
Linking in Context

Samhaa R. El-Beltagy, Wendy Hall, David De Roure, and Leslie Carr
Intelligence, Agents, Multimedia

Department of Electronics and Computer Science
University of Southampton

Southampton SO17 1BJ, UK
E-mail: samhaa@acm.org, {wh,dder,lac}@ecs.soton.ac.uk

ABSTRACT
This paper explores the idea of dynamically adding multi-
destination links to Web pages, based on the context of the
pages and users, as a way of assisting Web users in their
information finding and navigation activities. The work
does not make any preconceived assumptions about the
information needs of its users. Instead it presents a method
for generating links by adapting to the information needs
of a community of users and for utilizing these in assisting
users within this community based on their individual
needs. The implementation of this work is carried out
within a multi-agent framework where concepts from open
hypermedia are extended and exploited. In this paper, the
entities involved in the process of generating and using
‘context links’ as well as the techniques they employ to
achieve their tasks, are described. The result of an
experiment carried out to investigate the implications of
linking in context on information finding, is also provided.

KEYWORDS: Links, link generation, dynamic linking,
open hypermedia, information finding, navigation
assistance, software agents, context.

INTRODUCTION
During the past few years, it has become apparent that
there is an urgent need for tools that can guide Web users
in their information finding and navigation activities. This
paper explores the idea of dynamically creating links and
employing them in context via an open link service in a
way that would serve that goal.

One of the failings of traditional information retrieval
models is attributed to the isolation of queries from the
context in which they occur [4]. Context is an involved
issue that has been addressed in many fields as discussed
more fully in [10]. One of the elements that contribute to
a user's local context is the Web page that the user is
browsing which might contain concepts the user wants to
know more about [27].

If a user's information needs are to be anticipated in
advance and links are to be dynamically added to Web
pages that meet a user's interest, then this could lead the
user to find information that meets his/her information
needs while they are browsing without having to consult
an external search facility. This is the motivation behind
this work. As such, within this work context is defined
by user interests and the document within which the links
are to be rendered. The user interests define which links
are to be exported for that particular user, and a
document's content defines which of these links are to be
rendered in that document.

Since the work makes no pre-defined assumptions about
the information needs of its users, a way of automatically
generating useful links that can serve a community of
users is presented. The implementation of this idea is
presented as part of the QuIC (Queries in Context) system
where concepts from open hypermedia are extended and
exploited within a multi-agent architecture [12]. The
framework is meant to serve users in organizations or
groups where it is likely that user interests will overlap
and that the experience of one user could be of benefit to
others. As such, the presented work has both collaborative
and personal dimensions. The collaborative aspect derives
from attempting to capture information about what users
have found useful when carrying out their normal
browsing activities in order to assist other users in the
system, in this case by triggering link generation. The
personal dimension derives from the way the captured
information is automatically propagated to users of the
system, and which is highly dependent on the individual
interests of the users. Though the QuIC framework
addresses the dissemination of different kinds of
information that can help users in their information
finding activities, the focus of this paper is on information
created and propagated in the form of contextualized
links.

BACKGROUND
Open hypermedia is an area that has been researched by
the hypermedia community for several years and for
which a number of systems have been implemented
[7,18,26]. In open hypermedia systems (OHS), links are
considered first-class citizens. They are managed and
stored in special databases called linkbases. The idea of

abstracting links from documents allows for a great deal
of flexibility since it allows for the addition of
hypermedia functionality to documents, multimedia or
otherwise, without changing the original document's
format or embedding mark-up information within it. It
also simplifies link maintenance and re-use [7]. The
recently proposed XLink standard [20] is increasingly
moving towards the open hypermedia approach. Systems
such as the Distributed Link Service (DLS) [6,5], Webvise
[17], and Chimera [2] were designed in order to bring the
open hypermedia philosophy to the Web.

The DLS is based the Microcosm OHS system [14,7]
which was among the first systems to explore the idea of
building a hypertext system out of a set of loosely-
coupled communicating processes. The processes could
be pre-configured so that users of Microcosm applications
could use the linkbases most appropriate to the context of
their activity. One type of link introduced in Microcosm is
the generic link. Generic links allow a link to be followed
from any occurrence of a particular piece of content such
as a text string, to relevant destination anchors. By
employing generic links, a great amount of re-authoring is
avoided, and link re-use is greatly enhanced. Through the
employment of proxy technology, the DLS allows links,
mostly generic, from linkbases to be applied to WWW
documents on the fly.

However, the DLS on the Web suffered from a major
limitation as a result of it being a natural extension to
Microcosm. When the concept of linkbases was first
introduced in Microcosm, the notion of an application
within the boundaries of a well defined domain existed.
The system was open in the sense that documents related
to that application could be added at any time irrespective
of the medium they were created in, and links would be
automatically rendered on those documents. As such, the
notion of the generic link was particularly useful because
as soon as documents were added to an application, links
were automatically available from that document to other
documents in the application. When the DLS introduced
concepts from open hypermedia to the Web, the
responsibility of determining link context fell on the
shoulders of the user. So the major limitation of the
system lay in its inability to automatically switch between
linkbases depending on the context of documents.

SYSTEM OVERVIEW
One of the goals of the presented work is to address the
limitation of switching between linkbases according to the
context of documents. Another is to enable dynamic
creation of links to populate linkbases. Manual authoring
of links is an expensive and inefficient process. The Web
is full of a wealth of handmade links that can be used to
generate links independently of the documents in which
they were authored and re-applied again in contexts
similar to those in which they were originally created. So,
in the context of this work, there are three steps involved
in the process of linking in context:
1. The creation of links in context (via link extraction)

2. The propagation of links to users based on user
interests (which within this work define user context)

3. The rendering of links based on document context

Within the developed multi-agent architecture, two types
of agents are responsible for carrying out these tasks: link
extraction and contextualizer agents, and user interface
agents. Details of the architecture and agents used to
implement the work described in this paper can be found
in [13,12]. A user interface agent (UI agent) is associated
with every user in the system and it is the component
through which the user can interact. The agent is
implemented in Java and is capable of monitoring a user's
browsing, bookmarking, and searching activities, and of
building a user profile reflecting user interests,
accordingly. With the permission of the user, URLs that
he/she has found interesting are communicated to a
number of agents such as the link extraction and
contextualizer agent which uses this information to
download, and analyze Web pages and to create links
accordingly. One of the components of the UI agent is a
personalized context aware linkbase, which is populated

by links through various subscriptions to the link
extraction agent based on user interests.
The overall scenario for achieving linking in context is
illustrated by Figure 1. Various user interface agents in
the system communicate URLs their users have found
interesting to the link extraction agent (e.g. when a user
bookmarks a document), which uses those to generate
links and store them in its knowledge base. Whenever a
UI agent detects that its user has developed a new interest,
it asks the link extraction agent to provide it with links
related to that interest and to send it any new links related
to that interest as soon as they become available. The UI
agent stores the retrieved links in its context aware
linkbase. Whenever the user requests a Web page, the
proxy component of the UI agent intercepts the HTTP

Figure 1: The interaction scenario for
linking in context

Proxy Component

The UI Agent

Agent Interaction
Component

UI Agent Presentation
component

Personal Profile
and links

monitorand
inform

search,
browse,

bookmark

The Web

Fetch Web
pages

Consult and Update

modified
Pages

http
requests

Agent Interaction

Component

Link context determination

and storage base

Link extraction
Agent

links

urls, link
requests in

context

QuIC Search Engine

Downloading and

Link creation component

request, downloads the page, attempts to locate links for it
in its context aware linkbase and if found, to add them
dynamically to that Web page. The steps involved, are
described in more details in the following sections.

CREATING THE LINKS
The task of creating the links is assigned to a link
extraction and contextualizer agent which employs the
open hypermedia philosophy of abstracting links from
documents. There are a number of features that make this
agent quite different from agents or applications that have
attempted the same goal. For example, link creation and
maintenance is an automatic and dynamic process. The
agent itself is not a proxy and stores links using a slightly
different representation than the DLS so as to account for
context. The responsibility of rendering the links is
outside the scope of the functionality of this agent and
falls on the shoulders of agents that use its services.

The agent is capable of compiling contextual information
about Web pages, the URLs of which are passed to it by
other agents, and of generating links accordingly. It uses
this information to answer queries also presented to it by
other agents. A query for this agent could be a request for
a set of links in a given context (represented by a weight
vector of terms, described in the next section) or simply a
search request represented by a set of keywords. The tasks
of this agent can be summarized by the following points:
1. Continuous creation of links in context
2. Storage and maintenance of links in a knowledge

base
3. Provision of various link related services to other

agents. These have been identified as follows:
3.1. the facility of subscribing to link updates in a
given context
3.2. the facility of conducting a query in a given
context

Generating automatic links is a challenging task since
certain relationships between documents can sometimes
only be inferred and tagged by humans [27,1]. This is
particularly true if there is a requirement to create links
automatically to concepts represented by phrases. This
task implies that there is a requirement to understand
something about the phrase, which is to become a source
anchor, and the document to which it will link.
Specifically, it raises the question as to how to create
links to concepts within a large body of text, when there is
little understanding of the text itself.

To overcome this difficulty we make use of already
authored links through the use of a simple rule based
algorithm developed to utilize those in the creation of
generic links in context. The underlying premise is that if
document X and document Y appear in context Z, and
there is a link related to a concept C in document X, then
the same link can be applied to concept C in document Y.
This applies to all documents in context Z. The model
allows for source anchors, represented by extracted
phrases, to have multiple source nodes and multiple

destinations. The phrases for which links would be
created would usually denote concepts. This gives rise to
another problem. Links in Web pages can often have long
source anchors, which hide the particular concept to
which they relate. For example, if a link appears in a Web
page with the text 'Miscellaneous concerning Vannevar
Bush', then a link extraction algorithm should be able to
understand that the concept to generalize this link for is
Vannevar Bush. i.e., the source anchor for the link to be
created using that link, would be Vannevar Bush. The
algorithm takes this into account. The first step towards
applying this algorithm is to determine the context of
documents from which links are to be extracted.

Determining the Context
TF-IDF (term frequency, inverse document frequency) is
an information retrieval technique based on a vector space
model where a vector is used to represent a document or a
query[25]. The technique is used to calculate the
importance of terms appearing in documents. Using TF-
IDF in conjunction with the cosine similarity function
seemed well suited for our context determination task.
The cosine similarity function Sim(di, dj) measures the
cosine angle between two documents represented by
vectors di and dj, and returns a number between 0 (totally
unrelated) and 1 (identical) reflecting how similar they are
(the closer the angle, the more similar they are). The aim
is to abstract a context via a cluster centroid built as a
result of grouping similar documents together, where a
cluster centroid serves as a representative of features in a
given cluster. Typically, a cluster centroid is calculated by
averaging vectors of all documents in a given cluster
[24,25]. Initial experimentation employed the following
algorithm to incoming document vector representations
calculated using TF-IDF:
Let C be the set of available context abstractions
(centroids) represented by a feature vector of terms
(initially {}), and ci is an element in C, where i ∈ {1,2,..
|C|}
Let UD be the set of un-grouped documents, and di be an
element in UD, where i ∈ {1,2,.. |UD|}
Let inDoc be the feature vector of terms representing an
incoming document.
1. For each ci calculate Sim(ci,, inDoc) using the cosine

similarity function
2. If maximum similarity across C is greater than a

threshold value µ then, add and average weights in
inDoc to the vector centroid cj with greatest
similarity.
Sort the weights for the new vector centroid, trim to
maxLength, and store results in cj

3. else, repeat step 2 across UD. If a document di is
found, then create a new centroid with the resulting
vector and remove di from UD

4. else, add inDoc to UD

When experimenting with the technique, we found that
there were some cases for which it was incapable of
distinguishing between documents representing different
concepts. For example, a number of documents related to

Vannevar Bush1 were considered similar to some
documents related to Kate Bush2 because some of the
highest weighted words were similar. In our application,
this mix up was all together unacceptable as Vannevar
Bush and Kate Bush represent two different contexts or
entities, and they had to be recognized as such. In
conjunction with the cosine similarity function, a very
simple heuristic was applied to solve the problem and
enable proper determination of context. So, in order to
determine whether two documents were similar, the
following rule was applied:

Let vi be the vector representation for document di and ti
be the set of terms in vi (the same applies if this is a
centroid rather than a document)
Let vj be the vector representation for document dj and tj
be the set of term in vj

Similar(di, dj) ⇔ Sim(vi, vj) > µ and
 | ti ∩ tj | > β
Where Sim(vi, vj) is the cosine similarity function, µ is
the threshold value below which documents can not be
similar and β is the minimum number of words that must
exist in common between the 2 feature vectors being
compared if they are to be considered similar.

A further modification was applied to the way cluster
centroids are constructed. To better capture the context of
a group of documents, it is important to emphasize the
similarities between them. So, as opposed to averaging
the weights for various terms in the construction of a
centroid, a boosting factor was introduced. For each term
tk where tk ∈ | ti ∩ tj | and diwk is the weight of term tk
in document di, ciwk=max(di wk, djwk) *α where α is
the boosting factor. In our current implementation, α is
set to 1.5.

A data set of 196 documents was used to test the
algorithm. Out of these, 185 were randomly selected from
a pool of diverse documents. The remaining 11
documents comprised 2 small manually selected
document sets, contents of which were confused with
each other before the addition of the presented heuristics.
One set contained 7 documents relating to Vannaver
Bush, while the other had 4, which related to Kate Bush.
Over the entire data set, 28 clusters were created with 79
documents. Of the 7 documents relating to Vannevar
Bush, 5 formed a cluster while the other 2, which were
content poor, remained unclustered. All 4 Kate Bush
documents formed another cluster. Since the algorithm
emphasized accuracy, a few documents that could have
fitted into some of the clusters were filtered out, but that
was in line with our requirements. The clustering
accuracy over this data set was 98.7 %. This was
measured based on manual examination of clusters.

1 A visionary and scientist who in 1945 wrote the paper
"As We May Think" that inspired hypertext research-
http://www.isg.sfu.ca/~duchier/misc/vbush/
2 A very successful and popular English vocalist,
especially during the 1970s and 80s

Extracting the links
Web pages used to create links have to be of reasonably
high quality as well as represent an interest to some of the
users within the system. The quality of Web pages is very
difficult to determine based only on their content. A Web
page might have all the right words, but still be totally
useless. A good way of achieving both goals is to request
notification about Web pages that users have found
interesting (the UI agent monitors the user’s browsing,
bookmarking, and searching activities as a way of
determining those). In that sense, the agent is dependent
on UI agents in the system to correctly convey
information about the interests of their users. The process
by which they determine such interests is totally
transparent to the link extraction agent. The agent simply
receives the interest in the form of one or more URLs.
Once a URL is received, it is queued for downloading and
processing at a time when the load on the agent is
minimal (usually overnight). Links from processed
pages are extracted. Those that do not demonstrate a
direct relationship to page content are thrown out. Others
are analyzed and associations between text phrases and
those links are created and stored in a Prolog knowledge
base (KB). The algorithm followed to carry out these
steps is as follows:

For each URL u in the processing queue:
1. Connect to u and use http headers to obtain the last

modified date for u, lmd(u)
2. if (lmd(u) > slmd(u)) or notSeen(u), where slmd(u)

is the stored last modified date, then continue,
otherwise process next url

3. download u
4. Parse the html of u in order to extract links in the

body and keyword information (a TF-IDF vector of
weighed terms). Each link is represented by a
destination anchor and source anchor link text.
Keyword information is obtained by ignoring stop
words, weak stemming other words, calculating the
weights for all words using TF-IDF, and then storing
the top l words and their weights in a feature vector,
where l is the prefixed vector length.

5. add u to a document cluster based on the algorithm
presented in the previous section

6. Pre-process links. This is done as follows: For each
extracted link,
• Check if the source anchor text starts with a URL

prefix (http://, ftp://, mailto, etc). If it does, delete
• Check if the source anchor text is made up

entirely of Web stop words (next, back, home,
etc), If it is, delete

• Check if it the source anchor text contains any
words from the calculated weight vector of
terms, if not, then throw the link away.
Otherwise, keep.

7. For each remaining link, fragment source anchor text
into various phrases by considering the text as
phrases separated by stop words. For example, for
source anchor text Vannevar Bush and the Memex,

the two phrases Vannevar Bush, Memex, will be
extracted.

8. For each extracted text fragment, check if any of the
words appear in the feature vector of terms. If none
of the words appear, then throw the fragment away
and process the next fragment or link. If only 1 word
appears, and it is in the top n features, or if more than
1 appear, then create a link as described in step 9. If
one words appears, but it is not in the top n words,
then use the complete source anchor text and scan
backwards and forwards in the Web page text for a
phrase that matches a subset of the link text. For
example, if the source anchor text is "As we may
think": an article published in... , and the keyword
found is "think", then by this process the phrase to be
used for link creation will be "As we may think",
provided it has appeared in the document text.

9. If the link’s destination anchor is valid, then create
the link by asserting it into the Prolog KB. Validity is
determined by verifying that the destination link is
not dangling. A link is defined by a source URL, a
destination URL, the selection it can replace (the new
source anchor) the text label associated with the link
(this is the un-fragmented version of the original
source anchor), and keywords associated with it (this
is used for searching).

10. Store the link in the Prolog KB. If the source
document from which the links have been extracted
has been assigned a context, then the extracted links
are assigned the same context. If not, then they are
kept unclassified until the source document is
assigned a cluster.

In order to maintain the Prolog KB, the idea of
documents, clusters/contexts, and links having a life cycle
was introduced. The lifetime of any of these is a function
of usage. They are “forgotten” depending on the
frequency of usage and recency of access.

One of the advantages of using this algorithm is that it
enables the generation of links to URLs of documents
with little or no text content, but which are still relevant in
a given context. For example, after adding links to a Kate
Bush Web page using mined links, one of the destination
anchors associated with the phrase Red Shoes (which is a
title of a song) was a URL pointing to a playable midi file
of the song.

Rendering the links
One of the components of a UI agent in our framework is
a personal context aware linkbase. Representation of
links in this type of linkbase is quite different from that of
a traditional linkbase as implemented in a system such as
the DLS. A context aware linkbase is a linkbase where
links in a given context are grouped together. So the
context aware linkbase could in fact be thought of as
multiple linkbases divided by context. The context of
each group is represented by a feature vector of terms
which is used to obtain the links from the link extraction
agent. Specifically, links in the linkbase are imported

from link extraction agents based on the interests of a
user, each of which is represented by a feature vector of
terms which is used to group retrieved links. Details on
how the user profile is built and used for this task can be
found in [11]. Once a new user interest is detected, the UI
agent sends a subscription message to the link extraction
agent for links related to that specific interest which is
represented by a feature vector of terms. The link
extraction agent then sends the UI agent all available links
for that interest by matching the input vector to available
cluster summaries. As soon as new links become
available, they too get dispatched to the subscribed agent.
Assuming that the UI agent's context aware linkbase is
populated with links that are of interest to the user, then
the UI agent is responsible for rendering those links to
Web pages that fit that context.

The process of rendering links on the fly has to be done as
quickly as possible. To render a link in context, the
context of the Web page that is being viewed has to be
determined first. Though this process is not a lengthy one,
in cases where a user is viewing a Web page for the first
time, the Web page has to be downloaded before the
context determination process can commence. If the
display of the Web page is to be blocked by the proxy
until the page completely downloads, then the user will
only start seeing text in the body of the page depending
on the speed of the connection. In some cases this might
not be acceptable. As a result, during the design phase, it
was decided that the display of pages would take place in
an asynchronous way, and that a technology such as
server push or client pull would be used to deliver the
altered Web page. In server push, the connection between
the browser and the server is kept open after a Web page
is downloaded until the server pushes a new content,
which replace the current one. In client pull, the
connection is closed after a Web page is downloaded and
then requested again from the server after a specified time
had passed [21]. When implementing the system, the two
technologies were employed so as to make the system
browser independent.

A number of data structures are employed to facilitate
rapid determination of link context. Cluster centroids are
used to represent link contexts. A table is used to map
context identifiers to cluster centroids, each of which is
represented by a weight vector of terms. When a Web
page is downloaded for the first time, it is compared to the
various existing cluster centroids (representing user
interests for which links exist), and in case a match is
found, a context identifier is returned. The mapping
between Web pages for which a context has been
determined, is stored together with a context identifier in
another table for rapid context lookup the next time the
same Web page is viewed. The context identifier is used
to activate a group of links, which collectively can be
thought of as a linkbase in their own right. This is done
by retrieving a quick lookup table using the context
identifier and passing this to the rendering component.
Following an automatically rendered link activates a set

of possible destinations from the source anchor of the link
as opposed to opening a specific Web page. So the only
information required for the process of rendering the links
is the knowledge of source anchors represented by
phrases. Phrases within the lookup table are represented
by trees so as to facilitate rapid parsing. Figure 2 shows a
simplified diagram of part of that lookup table. Basically,
once the context for a document has been determined,
words in a document are scanned and compared to the
roots of trees in the lookup table based on the context
identifier given to that document.
If a word is found that matches a root, the next word is
compared to nodes in the next level of the tree. If it
matches, then it is placed onto a stack. This procedure

continues until either the leaves of the tree are reached, or
the lookahead word does not match any of the nodes in
the level at which computation is taking place. In the
latter case, words in the stack are popped one by one until
a term, which qualifies as an end of a phrase, is reached or
the stack becomes empty. A word would qualify as an
end of phrase if a boolean flag, indicating whether one or

more URLs are associated with it, is set. At this stage a
link is created from that text phrase to a dynamically
generated link in which the context identifier and the
phrase are encoded as a query and which points back to a
simple HTTP server implemented by the UI agent. The
following are examples of generated destination URLs:

A link generated for Bush in the G. W. Bush context

http://localhost:9090/?links:Bush;con981371585841

Two links generated for Bush, and Vannevar+Bush
respectively in the Vannevar Bush context

http://localhost:9090/?links:Bush;con980936717330

http://localhost:9090/?links:Vannevar+Bush;con98093671730

Within the UI agent, another table is used to represent the
actual links. In the second table, phrases are mapped to
one or more URLs. When a user follows a dynamically
added link, the context identifier encoded in the URL is
used to activate the appropriate table while the query
encoded in the link is used to retrieve appropriate links
related to that phrase through a rapid search process.
Figure 3, shows how links are rendered and resolved in

two different contexts. The links shown were created as
part of the experiment described in the evaluation section.

RELATED WORK
Dynamic link generation has been addressed by a number
of systems, though each of these systems addressed them
from a different perspective. The VOIR system [15,16] is

Figure 3: An example showing how links are rendered in two different contexts. In the two documents, different links are
suggested for "Bush" based on the context. An icon appears besides linked phrases to distinguish recommended links
from original links in the page.

Links for contextID con9898797

intelligent information

software agents

agents

agents

retrieval

Figure 2: Quick lookup tree for link phrases

one example. The main motivation behind VOIR is to
assist users in navigating huge collections of text. In the
VOIR system, the user specifies a topic by entering a set
of keywords and gets back a collection of articles that
match the query with some of the query terms added as
anchors in the returned articles. When a user follows an
added link, terms from the anchor are added to the
original query, which defines the context of the link and
which causes a new set of articles to be displayed.
Another example of work that has addressed automatic
link generation is Bernstein's link apprentice, which uses
simple pattern matching and string comparison algorithms
to generate links [3]. However, the link apprentice is
liable to generate erroneous links if two unrelated
documents representing different concepts are expressed
in similar words, something which the presented system
(QuIC) has addressed. As a result, the link apprentice
system has been recognized as suitable for assisting
hypertext authors in their link creation activities rather
than actually dynamically creating links. There are a
number of other systems that are capable of generating
link suggestions to hypertext authors [19,23]. Another
dimension to link generation is presented through work
that describes ways of gathering hypertext documents,
linking them, and annotating them by descriptions of
inferred link types [1]. There is an overlap between the
goals of link adaptation as addressed by this work, and
adaptive hypermedia[8]. However, to the knowledge of
the authors, the approach presented here for link
generation and presentation has not been addressed by
any other systems, adaptive, or otherwise. For example,
while QuIC is capable of generating reliable links
represented by phrases, most other systems generate links
represented by single terms. QuIC can add links to Web
pages it has never seen before. It also builds on the
normal WWW browsing interface. The use of a personal
agent means that user interests are determined
automatically, and links are added pro-actively. The
document set used to create the links is dynamically
obtained and continuously updated, and links are added
and removed all the time.

Related agent based and recommender systems are
discussed in [11]. Particularly relevant are the MEMOIR
[9], and Margin Notes[22] systems. MEMOIR employed
DLS technology and as a result suffered from the same
limitations as the DLS. Though Margin Notes addressed
local context for suggesting documents, it did not address
linking at all.

EVALUATION
To study the implications of dynamically creating and
adding links in their proper contexts on the process of
locating information, a controlled experiment was set-up.
The experiment was a two-phase one in which a set of
seven users was randomly divided into two groups. Each
group was assigned one of two unrelated information-
finding tasks. The two tasks revolved around the private
life of Vannevar Bush and relatively basic technical

questions about CORBA3 respectively. Tables 2 and 3,
provide the questions making up each of the tasks. To
demonstrate that the system is capable of distinguishing
between two different contexts that can be confused with
each other, the Vannevar Bush task also contained three
questions on the private life of George W. Bush4.

Participants in the experiment were all members of the
IAM research group who all have a background in
computer science but who have varying individual
research directions. Users in each of the experimental
groups were selected randomly. The users were asked to
indicate how familiar they were with the subjects in
question. Table 1, in which Ui refers to user i,
summarizes their responses.

 Vannevar Bush CORBA

U1 Vaguely familiar Unfamiliar

U2 Vaguely familiar Vaguely familiar

U3 Vaguely familiar Vaguely familiar

U4 Unfamiliar Vaguely familiar

U5 Familiar Vaguely familiar

U6 Unfamiliar Vaguely familiar

U7 Vaguely familiar Unfamiliar

Table 1: A table showing the familiarity of different
users with areas surrounding the two evaluation tasks

1) What were the names of the parents of Vannevar
Bush?
2-a) What was the name of Bush's first invention? (hint, it
was invented in 1913)
2-b) What did it do?
2-c) Find a URL for a photo of the invention:
3) Name three positions that Vannevar Bush held
4) What year was Bush married and what was his wife’s
name?
5-a) How much did the Differential Analyzer weigh ?
5-b) How many vacuum tubes did it contain?
6) Find three URLs to Web pages describing the Memex
7-a) Where was George W. Bush born?
7-b) What is name of George W. Bush’s wife?
7-c) Find two URLs related to her

Table 2: The questions users were asked about V.
Bush and G. W Bush

In the first phase, participants in the experiment were
asked to carry out their task by finding information using
one of the standard available search engines. Users 1
through 3 were assigned the Bush task, while users 4
through 7 were assigned the CORBA task. Initially, no
time limit was placed on the answering of the questions,
but one in each task proved harder than anticipated (the
first in the Bush task and the fifth and last in the CORBA
task). As a result a time limit was placed on these

3 Common Object Request Broker Architecture
4 The current president of the United States of America

particular questions. For the Bush task, only user 3 was
able to find an answer for question 1 and for the CORBA
task, only user 4 was able to find an answer for question
5. The time it took to answer each question, the number of
links traversed to find the answer, and the number of
queries entered to reach an appropriate answer, were all
logged.

1) What is CORBA?
2) What is an ORB?
3) Locate two introductory CORBA tutorials (pdf or ps
formats are acceptable).
4) What do the following terms stand for in CORBA:
BOA, COS, GIOP, PIDL, SSI
5) Find a Web page that explains why CORBA is better
than COM

Table 3: The questions users were asked about
CORBA

URLs from which users found the answers were sent to
the Link extraction agent. The number of URLs used
amounted to 39. Of these, 15 were related to Vannevar
Bush, 8 to George W. Bush, and 16 to CORBA. 4
different document clusters were created. Cluster one
contained 13 of the Vannevar Bush related documents.
Cluster two contained all George W. Bush related
documents. Cluster three contained two Vannevar Bush
documents discussing the Memex at length rather than
containing personal information about V. Bush. Cluster
four contained 14 of the CORBA related URLs. The
remaining two CORBA related URLs remained
unclustered because their contents did not match with any
of the other documents strongly enough.

Examples of the source anchors created in the context of
CORBA:

Distributed Applications, CORBA, OMG, ORB,
Distributed Objects, Objects, IDL Interfaces, IDL,
Object References, CORBA Architecture

In the second phase, the tasks were swapped from one
group to the other so those who carried out the CORBA
task were asked to carry out the Bush one and vice versa.
In this phase, the participants were asked to accomplish
their tasks using a search engine in conjunction with the
QuIC linking in context utility (through a UI agent),
which they were encouraged to use. In this phase all users
were assigned an imaginary user's UI agent, which was
made aware in advance that the user is interested in the
three areas surrounding the tasks. The same time limits
were placed on the users. All users however, were capable
of finding the answers to the questions well before the
limits were reached.

In both phases, all participants carried out their tasks on
the same machine so as to make sure that the
computational environment was not a factor in the results
obtained. Users however, were asked to use the search
engine that they felt most comfortable with as we didn't
want lack of familiarity with any specific search engine to

affect their performance. For both tasks, users U1, U2,
and U5 used Google, U3 used Yahoo, U4 used Altavista
while users U6, and U7 used a different engine for each
task. Despite the fact that various search engines were
used, the trend observed when using the context links
seems independent of the search engines used. This is
confirmed by the analysis of the query logs, where the
number of queries entered by users was lower for those
using the linking in context utility (with the exception of
U5).

The average time of the completion of the CORBA task in
the first phase was approximately 36 minutes while the
average time to complete the Bush task was 34 minutes.
These figures exclude the time taken to actually write
down the answer to any particular question. The average
time taken to complete the CORBA task in the second

Figure 4: Chart showing the time taken by each of the
participants to complete the Bush task. Users 1
through 3, used a standard search engine only to carry
out their task, while users 4 to 7 used the linking
utility in conjunction with a search engine

The Bush task

0:00

0:14

0:28

0:43

0:57

U1 U2 U3 U4 U5 U6 U7

Users

T
im

e
in

 m
in

u
te

s inc

q7

q6

q5

q4

q3

q2

q1

Figure 5: Chart showing the time taken by each of the
participants to complete the CORBA task. Users 4
through 7, used a standard search engine only to carry
out their task, while users 1 to 3 used the linking
utility in conjunction with a search engine

The CORBA task

0:00

0:14

0:28

0:43

0:57

U1 U2 U3 U4 U5 U6 U7

Users

T
im

e
in

 m
in

u
te

s

inc

q5

q4

q3

q2

q1

phase was 10 minutes and 13 seconds while the average
time taken to complete the Bush task was 19 minutes and
four seconds. So on average, users using the linking
facility completed their task in 28% of the time taken by
users employing a search engine only for the CORBA
task and in 55% of the time taken by users using a search
engine only for the Bush task. In addition, all users using
the linking facility were able to complete their task, which
is not true of users using a search engine only. Figures 4,
and 5 show the time it took each user to complete a given
question in each of the tasks, where qi denotes question i
and inc, is an indicator that the task was not completed.
When using the context links, the time taken by all users
carrying out the CORBA task was significantly lower
than the time taken by their counterparts using only a
search engine. This was the same for the Bush task
except in the case of one user (U5), but even then, the
user's task completion time was comparable to the
quickest person using a search engine only.

While watching users carry out their search activities, it
was obvious that different users have different search
strategies and that no one strategy is always effective
across all tasks. Flexibility in terms of rapidly being able
to switch from one search strategy to another, is probably
the best way for searching the Web. Yet, once a user
selects a path, no matter what that is, it will probably take
some time to discover whether it is a dead end one or not.
The advantage of offering context links is that the user
does not even have to think of what query to enter. In our
experiment, some of the more challenging and time
consuming questions, were easily answered by users of
the context links as they readily recognized an association
between the questions that were put to them and some of
the links being offered.

CONCLUSION AND FUTURE WORK
In general, link generation in the context of the Web is not
an area where much work has been done because of the
scale and openness of such a system. This work has
addressed this through the use of software agents that
employ small collections of documents gathered by
monitoring the activities of a group of users and detecting
which documents they have found useful. Both the
document collection, and the links contained within them
are used to create the links. Because these documents are
obtained as a result of users expressing a strong interest in
them, through bookmarking for example, the quality of
their content is likely to be high. The fact that the
generated links will be only be propagated to users who
have displayed an interest in similar content, means that if
some noisy content has been added, it will not be used
and will eventually be removed from the link knowledge
base in which usability is one of the factors that control
the lifetime of the links.

Based on the preliminary user evaluations, it is clear that
links created as a result of employing information found
useful by one user navigating the information space, can
guide other users to information sources that can

otherwise be difficult to locate. The whole idea of linking
in context contributes to users finding information related
to concepts found in Web pages they are viewing.
Invoking a dynamically added link is like initiating a
search for the linked phrase among links created as a
result of the experience of other users and which are less
likely to contain dangling links and are quite likely to be
of high quality. Small link icons are added to linked
phrases to indicate subtly that there are links available for
those phrases. Six out of the seven users of the system
indicated that they found the way in which links were
rendered more useful than distracting. One of the
advantages of using this system is that it is not restricted
to any particular domain and can adapt rapidly to its users'
interests.

There are a number of areas where ongoing and future
work is being aimed. More functionality is being added
to assist users in retrieving information from within a
Web page in the context of that page. The new facilities
will allow users to interact with the system and
proactively ask for links by selecting text fragments for
which the links are desired, or by simply entering a query.
More extensive user evaluations are also underway. The
following points summarize future directions:
• Allowing users to control the contents of their own

linkbases, so that they can immediately delete or add
links in a specified context

• Getting user feedback on recommended documents
and using that in managing the life cycle of links in
the link extraction agent's knowledge base, and the
personal linkbases. In general, more research is
planned for improving concepts related to the life
cycle of links and clusters through consideration of
the characteristics of human memory

• Investigating the use of natural language techniques
in link phrase extraction

• Experimenting with ways of achieving a more
localized level of contextualization.

• Improving the representation and presentation of
suggested links

ACKNOWLEDGMENTS
The work presented in this paper has been supported by
the QuIC project, ESPRC grant GR/M77086.

REFERENCES
1. Allan, J. Automatic hypertext link typing, in Proc. of

the seventh ACM conference on Hypertext, ACM,
Bethesda, MD USA, pp. 42-52, 1996.

2. Anderson, K. M. Integrating open hypermedia
systems with the World Wide Web, in Proc. of the
eighth ACM conference on Hypertext ACM,
Southampton, United Kingdom, pp. 157-166, 1997.

3. Bernstein, M. An Apprentice That Discovers
Hypertext Links, in Proc. of ECHT'90 , INRIA,
France, pp. 121-223, 1990.

4. Budzik, J. User Interactions with Everyday

Applications as Context for Just-in-time information
Access, in Proc. of Intelligent User Interfaces (IUI)
ACM, New Orleans, LA USA, pp. 44-51, 2000.

5. Carr, L. A., DeRoure, D. C., Davis, H. C. and Hall,
W. Implementing an Open Link Service for the World
Wide Web. World Wide Web Journal, 1(2), pp. 61-
71, 1998.

6. Carr, L. A., DeRoure, D. C., Hall, W. and Hill, G. J.
The Distributed Link Service: A Tool for Publishers,
Authors and Readers, in Proc. of the fourth
International World Wide Web Conference, Boston,
Massachusetts, USA, pp. 647-656, 1995.

7. Davis, H. C., Hall, W., Heath, I., Hill, G. J. and
Wilkins, R. J. Towards an Integrated Information
Environment with Open Hypermedia Systems, in
Proc. of the Fourth ACM Conference on Hypertext,
Milan, Italy, pp. 181-190, 1992.

8. De Bra, P. AHAM: A Dexter-based Reference Model
for Adaptive Hypermedia, in Proc. of Hypertext'99
Conference, ACM, Darmstadt, Germany, pp. 147-
156, 1999.

9. DeRoure, D. C., Hall, W., Reich, S., Pikrakis, A., Hill,
G. J. and Stairmand, M. MEMOIR -- An Open
Framework for Enhanced Navigation of Distributed
Information. Information Processing & Management.
An International Journal, 2000.

10. El-Beltagy, S. Context, Queries, and the Web, In
Technical Report , University of Southampton,
Southampton, UK, ECSTR-IAM01-002, 2000.

11. El-Beltagy, S. On the Usability of Software Agents
for Creating and Employing Links in Context, In
Technical Report , University of Southampton,
Southampton, UK, ECSTR-IAM00-6, 2000.

12. El-Beltagy, S., DeRoure, D. and Hall, W. A
Multiagent system for Navigation Assistance and
Information Finding, in Proc. of The Fourth
International Conference on the Practical
Application of Intelligent Agents and Multi-Agent
Technology, London, UK, pp. 281-295, 1999.

13. El-Beltagy, S., DeRoure, D. and Hall, W. The
Evolution of a Practical Agent-based Recommender
System, in Proc. of Workshop on Agent-based
Recommender Systems, Autonomous Agents 2000
ACM, Barcelona, Spain, 2000.

14. Fountain, M. A., Hall, W., Heath, I. and Davis, H. C.
MICROCOSM: An Open Model for Hypermedia with
Dynamic Linking, in Proc. of ECHT'90,, pp. 298-
311, 1990.

15. Golovchinsky, G. Queries? Links? Is there a

difference?, in Proc. of CHI'97 ACM, Atlanta, GA
USA, pp. 407-414, 1997.

16. Golovchinsky, G. What the query told the link: the
integration of hypertext and information retrieval, in
Proc. of the eighth ACM conference on Hypertext
ACM, Southampton, United Kingdom, pp. 67-74,
1997.

17. Grønbæk, K., Sloth, L. and Orbeak, P. Webwise:
browser and proxy support for open Hypermedia
structuring mechanisms on the World Wide Web, in
Proc. of 8th International World Wide Web
Conference Elsevier Science, Toronto, Canada, pp.
253-267, 1999.

18. Halasz, F. and Schwartz, M. The Dexter Hypertext
Reference Model. Communications of the ACM,
37(2), pp. 30-39, 1994.

19. Lelu, A. and Francois, C. Hypertext paradigm in the
field of information retrieval: a neural approach, in
Proc. of the ACM European Conference on
Hypertext ECHT'92 ACM, Milan, Italy, pp. 112-121,
1992.

20. Maler, E. and DeRose, S. J. XML Linking Language
(XLink), In Technical Report , World Wide Web
Consortium, , http://www.w3.org/TR/1998/WD-xlink-
19980303, 1999.

21. Netscape. An Exploration of Dynamic Documents.
http://www1.netscape.com/assist/net_sites/pushpull
.html, 1999.

22. Rhodes, B. J. Margin Notes: Building a Contextually
Aware Associative Memory, in Proc. of Intelligent
User Interfaces (IUI '00), ACM, New Orleans, LA
USA, pp. 219-224, 2000.

23. Robertson, J., Merkus, E. and Ginige, A. The
Hypermedia Authoring Research Toolkit (HART), in
Proc. of ECHT'94, ACM, Edinburgh, Scotland, UK,
pp. 177-185, 1994.

24. Salton, G. (1988) Automatic Text Processing,
Addison-Wesley, Reading.

25. Salton, G. and McGill, M. J. Introduction to Modern
Information Retrieval, McGraw Hill, New York,
1983.

26. Wiil, U. K. Open Hypermedia: Systems,
Interoperability and Standards. Journal of Digital
information, Special Issue on Open Hypermedia,
1(2), 1997.

27. Wilkinson, R. and Smeaton, A. F. Automatic Link
Generation. ACM Computing Surveys, 31(4), 1999.

