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Abstract— The up-link transmissions of mobile stations are
typically uncoordinated, which lead to asynchronous DS-
CDMA systems. Provided that the propagation delay dif-
ferences of users are less than one symbol duration, every
bit of each user is interfered by two consecutive bits of every
other user supported by the system which are overlapping
with the bit of interest. This is only true, however, with
the proviso of an identical channel bit rate for all the users.
Hence the multiuser detector (MUD) must have knowledge
of these two overlapping bits, in order to efficiently detect
the desired bit (DB). Suboptimal MUDs have been pro-
posed based on a truncated observation window, in which
the overlapping ‘edge’ bits are tentatively estimated by some
other means. Using a similar approach, a MUD is devel-
oped in this contribution which invokes genetic algorithms
(GAs), in order to estimate the DBs within the truncated
observation window as well as to simultaneously improve
the edge bits’ error probability (EBEP). Computer simu-
lations showed that by using GAs for improving the reli-
ability of the edge bits, our proposed MUD can achieve a
near-optimum DBEP performance, while imposing a lower
complexity compared to that of the optimum MUD.

I. INTRODUCTION

In an asynchronous DS-CDMA system, every bit of each
user is interfered by two bits of every other user in the sys-
tem which are overlapping with the bit of interest, assum-
ing an identical channel bit rate for all the users. Hence the
multiuser detector (MUD) must have knowledge of these
two overlapping bits, in order to efficiently detect the de-
sired bit (DB). Conventional MUDs, such as the decorre-
lator [2], operate on the entire length M of the users’ bit
sequence. This results in a long detection delay as well as in
a significant receiver complexity, when M is high. In order
to reduce the detection delay and the receiver complexity
in asynchronous DS-CDMA systems, several MUDs [3-5]
have been proposed based on truncating the detection ob-
servation window [3-5], such that only a portion of the bit
sequence length M is considered at any one time. The
bits that coincide with the window’s edge, referred to as
the edge bits in this contribution, are then tentatively esti-
mated by other means. It was demonstrated in [3-5] that a
low edge bit error probability is essential, in order to attain
a high overall bit error rate (BER) performance.

A GA-based MUD was first proposed by Juntti et al. [8],
where the analysis was based on a synchronous CDMA sys-
tem communicating over an AWGN channel. It was found
that good initial guesses of the possible solutions are needed
for the GA, in order to obtain a high performance. How-
ever, by incorporating an element of local search prior to

invoking the GA, Yen et al. [9] showed that the perfor-
mance of the GA-based MUD approaches the single-user
performance bound at a significantly lower computational
complexity, than that of the optimum MUD [1]. Instead
of providing good initial guesses for the GA, the proposal
by Ergiin et al. [10] used a multi-stage MUD as part of
the GA-aided detection procedure, in order to improve the
convergence rate of the GA. The performance of a GA-
based MUD employed in an asynchronous CDMA system
in conjunction with a modified Viterbi algorithm was stud-
ied by Wang et al. [11]. It was shown that the GA-based
MUD achieves almost the same performance as that of the
MMSE MUD at a lower computational complexity.

In this contribution we proposed a GA-based MUD for
an asynchronous DS-CDMA system transmitting over L-
path Rayleigh fading channels using the truncation window
approach. Here we assumed that the observed window is
truncated such that it encompasses at most one complete
symbol interval of all users in any detection window. Hence
if the DBs are constituted by the ith bit of all users, then
the edge bits will be the (i — 1)th bits and the (i + 1)th bits
of all interfering users, referred to in this contribution as
the start edge bits (SEBs) and the end edge bits (EEBs),
respectively. The SEBs have been detected in the previ-
ous observed window and hence are known to the receiver.
GAs are then developed, in order to detect the ith DBs,
as well as to estimate the EEBs. In contrast to the previ-
ously proposed techniques [4, 5], the EEB and the DBs in
our proposed technique are estimated simultaneously using
the same process. This results in minimal detection delay
and no additional hardware is required to predict the EEB.
Our simulation results showed that upon using GAs to im-
prove the accuracy of the edge bits, our proposed MUD can
achieve a near-optimum DB error probability (DBEP) per-
formance, while imposing a lower complexity as compared
to that of the optimum MUD [1].

The remainder of this paper is organised as follows. Sec-
tion IT describes our asynchronous CDMA system commu-
nicating over multipath Rayleigh fading channels. The log-
likelihood function (LLF) required for the optimisation pro-
cess is also developed. Section III describes the GAs used
to implement our proposed MUD. Our simulation results
are presented in Section IV, while Section V concludes the

paper.
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Fig. 1. System model for asynchronous GA-assisted multiuser DS-
CDMA.

II. SYSTEM DESCRIPTION

Our system model is illustrated in Fig. 1. The signal
of each of the K users is assumed to be propagating over
L independent slowly Rayleigh fading paths to the base
station’s receiver. The baseband received signal at the base
station can be written as :

M-1
r(t) = Z aT (t — mTy)we™ (™) + n(t), (1)

m=0

where M is the number of transmitted data symbols in a

frame, w = diag [ywil,/w21,...,v/wkI] is a diagonal
matrix containing the power of the users and I is an L x

L identity matrix, c¢(™ = diag [cgﬁ),...,cgt?,...,c%rg

is the diagonal complex channel gain matrix, b(m =
[b§m’,b§"‘), . .,b%")]T is the data vector and b\™
is the kth 1 x L user bit vector, while a(t) =
[a1(t—7111),..-,aK(t — TK’L)]T is the users’ signature se-
quence vector. For simplicity and without loss of general-
ity, we assumed an ordering of the random delays 7 ;, such
that 0 = 1 <...<mnp<m1<...<7rL< Ty. The
channel noise n(t) is modelled by a zero mean, complex
white Gaussian process with a double-sided power spec-
tral density of Ny/2. We can define the KL x KL cross-
correlation matrix R(m) of the signature sequences, such
that the (p, ¢)th element is given by :

+oo0
pp,g(m) = / ke, (t = Thy 1) 0k, (8 +mTy — Tp, 1, ), (2)
where k, = [2], k, = [4], 1, =p— [21] - L and [, =
q-— L%J - L. At the front end of the receiver illustrated

in Fig. 1, the output 29 of the matched filter bank at the
1th symbol interval can be written as :
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From Eq. 3, we can see that any joint decision made con-
cerning the ith bits of the K users has to take into account
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Fig. 2. Received sequences model of an asynchronous DS-CDMA

system.

the decisions related to either the (i—1)th bit or the (i+1)th
bit of each user, as shown in Fig. 2. Let us now introduce :
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The truncated observation window duration is governed
by 7n1 and Tng, where 0 < 7n1,7a2 < T1,1 — Tr,L + T,
as illustrated by Fig. 2. The SEBs ™Y can be derived
from the previous detection process and hence are known
to the receiver. In this case, only the DBs b and the
EEBs b'*Y) are unknown to the receiver.

Based on the observation vector z(¥ given in Eq. 3, it
can be shown that the LLF required for detecting the ith
bit of all K users within the truncated observation window
can be written as :

@, 60 ) =2 {BTCWZ} - BTCWRWC*B, (5)

T
where B = [b@—l)T,b(i)T,b(Hl)T] , W = diag[w,w,w], Z =

[z(i—l)'7z(i)’z(i+1)”]T, C = diag [c(i_l),c(i),c(i"'l)] and :

R'(0) R'1) o
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The vectors z(=1" and z(*+D" represent the partial
matched filter correlations between [T} + 71,1 — 71, 115 +
Tk and [(i+1)Tp+ 7%, (i+1) T+ 7K, 1 +7n2], respectively,
for k=1,2,..., K and they are given as :

200" = R (0)wc D0 4 RT(1)we®b® + n=D"  (6)



20" = RMwe®Db® + R (0)wci D+ 4 n(+D"  (7)

The optimum decision concerning b is formulated as
5@ _ [i)(") 50 3@ T
- 1 ->Y2 »---» YK ’
given in Eq. 5. Hence, it is imperative that the EEBs
b(*Y) are estimated as reliably as possible. One way of
estimating the EEBs is by taking a hard decision based
on their maximum ratio combined correlator outputs [3].
However, due to the presence of MAI, as shown in Eq. 7,
the EBEP is high, especially in a worst-case single-path
scenario, where no diversity gain is achieved. This high
EBEP will limit the overall performance of the MUD, as
we shall see in Section IV. In order to lower the EBEP,
we invoke the proposed GA to improve the tentative de-
cision accuracy of the EEBs b(i+1), and at the same time
we optimise the LLF in order to detect b, Hence, the

estimated transmitted bit vector l;(i) of the K users can be
found by optimising Eq. 5 with respect to the DBs b and
the EEBs b'+Y | yielding :

which maximises the LLF

2(4) z(i+1) _ (1) plit+1)
b’,b = arg {b(")rflb%“) [Q (b 9, pl )] , (8)

where Bgf) denotes the tentative decisons concerning the
EEBs based on the proposed GA-assisted optimisation. In
the next section we will highlight the philosophy of our
GA-assisted MUD, in order to simultaneously estimate the
users’ DBs and the EEBs.

III. GENETIC ALGORITHM BASED MULTIUSER
DETECTION

In this contribution we employed GAs [6,7] in order to
detect the transmitted users’ bit vector b(i), where the so-
called objective function is defined by the LLF of Eq. 5.
The structure of the proposed GA-based MUD can be best
understood with the aid of the flowchart shown in Fig. 3.

Let us assume that the current bit of interest is the
ith bit of all K users. GAs commence their search for
the optimum solution at the so-called y = 0Oth genera-
tion with an initial population of so-called individuals, each
consisting of 3 x K antipodal bits. The number of 3K-
bit individuals in the population is given by the popula-
tion size P. We shall express the pth individual here as

z ~(i—1) = (i) = (i+1) ~(i—1)  2(9)
by(y) = [bp,SEBabp (y)abp,EEB(y) , Where bp,SEBa bp (y)

and INJZE;B(y) are K-bit strings denoting the SEBs, the

DBs and the EEBs at the yth generation, respectively. At

this point, the SEBs 5(171) will have been detected in the

previous observation window, when the (i — 1)th bits were
S (i—1 ~(i—1
the DBs. Therefore, we can assign bz(JZ,SE?B = b(z ) for

p=1,...,P. Assuming that upon termination of the GA
at the end of every observation window, the error proba-
bility of the EEBs will be sufficiently low, these bits can
be considered as the tentative solutions for the GA dur-
ing initialisation, when these EEBs become the DBs in
the next observation window. Hence according to Eq. 8,

7 (4) 7 (4) 7 (i+1)
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Fig. 3. A flowchart depicting the structure of the proposed genetic
algorithm used to detect the transmitted users’ bit b® as well as
providing the tentative solutions of b(**1) at the ith observation
window.

forp=1,..., P are randomly generated, in order to ensure
a diversified search. }
A fitness value, denoted as f [bp(y)] forp =1,...,P

is associated with each 3K-bit individual, which is com-

puted by substituting the corresponding elements IA),(,Z;;;)B,
I;s) (y) and BSE;B(y) into the LLF of Eq. 5. Based on

the evaluated fitness, a new population of P individuals
is created for the (y + 1)th generation through a series of
processes to be defined below, which are referred to in GA
parlance as selection, crossover, mutation and elitism [7].

At the Y'th generation, the DBs INJ;Z) (Y) of the 3K-bit in-
dividual corresponding to the highest fitness value in the
population constitute the detected K users’ ith bit associ-
ated with the observation window interval considered, i.e.

with " = (V) of the jth 3K-bit individual b;(Y),

where b;(Y) = max{f [El(Y)} yeonf [EP(Y)} } Let us
now highlight the processes that are involved in the GA [7].

Selection - As suggested by the terminology, the selec-
tion process [7] selects two so-called 3K-bit parent vectors



from a mating pool consisting of T' 3K-bit individuals —
where 2 < T < P —in order to produce two so-called off-
spring for the next generation population of 3K-bit indi-
viduals. Individuals having the T highest fitness values in
the population of 3K-bit vectors are placed in the mating
pool. We shall denote the 3K-bit individuals in the mat-
ing pool as Bq (y) for ¢ =1,...,T. The 3K-bit individuals
in the mating pool are selected as 3K-bit parent vectors
according to a probabilistic function based on their corre-
sponding fitness values f [Bq (y)]. In this contribution, the
so-called sigma scaling [7] is employed, where the selection
probability p (b,(y)) for a 3K -bit individual to become a
parent is a function of its own fitness as well as that of the
mating pool’s mean fitness f and its associated standard
deviation o, as formulated below [7] :

P (ba(v)) = { v q“’ff)] S o0 ©)
1.0 if oy =0,
where
A T \/qul {1 Butw)] - 7Y’
f = Tz.f[q(y)]7af_ T -1 .

q=1

Crossover - The antipodal bits corresponding to the
DBs and the EEBs of the 3K-bit parent vectors are then
exchanged using the so-called wuniform crossover [7] pro-
cess, in order to produce two 3K-bit offspring vectors. The
process of uniform crossover invokes a so-called crossover
mask, which is a sequence consisting of 2x K randomly gen-
erated 1s and 0s. The DBs and the EEBs are exchanged
between the pair of 3K-bit parent vectors at bit locations
corresponding to a 1 in the crossover mask. The selection
of 3K-bit parents from the mating pool of 3K-bit vectors
is repeated, until a new population of P 3K-bit offspring
is produced, in order to perform the crossover process.

Mutation - The mutation process [7] refers to the alter-
ation of the value of an antipodal bit corresponding to the
DBs and to the EEBs in the 3K-bit offspring vectors from
1 to -1 or vice versa, with a probability of p,,.

Elitism - Finally, upon invoking the process of
elitism [7], we identify the lowest-merit 3K-bit offspring in
the population and replace it with the highest-merit 3K -bit
individual from the mating pool. This will ensure that the
highest-merit 3K-bit individual is propagated throughout
the evolution process.

A. Complexity Issues

Since our proposed GA-based MUD optimises the LLF
of Eq. 5, we will only consider its complexity in terms of
the number of LLF computations required for the optimi-
sation. The optimum MUD [1] using exhaustive search
requires 2K evaluations of the LLF. By contrast, our pro-
posed GA-based MUD requires a maximum of Y x P LLF
evaluations. In fact, the number of such LLF evaluations
can be reduced by avoiding repeated evaluations of identi-
cal individuals, either within the same generation or across

the entire iteration process, if the receiver has the necessary
memory.

We should note here that the employment of our pro-
posed GA-based MUD is not restricted to joint bit-by-bit
detection. The truncated observation window can actually
span over several users’ bits. In such cases, the individuals
of the GA must contain these bits. However, since there are
more unknown bits to be detected, a higher P and perhaps
more generations must be invoked.

IV. SIMULATION RESULTS

In this section, our computer simulation results are pre-
sented, in order to characterise the DBEP performance
of the GA-based MUD highlighted in the previous sec-
tion. All the results in this section were based on evaluat-
ing the DBEP performance of a chip-asynchronous K -user
CDMA system over single-path and two-path Rayleigh fad-
ing channels. For comparison, two sets of results will be
presented, where the users’ DBs will be detected by the
GAs in both cases. However, according to our strategy S2,
the EEBs are tentively estimated by the GAs, as suggested
in our previous discussions. By contrast, in our conven-
tional strategy S1, the EEBs are estimated based on previ-
ous hard decisions taken at the correlator outputs assuming
the form of Eq. 3. Perfect power control, synchronisation
and CIR estimation was assumed for all the simulations.
We also assumed that the first bit b° of all the users was
known to the receiver.

Fig. 4 and Fig. 5 shows the DBEP performance and the
EBEP performance, respectively, against wy/No for the
GA-based K = 10-user MUD. As Fig. 4 shows, the DBEP
of the GA-based MUD employing S1 was inferior to that
of S2. The error floor observed for S1 in a single-path
Rayleigh-fading scenario was caused by the high EBEP, as
seen in Fig 5. The same outcome can be seen for a two-
path Rayleigh-fading scenario, albeit only a small degra-
dation was observed with respect to the single-user bound.
On the other hand, we can see from Fig. 5 that the EBEP
upon employing S2 is fairly low. As a result, the perfor-
mance of the GA-based MUD utilising this strategy was
not limited by the EEB errors and hence it was capable
of achieving a near-optimum single-user-like DBEP perfor-
mance. Furthermore, in comparison to the ‘brute-force’
optimum ML MUD requiring 2'°® = 1024 LLF evaluations,
our proposed MUD is substantially less complex, requiring
only a maximum of 10 x 30 = 300 LLF evaluations, yet
performing close to the optimum performance of the ML
MUD.

Fig. 6 shows the DBEP performance of our proposed
MUD for K = 15 users. Because of the higher number of
variables to be optimised, we increased the population size
P to 40 and 50. We note from the figure that for P = 40,
the GA employing strategy S1 now exhibits a more signif-
icant degradation in terms of its DBEP performance with
respect to the single-user bound, than that employing strat-
egy S2. This is due to the fact that as the number of users
increases, the EBEP becomes higher. Increasing the popu-
lation size to 50 does not show any significant improvement
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Fig. 4. The DBEP for the GA-based multiuser detector employing
the EEB detection strategies S1 and S2 with a population size of
P = 30 and supporting K = 10 users.
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Fig. 5. The EBEP performance for the GA-based multiuser detec-
tor employing the EEB detection strategies S1 and S2 with a
population size of P = 30 and supporting K = 10 users.

using the same strategy, since the performance is limited
by the EEB interference. We also note that for P = 40 the
DBEP performance of GAs employing strategy S2 did not
match the single-user bound, even though it outperformed
strategy S1. This was due to the limited population size,
which was too small for optimising 2 x 15 variables. How-
ever, by increasing P to 50, the DBEP performance became
near-optimum. Hence, while achieving a superior perfor-
mance, the associated additional computational complex-
ity has to be tolerated. An important observation is that
when K is increased from 10 to 15 users, a near-optimum
DBEP performance can be maintained by increasing the
population size P from 30 to 50, while keeping Y = 9 by
employing strategy S2. This constitutes a factor of 5/3 in-
crease in the number of LLF computations. On the other
hand, the computational complexity of the conventional
optimum MUD using brute-force optimisation is increased
by a factor of 2° = 32.

V. CONCLUSIONS

In conclusion, we formulated the LLF of an asynchronous
CDMA system in a multipath channel based on a trun-
cated window size. GAs were invoked in order to improve

Proposed GA-based detector using strategy S1
Proposed GA-based detector using strategy S2
Perfect knowledge of EEB and SEB
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Fig. 6. The DBEP performance for the GA-based multiuser detector
employing the EEB detection strategies S1 and S2 with popula-
tion sizes of P = 40 and P = 50 and supporting K = 15 users.

the EBEP and at the same time to detect the DBs within
the truncated observation window. By improving the re-
liability of the EEBs, simulation results showed that the
GA-based MUD can achieve a near-optimal DBEP perfor-
mance at the cost of a lower number of LLF evaluations
compared to the optimum MUD using a brute-force ap-
proach. Furthermore, both the EEBs and the DBs are de-
tected by the same GAs, resulting in potential complexity
savings.

REFERENCES

[1] S. Verdd, “Minimum Probability of Error for Asynchronous Gaus-
sian Multiple Access Channels,” IEEE Trans. Inform. Theory,
vol. 32, no. 1, pp. 85-96, Jan. 1986.

[2] R. Lupas and S. Verdid, “Near-far Resistence of Multiuser De-
tectors in Asynchronous Channels,” IEEE Trans. Commun., vol.
38, no. 4, pp. 496-508, Apr. 1990.

[3] Z. Xie, R. T. Short and C. K. Rushforth, “A Family of Subopti-
mum Detectors for Coherent Multiuser Communications,” IEEE
J. Select Areas Commun., vol. 8, no. 4, pp. 683-690, May 1990.

[4] S. S. H. Wijayasuriya, G. H. Norton and J. P. McGeehan, “A
Sliding Window Decorrelating Receiver for Multiuser DS-CDMA
Mobile Radio Networks,” IEEE Trans. Veh. Technol., vol. 45,
no. 3, pp. 503-521, Aug. 1996.

[5] J. Shen and Z. Ding, “Edge Decision Assisted Decorrelators for
Asynchronous CDMA Channels,” IEEE Trans. Commun., vol.
47, no. 3, pp. 438-445, Mar. 1999

[6] J. H. Holland, “Adaptation in Natural and Artificial Systems,”
University of Michigan Press, 1975.

[7] M. Mitchell, “An Introduction to Genetic Algorithms,”
bridge, MA: MIT Press, 1996.

[8] M. J. Juntti, “Genetic Algorithms for Multiuser Detection in Syn-
chronous CDMA,” IEEFE International Symposium on Inform.
Theory, pp- 492, 1997.

[9] K. Yen and L. Hanzo, “Hybrid Genetic Algorithm Based Mul-
tiuser Detection Schemes for Synchronous CDMA Systems,” in
Proc. 51st IEEE Vehicular Technology Conf., Tokyo, Japan, May
2000, pp. 1400-1404.

[10] C.Ergiin and K. Hacioglu, “Multiuser Detection Using a Genetic
Algorithm in CDMA Communications Systems,” IEEE Trans.
Commun., vol. 48, no. 8, pp. 1374-1383, Aug. 2000.

[11] X.F.Wang, W. S.Lu and J. O. Lilleberg, “A Genetic Algorithm-
Based Multiuser Detector for Multiple Access Communications,”
IEEE International Symposium on Circuits and System - IS-
CAS’98, vol. 4, pp. 534-537, 1998.

Cam-



