per-field
Imagery. ) . L . rather than the traditional per-pixel land cover classification,
To simulate fine spat|a! resolut|o.n Imagery from im- target identification at a subpixel scale was demonstrated. As-
agery of a coarser spatial resolutionSuch an approach . e .
could aid decision making on future choices of irnagery§essments suggested that the per-field classflflcatlon t'e'chnllque
was generally more accurate than the per-pixel classification.
However, in most cases around the world, accurate vector data
sets with which to apply the approach will rarely be available.

Only recently has research been undertaken on the subject ofhe techniques described so far are based on direct pro-
identifying land cover targets from remotely sensed imagesadssing of the raw imagery. Other work has focused on using
the subpixel scale. Schneider [8] introduced a knowledge-basegdreprocessing step where fuzzy classification of the imagery
analysis technique for the automatic localization of field bounds undertaken, and an attempt to map the location of class
aries with subpixel accuracy. The technique relies on knowledgemponents within the pixels is made.
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Fig. 2. Hopfield neural network as an analog circuit. The black circles at the intersections represent resistive configc)dmsteen outputs and inputs.
Connections between inverted outputs and inputs represent negative connections.

Atkinson [17] used an assumption of spatial order within ari8l. Paper Structure

between pixels to map the location within each pixel of the pro- 1pig paper describes an approach that uses the output from a
portions output from a fuzzy classification. Spatial dependengg,zy classification technique to constrain a Hopfield neural net-
is the concept whereby observations close together tend to§tk formulated as an energy minimization tool. In Section I,
more alike than those further apart [18], and this assumptigh overview of the workings and previous applications of the
proved to be valid for recreating the spatial distribution and aredbpfield neural network will be given. Section Il introduces
coverage of the land cover. The algorithm produced a certalfe modifications made to apply the Hopfield network to the
degree of success for semi-natural land cover targets. Howeyggblem of land cover target identification and mapping at the
the simple technigue suffered from problems due to the cosubpixel scale, as well as methods used to understand and im-
plex land cover mixing in the data used. prove the processes at work. In Section 1V, results of applying
Unlike Atkinson [17], Foody [19] made use of additionathe approach to synthetic imagery are used to explain and under-
information in the form of a second h|gher Spatia| reso|utioﬁand the performance of the network. Section V illustrates the
image. The author used it in a simple regression based approftilts of applying the technique to simulated remotely sensed
to sharpen the output of a fuzzy classification of a lower spatidiagery, and Section VI provides analysis and explanation of
resolution image, producing a subpixel land cover map. The ese results. F_ma_\IIy, Section VIl provides a summary and con-
sults produced a visually improved representation of the Iaﬁl%‘s'on of the findings of the research.
being studied, and this was further improved by fitting class
membership contours, lessening the blocky nature of the rep- Il. ' HOPFIELD NEURAL NETWORK
resentation. However, the areal extent of the lake was not mainThe Hopfield neural network is a fully connected recurrent
tained using the contouring technique and in addition, the auth@twork and can be implemented physically by interconnecting
noted that it is difficult to obtain two coincident images of dif-a set of resistors and amplifiers with symmetrical outputs and
fering spatial resolution. external bias current sources (Fig. 2). The mathematical model
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describing the behavior of such an array of electronic compsiable states of the network consequently correspond to the local
nents can be derived from Kirchoff’s current law [20], [21] minima of the following energy function [21]:

N N N N
du; i . 1
Cid—qi:—%+2ﬂj1}j+fi; i=1...N (1) EI—§ZZE]'UZ‘U]'—ZUZ‘I¢
=1 i=1 j=1 i=1
N o
where +> T ey (6)
; i=1 0
11 X1 )
R, Ry + ; R—Z + R_Z ; () whereE is the energy calculated over the whole network. For

neurons wherer =~ 0 and with high values ok, the last term

R;; is the resistance between the output of amplifiand input becomes small and can be neglected, such that

of amplifier, ¢, N is the number of amplifiers(’; > 0 is the N N N
capacitance of amplifiet, v; is the internal voltage of amplifier E = 1 Z Z T, — Z vl (7)
1, andl; is the external bias on amplifierZ;; is the conductance 2~ — o —

from amplifier j to amplifier¢, where

From (5) and (7), the equation describing the dynamics, i.e., the

T — 1 1 3 rate of change of neuron input of the Hopfield network can be
A R—Z + R_; ®)  \written as
andv; = g;(w;) is the output voltage of amplifier ¢;(u;) is the dt — bu; (8)

nonlinear activation function, defined as
or

1

gi(u;) = =(1 4 tanh Au;) 4 du; N
2 pr = —ZTijUj-i-Ii- ()]
where\ determines the steepness of the function. =t

Hopfield [22] shows how (1) can be written in a neural conthe Hopfield network can therefore be used for energy mini-
text for ease of interpretation, where, in this case the nonlinggf;ation problems if the weights and biases are arranged such
amplifiers correspond to neurons that they describe an energy function, with the minimum of en-
ergy occurring at the stable state of the network [20]. By speci-
fying different values for the weights and biases, any hypothet-
ical energy minimization problem can be simulated.

Ti% — _ayu; + zj\:Tiﬂj +I; i=1..N (5 Many real world problems can be formulated as the mini-
= mization of an energy function, and this is central to the design
of a Hopfield neural network formulated as an optimization tool.
where The energy function used must represent the problem correctly,
=G time constant for neuroi and reach a minimum at the solution of the problem. Once this
" total weighted input at neurana; = (1/R);; ~ function is designed, the weights and biases can be set, and the
N number of neurons in the network; network is built around these. o
v; = gi(w;) neural output which is a function of the inpu Most real world problems contain built-in constraints in ad-
I external bias on neuran dition to a goal that must be considered. These constraints form
T, weight from neurory to neuron;. a cost added to the objective within the energy function, which
which corresponds to the conductance in (1). can then be defined as
The set of differential equations described so far defines the
time evolution of the network. Thus, from a set of initial neuron Energy = Goal+ Constraints. (10)

outputs, the state of the network varies with time until con-
vergence to a stable state, where neuron output stops vanfliithe energy function is arranged in this particular way, the con-
with time. Weights and biases determine the neural outputssataints become part of the minimization process, which means
this stable state. that the constraints do not need to be treated separately, just
Hopfield [22] showed that using symmetric weights with naveighted by their importance to the problem. The Hopfield net-
self connection, i.e1}; = 1;; andZ;; = 0 is sufficient to guar- work process then finds the minimum energy that represents a
antee convergence to such a stable state. Therefore, indemempromise between the goal and the constraints.
dent of its initial status, a Hopfield neural network will always The Hopfield network has been used within the field of re-
reach an equilibrium state where no output variation occurs amite sensing for ice mapping, cloud motion, and ocean current
it was also demonstrated that for high values of the ggirthe tracking [23], [24]. These demonstrate the utility of the Hop-
activation functiong;(«;) (4) approaches a step function. Thdield network for feature tracking, the basic principle of which
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Fig. 3. (a) 2x 2 pixel imagep andq represent the image dimensiomsandy represent the image pixel coordinates. (b) Representation of the Hopfield network
for the image in (a): andj represent the neuron coordinated & integer value).

is to match common features in a sequence of images. In addli- Network Architecture
tion, more general feature matching problems have been tackled
using a Hopfield network [25]-[27], as well as applications such In many papers, on the use of Hopfield neural networks
as recognition or classification [28], [29]. for optimization, the spatial relations between neurons are
Hopfield and Tank [20] also used the network’s energ§onsidered irrelevant. However, for this paper, the nature of
minimization capability and demonstrated solutions to cont€ problem and the proposed solution requires the network
plex combinatorial problems such as the traveling salesm@@urons to be considered as being arranged in a regular grid,
problem. Hopfield and Tank formulated the problem as thaith positioning within this grid being of significance to the
minimization of an energy function, and for a ten-city problenfletwork design for this task (Fig. 3). Therefore, neurons will be
achieved convergence to a valid tour with an 80% success rdgferred to by coordinate notation, for example, neufon)
Later, work in [30] and [31] eliminated the presence of locdefers to a neuron in row and column; of the grid and has
minima in the energy functions where constraints were ndf input voltage ofi;; and an output voltage af;;. The zoom
satisfied by setting various constants in a certain arrangemédagtor = determines the increase in spatial resolution from the

and this guaranteed convergence to a valid solution. original satellite sensor image to the new high-resolution image
and after convergence to a stable state, the neurons represent

a bipolar classification of the land cover targatthe higher

I1l. USING THE HOPFIELD NEURAL NETWORK FORTARGET
IDENTIFICATION AT THE SUBPIXEL SCALE

spatial resolution Fig. 3 shows the notation used in this paper
and how coordinates are transformed linearly from the image

The input data for the research described in this paper waigace to the network neuron space, for example, the pixe) (
derived from aerial photography, whereby targets were ideniti- the satellite image is represented by ~ neurons centred
fied and extracted accurately from the photographs by harad.coordinatesa> + int(z/2), y= + int(2/2)], whereint is the
using field survey for verification. By degrading these verifiinteger value.

cation images of clearly defined land cover targets to the spatial
resolution of Landsat TM data using a square mean filter, ac-

curate class proportion estimates were obtained for each pil. Network Initialization

These provided the input to the network, but in practice, this
input could come from automated fuzzy classification methods
such as the multilayer perceptron. However, for the researc

Each neuron is initialized with a starting valug,;;, and two
hsﬁgategies for initializing the network exist.

this paper, the aim was to understand and test the capabilities oll) Each set of neurons representing a pixel in the low-res-

the Hopfield network technique, so any error introduced to the
input data by an automated fuzzy classification method would
be detrimental to this aim.

Mapping the spatial distribution of the class components
within each pixel was formulated as a constraint satisfaction
problem, and an optimal solution to this problem was de-
termined by the minimum of an energy function coded into
a Hopfield neural network. The network architecture was
arranged to represent a finer spatial resolution image, and
constraints within the energy function determined the spatial
layout of binary neuron activations within this arrangement.
The Hopfield neural network was used to find the minimum of
the energy function, which corresponded to a bipolar map of
class components within each pixel and this method is outlined
in detail in the following sections.

olution image is identified and a proportion of this set
is randomly given an output af;,,;;; = 0.55. This pro-
portion is equal to the actual area proportion of the class
within the image pixel and the remaining neurons of the
set are given an output af,;; = 0.45. The values of 0.55
and 0.45 were chosen as the initial on and off outputs to
speed up processing time and avoid unnecessary bias to-
ward certain energy minimization paths. In[20] and many
other papers related to the use of the Hopfield network
for solving the traveling salesman problem, neurons are
initialized with a random value close to the central state
value (0.5). This choice is justified by the fact that no ini-
tial preference should be given to any path. The small dif-
ference between the two values also enables the network
to “push” neuron outputs to 1 or O to represent a bipolar
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classification faster than if, for example, a neuron was inparticularly relevant. Therefore, by devising simple measures
tially given an output of 0 and had to be pushed to 1 tof spatial order and incorporating each as objective functions
produce an optimal solution. within the Hopfield network, to map the spatial distribution of
2) The completely random initialization of neuron outputslass components within a pixel, this real world phenomenon
within the rangeu;,;; = [0.45, 0.55]. This allows perfor- was modeled.
mance comparison with the class proportion-defined ini- In this case, the aim of the goal was to make the output of
tialization, and does not introduce any possible unnecesneuron similar to that of its neighboring neurons. Therefore,
sary bias into the result, which may occur using 1), shouifithe output of neuroni( 7) was similar to the average output

estimated class proportions be inaccurate. of the eight neighboring neurons, then a low energy is given.
If it is different, then this represents an undesirable situation in
C. Implementation terms of the aim of spatial order, and a high energy is produced.

When implemented on a digital computer, sets of biases af@wever, to produce a bipolar image, a function that just drives
weights do not need to be determined, as the network is sinfu0€uron output to be similar to the surrounding neuron output

lated via its equation of motion (9) using the Euler method IS insufficient. Consequently, two objective functions were in-
troduced, one to increase neuron output toward a value of 1 and

another to decrease neuron output to 0, each dependent on the
average output of the eight neighboring neurons.

The first function aimed to increase the output of the centre

wheredt is the time step of the iterative method and the funCtioﬁ‘euronv,» to 1 if the average output of the surrounding eight
du;;(t)/dt is measured usingE; ;/dv. Equation (8) shows the - i+1 j+1

. . . : neurong1/8 i .| v was greater than 0.5
correspondence between the two functions, @hg} /dv is de- (1/8) ";#1 Z’—l;{é}l M g
termined using the goals and constraint of the super-resolution
target identification task. Equation (11) is run undil; ; w;; (t+ 1 g4l
dt) —u;;(t) < du., wheredu, is a sufficiently small value, and ~ dGl;; 1 1 .

1 + tanh 3 Z Z v — 0.5 | A

dui;(t)

U,ij(t + dt) = u;; + o7

dt (11)

the equations of motion were defined as dv;; 5 e 2
vl i el
dE;; dG1;; dG2;; AP ki 1]
L=k —— f ko—— + ky——2. (12) X (vi; — 1) (14)
dvij dvi J dvi 7 dvi ol

where) is a gain which controls the steepness ofttghfunc-
&H. Thetanh function controls the effect of the neighboring
neurons. If the averaged output of the neighboring neurons is
less than 0.5, then (14) evaluates to 0, and the function has no ef-

The goal and constraints of the subpixel mapping task W&t on the energy function (13). If the averaged output is greater
defined such that the network energy function was than 0.5, (14) evaluates to 1, and thg; — 1) function controls

the magnitude of the negative gradient output, with apjy= 1
E==>"% (Gl + kG2, + ksP;)  (13) producing a zero gradient. A negative gradient is required to in-
I crease neuron output.

The second goal function aimed to decrease the output of the

Each component of (12) is described in the subsequent secti

D. The Energy Function

where )
- : centre neurory;; = 1 to O, given that the average output of

k1, ks andks constants weighting the various energy pat- . . i+l 1

rameters: he surrounding eight neurofs/8) > ;1 > 7.1 v was

! k#i 1#£7

(1;; andG2;; output values for neurorfz, j) of the two |ess than 0.5 *

objective (or goal) functions (see Sec-

tion 1lI-D1), and these correspond to the it g+l

quadratic term in (5); dG2i; _1 1+ | —tanh 1 Z Z v | A | vy
P output value for neuroiii, j) of the propor- ~ dvij 2 8 5257

tion constraint (see Section 1lI-D1), which ki 1#j

corresponds to the linear term in (7). (15)

1) Goal Functions: The goal (objective) functions were ) )
based upon an assumption of spatial order [18]. Almost diliS time, thetanh function evaluates to 0 if the averaged
natural and human-made phenomena exhibit spatial continu@ifPut of the neighboring neurons is more than 0.5. If it is
at some scale, such that points near to each other are more dfié than 0.5, the function evaluates to 1 and the center neuron
than those further apart, and the degree of dissimilarity deperfgPut v;; controls the magnitude of the positive gradient
on both the environment and the nature of our observatioP4tPut, with onlyv;; = 0 producing a zero gradient. A positive
[32]. These observations can be the pixels in remotely senddgdientis rqulrfd to d]i(:lrease neuron output only whee:
images, and the assumption of spatial order can be used to iffe®nd (1/8) > %= 1 > 212,y vm > 0.5, or v;; = 0 and

relationships between these pixels. By focusing within thths i+l kj+1 . .
research on discrete land cover targets, which all exhibit spal '%1{8) ’“f;—il 217;;1 vw < 0.5 s the energy gradient equal

order to some degree, the assumption of spatial order becorteegero, and1;; + G2;; = 0. This satisfies the objective of
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recreating spatial order, while also forcing neuron output to  Hopfield network as an extra constraint to increase accu-
either 1 or O to produce a bipolar image. racy.

2) Proportion Constraint: While the goal functions provide  « The design of the Hopfield network as an optimization
the enforcement of spatial order, the sole use of these func- tool means that all constraints are satisfied simultaneously,
tions would result in all neuron outputs taking the values 1 or 0.  rather than employing a multistage operation.
Therefore, a method of constraining the effect of those functions « The effect that each one of these constraints has on
to the correct image areas was required. The proportion con- the final prediction image can be controlled simply via
straintF;; aimed at retaining the pixel class proportions output  weightings.
from the fuzzy classification. This was achieved by adding in « While the incorporation of prior information on each land
the constraint that the total output from the set of neurons rep- cover target may increase map accuracy, the Hopfield net-
resenting each coarse resolution image pixel should be equal to work technique has the benefit of being able to produce ac-
the predicted class proportion for that pixel. An area proportion  curate, super-resolution land cover target maps from just
estimate representing the proportion of neurons with an output class proportions. There is therefore no reliance on the
of 0.55 or higher was calculated for all the neurons representing availability of finer spatial resolution imagery or land line
pixel (z,y) vector data.

Area Proportion Estimate IV. INTERPRETATION

rzt+zyztz . . .+
1 . To understand and illustrate the workings of the Hopfield
2,2 Z Z (1+ tanh(vg —0.55)).  (16)  ponvork set up in this way, several synthetic images were
h=wz l=yz created. Traditionally, within the remote sensing community,

The use of theéanhfunction ensures that if a neuron output igherg ha_ls been a re!uctancg to use synthgnc Imagety, with the
above 0.55, it is counted as having an output of 1 within tfeopllcanon of techniques .d|rectly to real imagery being pre-
estimation of class area per pixel. Below an output of 0.55, t %rred. queverz by#re;kmg down th.e elemerljts of reg_l-world
neuron is not counted within the estimation, which simplifies tHEagery into Simpll Ihe s repreze_ntatlons, lIJ(n erstan Ing an
area proportion estimation procedure and ensures that nedfBRYE Processing technique and, In turn, making improvements

output must exceed the random initial assignment output of 0.5 becomgs casier.
in order to be counted within the calculations. The spatial order exhibited in all natural and human-made

To ensure that the class proportions per pixel output from thaéndslcapes 'S('j (_jemonstrated by the ;aC]E thqt scer;]es W't?'n re-
fuzzy classification were maintained, the proportion target pg}ote y sensed imagery aré Composed ot various shapes, for ex-

pixel a,,, was subtracted from the area proportion estimate (1% ple, fields, roads and hou;es. Th? variety of the spatial orq er
of shapes can be characterized using compactness and circu-

P | s larity. Compactness is defined as
dvj’{ =53 >0 3 (1 +tanh(vgg — 0.55)A) — agy. (17) dra
" Y k=zz I=yz c = ? (18)

If the area proportion estimate for pixet,y) is lower than \herep is the perimeter length, andis the area of the shape.
the target area, a negative gradient is produced that correspongSircylarity » is defined as

to an increase in neuron output to counteract this problem. An

overestimation of class area results in a positive gradient, pro- o @ (19)
ducing a decrease in neuron output. Only when the area propor- 7(max)?

tion estimate is identical to the target area proportion for eacfh . . . .
. X . .~ whereaq is the area of the shape, and max is the maximum dis-
pixel does a zero gradient occur, corresponding’to= 0 in

the energy function (13) tance from the shape centre to the perimeter. Fig. 4 shows eight,
) 56 x 56 pixel, synthetic images of differing shapes, with their
respective compactness and circularity measures. The shapes
represent extremes of spatial order as well as possible land
The approach described in this paper holds several strategiger targets, for example (b) a road and (d) a field. In addition,
advantages over those techniques mentioned in Section I-A.the shapes cover a wide range of compactness and circularity
» The option to choose the level of spatial resolution insalues, providing a useful test of the generalization capabilities
crease. This is essential if simulation of higher spatial resf the Hopfield network. Fig. 5 shows each synthetic image
olution imagery is the aim. subsampled (using a ¥ 7 mean filter) to generate an-8 8
» The Hopfield network technique has the ability to simulatpixel image, which causes mixing of the two classes (white
any shape rather than being restricted to straight bouraiid black) at the shape boundaries, producing eight proportion
aries. images and imitating the effect of class mixing within remotely
» The ease with which any additional information can bsensed imagery. By using these eight proportion images as
incorporated within the framework to aid the target identinputs to the Hopfield network and setting a zoom factor of 7,
fication. Any prior information about the land cover targett should be possible to test the capabilities of the network by
depicted in the input imagery can be coded easily into tle@proximating the eight images each was derived from.

E. Technique Advantages
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Compactness: 1.0000
Circularity: 1.0000

Compactness: 0.2075
Circularity: 0.2751

Area: 624 pixels Area: 624 pixels

(a) )

Compactness: 0.3125
Circularity: 0.1637

Compactness: 0.8349
Circularity: 0.5487
Area: 624 pixels Area: 624 pixels

®

(®)

Compactness: 0.6061
Circularity: 0.6491

Compactness: 0.9416
Circularity: 0.8488

Area: 624 pixels Area: 624 pixels

©) (&

Compactness: 0.6979
Circularity: 0.4845

Compactness: 0.2967
Circularity: 0.4281

Area: 624 pixels Area: 624 pixels

@) (h)

Fig. 4. Synthetic images and the features of the shapes depicted in each.

A. Setting the Constraint Weightings The effect of such biased weightings is demonstrated by run-

To attempt to make predictions from the synthetic imager)ind the network with a zoom factor of 7, for 10000 iterations
optimum values of goal and constraint weightidgsk, and ©O" the synthetlc image in Fig. 5(a). Flg. 6(b) demonstrates that
ks should be used, as these constants are of great importaiiePredicted shape is too large and irregular without the pro-

because they control the direction of the optimization proce@mon constraint to control the positive activation effect of the

For this paper, equal weightings of 1.0 were chosen and tqglgal functions. GivingP a large weight means that maintaining

justification for this decision becomes clear with the following?‘_arget class proportions becomes a priority, and the goal func-
examples. ions have little effect, such that the image in Fig. 6(c) is pro-

Fig. 6(a) shows a hypothetical situation of an image pixel wiffi!c€d With a range of outputs. _ _
a zoom factor of five. It should be noted that for this example, BY Weighting the goal functions and proportion constraint
the effect of proportions within surrounding pixels is ignored fafdually, i.e.k1 = k2 = ks, each affects and controls the other to
simplicity, but in practice, the distribution of class proportionglinimize the overall energy of the network, and this is demon-
within the surrounding pixels may have a significant effect orirated in the following examples.
the resulting neuron activations predicted.

The target class proportion is 8/25, and using the constrairéd Predictive Ability and Limitations
random initialization method, this is satisfied immediately (of The results of the Hopfield network predictions from the syn-
the 25 neurons, eight are activated). While the proportion catiretic imagery after 10000 iterations, using values of 1.0 for
straint valueP is zero, the goal function values for this arrangek; , k, andk; are shown in Fig. 7. Three measures of accuracy
mentG'1 andG2 are large due to the isolated outputs of neurongere calculated to assess the difference between each network
C and D. To minimize&1 andG2 and keep the target propor-prediction and the target images. One of the simplest measures
tion of 8/25, neurons A and B should have an increased outpgtagreement between a set of known proportipnsnd a set of
while the outputs of C and D should be reduced. estimated proportions is the area error proportion (AEP) per

If the proportion constraint is strongly weighted, then the atlass
rangement of neural outputs displayed in Fig. 6(a) remaing, as N
is minimized, and the goal functions are not weighted strongly AEDP — Eq;l(yq — aq)
enough to have an effect, i.é,G1 + k2 G2 < k3 P. D a=1 g

If the goal functions are strongly weighted, then neurons A
and B display increased output, neurons C and D stay at a higherer is the total number of neurons. This statistic informs
output, and other neurons around these also increase in outpbbut bias in the prediction, and as it is based solely on area
In such a case, the proportion constraint is not sufficiently stropgedictions, it represents a measure of the success of the pro-
to maintain target class proportions, ife.(1 + k2 G2 > k3 P. portion constraint in maintaining the target proportions.

(20)
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-

,_
.
e

d) {h}
Fig. 5. The 56x 56 pixel synthetic imagery shown in Fig. 3 next to each degraded<d&ixel images.

The correlation coefficient represents an alternative mea-
sure of the amount of association between a target and estimated
set of proportions

o Cy-a . Cpa = E;;l@q —Yg) - (g — ay) 1)

Sy - Sq n—1

. . Fig. 6. (a) Hypothetical image pixel with a zoom factor of five imposed. The
wherecy.a is the covariance betwegranda andsy, ands, are pixel has been initialized with eight neurons of high output (white) and 17 with

the standard deviations gfanda. This statistic informs about |ow output (black), (b) Hopfield network prediction for the shape in Fig. 4(a),
the variance of the Subpixe| Spatia] distribution. givenky = 1.Q, ky = 1.Q andk; = 0.1, (c) Hopfield network prediction for

Another standard measure is the root mean square eff§s"aPen Fig-4(@), givén = 0.1.k; = 0.1, andv; = 1.0.

(RMSE) per class
Fig. 7(b) demonstrates the limitations that exist when class
EZ:l(yq —ay)? proportions lie on the edge of images. The goal functions are
— (22)  set up to rely on information from surrounding neurons and the
lack of such information for edge neurons, consequently means
which informs about the accuracy of the prediction (bias aridat only the proportion constraint is satisfied, leading to the
variance). poor predictive performance at the image edge.

Fig. 7(a) demonstrates the predictive ability and generaliza-Fig. 7(c) and (f) demonstrate good predictive ability in terms
tion capabilities of the Hopfield network used in this papeof class area, resulting in low area error proportion estimates.
From the eight by eight pixel image in Fig. 4, the network is abldowever, in both cases, the predicted shapes are slightly incor-
to re-create perfectly the circle it was derived from Fig. 4(a). Foect, resulting in a larger RMSE. This is due to certain edge for-
a set area of pixels, the circle represents the maximum spairations satisfying the goal functions and proportion constraint,
order attainable, and so by basing the goal functions around thét not being identical to the edges in the target image. The lack
assumption, the network is able to perform well on such regulafrinformation available to recreate such edges correctly shows
shapes. that the problem is underconstrained.

RMSE =

n
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Fig. 7. Hopfield network predictions and accuracy assessment, givenxth@ j@ixel synthetic imagery shown in Fig. 5 as input.

Fig. 7(d) reflects this problem further because, as describedy repeating the network run on the more complex input pro-
previously, the use of spatial order as the basis for the goal fuportions in Figs. 7(e), (g), and (h), slightly different predictions
tions, means that the network will almost always converge &e produced each time. The use of an initialization technique
curved rather than sharp corners. Unless prior knowledge exisésed on random neuron output, constrained by target class pro-
on the type of shapes that the network is aiming to recreate, th@rtions, means that starting neuron arrangements from certain
problem will remain. network runs produce lower energy than others. This results in

Finally, Figs. 7(e), (g), and (h) demonstrate the ability of theifferent paths of convergence along the energy surface of the
network to cope with more complex shapes. Comparison efetwork, and in turn, for the more complex shapes, this results
for example, Figs. 7(e) with (f) shows identical area error pran slightly different predictions each time, again indicating the
portion values of 0.0003, demonstrating how the class area liaslerconstrained nature of the problem.
been predicted accurately. However, the correlation coefficientsl) Predictive Ability versus Shape Typ®elationships can
and RMS errors are significantly different, representing the dife drawn between the shape characteristics and the predictive
ficulty in predicting the spatial distribution of class componentgbility of the network. These have the potential to be used to
for a complex shape such as that in Fig. 7(e). While the prop@btain a network performance prediction, providing that a cer-

tion constraint has ensured that class area is maintained, with@iiy degree of knowledge about the input land cover shapes is
prior information on the shape depicted in the input proportiong, g\wn.

the goal functions on their own are insufficient to recreate aCC“'Figs. 8(a) and (b) show the relationship between the var-
rately the spatial layout of the cross. ious shape characteristics and the RMSE. The plots suggest
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Fig. 7. (Continued) Hopfield network predictions and accuracy assessment, given:h8 Bixel synthetic imagery shown in Fig. 5 as input.

improved performance with compactness and circularity maXhe drawback is increased computational time and therefore, a
imized, which represents maximum spatial order and is duelialance must be found between the spatial resolution and accu-
the design of the goal function, as mentioned previously.  racy required, and computational cost.

2) Predictive Ability versus Zoom Factofzig. 9 demon-  3) Predictive Ability versus IterationsFig. 10 shows the
strates the effect that different zoom factors have on the abilipgrformance of the network over 10 000 iterations, after initial-
of the Hopfield network to predict accurately the spatial layouzation using the proportion-constrained method. The network
of various shapes. The network was run on the syntheti@s run on the synthetic imagery shown in Fig. 5 using a zoom
imagery shown in Fig. 5, using zoom factors of 3, 5, 7, and fictor of 7 and values of 1.0 fdt;, k2 and ks, and the aver-
and the averaged results were plotted. aged results were plotted. The three plots demonstrate how, from

Fig. 9(a) shows little difference between the area error prtite proportion-constrained random initialization, the major spa-
portions for the different zoom factors, and this indicates ththl organization of neuron outputs is undertaken within the first
the zoom factor has little effect on the accuracy with which tHE00 iterations. Fig. 10(a) shows how after 2000 iterations, the
areal coverage of the shape is predicted. However, Fig. 9(b) arda error proportion reaches a stable value, reflecting the sat-
(c) demonstrates the effect that the zoom factor has on the psfaction of the proportion constraint, and this leaves the goal
cision of the prediction, because as the zoom factor is increaskmctions to be minimized, and reflected in the gradual conver-
the accuracy with which the target shape is recreated increaggsce to stable values of Figs. 10(b) and (c).
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Fig. 8. Scatterplots showing the variation in RMSE with (a) compactness and
(b) circularity.

C. Initialization

The use of just three weighting functions in determining the
energy of the Hopfield network described in this paper, enables
the energy surface to be plotted. This simplicity means that the
Hopfield network set up in this way is not only understandable,
but also computationally efficient, and by studying the shape
of such a surface, the workings of the network can be better
understood. Fig. 11(a) shows energy plots for three different
initializations of the network. The network was run on the 8
synthetic images shown in Fig. 5 using a zoom factor of 7, and
values of 1.0 fork,, k; andks, and the averaged results were
plotted.

i) Represents a typical energy path when the network is
initialized using image class proportions. The proportion
constraint is satisfied immediately, leaving the network
to minimize the total energy by altering neuron outputs
to reduce the overall goal value.

i) Represents a typical energy path when the neurons are
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initialized to random outputs, which are mostly less thaglg. 9. Bar charts showing the relationship between zoom factor and (a)
0.55, and the shape of the plot reflects the design @ferage area error proportion, (b) average correlation coefficient, and (c)

the proportion constraint. The threshold built into th
proportion constraint means that, unless neuron output
is greater than 0.55, it is not counted as “on” in terms
of representing class proportions. The proportion con-
straint, therefore, has little effect until the goal functions

étverage RMSE.

which again increase neuron output, until the network
finds a balance between the two functions, and converges
to an energy minimum.

increase the output above 0.55 of enough neurons. At thisiii) Represents a typical energy path when the neurons are

point, the goal functions are sufficiently satisfied that the
network minimizes the total energy by altering neuron
outputs to reduce the overall constraint function value.
In satisfying the constraint function, the dominant en-
ergy-minimizing force shifts toward the goal functions,

initialized to random values, which are mostly greater

than 0.55. This satisfies neither the goal nor the constraint
functions and the network, therefore, minimizes the total

energy by altering neuron outputs to find a compromise
between the functions.
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Fig. 10. Graphs showing the relationship between number of iterations and (b)

(a) average area error proportion, (b) average correlation coefficient, and (c)

average RMSE. Fig. 11. (a) Hopfield network energy plots for three different initialization

settings: (i), (ii), and (iii) and b) close up of the convergence of the three plots
. . shown in (a).
Fig. 11(b) displays a close-up of the convergence of the three ®

energy plots in Fig. 11(a) and shows the three plots reaching

approximately the same point, demonstrating the effectiveness® The network will converge to an accurate prediction in
of the network at converging to similar energy minima, given  fewer iterations if a proportion-constrained initialization
any initialization. Of the three runs depicted in Fig. 11(a), () IS used.

reached the energy minimum quickest (approximately 5000 it-

erations), followed by (ii) (approximately 8000 iterations), then

(iii) (approximately 9000 iterations). V. RESULTS

Results were produced using the Hopfield network run on a
D. Performance Predictions P2-350 computer. The network was used to identify land cover

) . _targets at the subpixel scale from simulated remotely sensed im-
This section has revealed several features about the Worklg%%ry_ Landsat TM imagery was acquired over an agricultural

of the Hopfield network that can be used to generate predictio$. 5 east of Leicester (Stoughton), U.K., and seven wavebands

on its performance. at a spatial resolution of 30 m. Within the imagery, attention
« The technigue will produce a more accurate predictionwas focused on a wheat field and a section of airstrip, which
the shape depicted in the input class proportions is coprovided clearly defined targets with which to evaluate the tech-

pact and circular. nique.
» The technique will produce a more accurate prediction if Figs. 12 and 13 show the various data used to initialize the
a high zoom factor is used. network and evaluate the results produced. The verification data

» The technique will produce a more accurate prediction $hown in Figs. 12(b) and 13(b) were derived by field survey and
the network is allowed to run for at least 1000 iterationshand from the 0.5 m spatial resolution digital aerial photographs
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Fig. 12. (a) Digital aerial photograph (1 km grid overlaid), (b) verification data derived from aerial photography and ground survey, ?¢) @2itel Landsat
TM band 4 image, and (d) wheat class proportions.

VNN

(a)

(d})

Fig. 13. (a) Digital aerial photograph (1 km grid overlaid), (b) Verification data derived from aerial photography and ground survey, ) Rikel Landsat
TM band 4 image, and (d) asphalt class proportions.

shown in Figs. 12(a) and 13(a). The class proportion estimateghe field in its prediction, while accurately predicting the field
shown in Figs. 12(d) and 13(d) were calculated from the verifshape also, and in both cases, the nature of the goal functions
cation data using a square mean filter that avoided the potenti@ant that the network predicted rounder corners than that of
problems of incorporating error from the process of fuzzy clathe actual field. With a zoom factor of seven, there was a less
sification of the imagery in Figs. 12(c) and 13(c). pronounced rounding effect due to the finer scale that the goal

The network was initialized using the wheat and asphalt prininctions were working on, resulting in greater accuracy. This
portion images shown in Figs. 12(d) and 13(d). The propoeerner-rounding problem represents the under-constrained na-
tion-constrained initialization method was used with values faure of the problem, and prior information about the field shape
k1, ko andks of 1.0, and zoom factors of 5 and 7 were used fat its corners could potentially be built into the network as a con-
comparison. straint to avoid this problem.

After 10000 iterations of the network at zoom factor 5 The more complex shape of the airfield, as expected, pro-
(approximately 10 min running time), prediction images werduced results of lower accuracy than those for the wheat field.
produced [Figs. 14(a) and (c)] with spatial resolutions fivelowever, the statistics in Figs. 14(c) and (d) demonstrate that for
times higher than that of the input class proportion images lth cases, the shape was predicted accurately, with an RMSE
Figs. 12(d) and 13(d). In addition, after 10000 iterations afs low as 0.094 pixels using a zoom factor of seven. As pre-
the network at zoom factor 7 (approximately 20 min runnindicted in Section IV-D, more accurate results were again pro-
time), prediction images were produced [Figs. 14(b) and (dJliced using the higher zoom factor. Again, both predictions pro-
with spatial resolutions seven times finer than that of the inpdticed rounder corners than those of the actual land cover target,
class proportion images in Figs. 12(d) and 13(d). The sarbat by using a zoom factor of seven, the network was able to
measures of accuracy used in Section IV were calculatednmdel more accurately these corners than when it was run with
assess the difference between each network prediction andalmom factor of 5.
verification data.

VII. CONCLUSION

VI. DiscussioN This study has shown that a Hopfield neural network can be

The high accuracies shown for the results in Fig. 14 indicatrsed to estimate the location of the class proportions within
that the Hopfield network has the potential to locate accuratgdyxels and produce a land cover target map of subpixel geo-
target class proportions within pixels from remotely sensed imetric precision. The Hopfield network represents a robust, effi-
agery. cient, and simple technique, and results from synthetic and sim-

The regularity and discrete nature of the wheat field enablethted remotely sensed data show good performance, suggesting
the network to perform well on this particular land cover targethat it has the potential to identify accurately land cover targets
In Fig. 14(a) and (b), the network maintained the areal coveragithe subpixel scale.
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Verification Data

(a)

Zoom factor: §

(b) Zoom factor: 7

Zoom factor: 5

Zoom factor: 7

Network Prediction Accuracy Statistics

Target Area: 3747
Estimated Area: 3734
Area Error Proportion: ~ 0.0009
Correlation Coefficient:  0.9727
RMS Error: 0.1024
Target Area: 7319
Estimated Area: 7317
Area Error Proportion:  0.0001
Correlation Coefficient: 0.9799
RMS Error: 0.0879
Target Area: 2657
Estimated Area: 2607
Area Error Proportion: ~ 0.0035
Correlation Coefficient:  0.9666
RMS Error: 0.1000
Target Area: 5154
Estimated Area: 5127
Area Error Proportion:  0.0010
Correlation Coefficient: 0.9704
RMS Error: 0.0940

795

Fig. 14. Hopfield network predictions and accuracy assessment, given the class proportion images shown in Figs. 11 and 12 as input.

Further work could be undertaken, examining the per- [4]
formance of the technique on imagery of differing spatial
resolutions to provide a measure of the applicability of the 5
technique to imagery from sensors other than the Landsat
TM. The findings from this paper suggest that the problems
that do exist with the Hopfield network technique are due to
the underconstrained nature of the problem, and additional7)
future work may focus on incorporating various forms of prior
information about the imagery to be processed as constraint{;a]

in the network.
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