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Abstract

In this paper, we show that significant wrong evidence can be generated when the Hough Transform (HT) is used to
extract arbitrary shapes under rigid transformations. In order to reduce the amount of wrong evidence, we consider two
types of constraints. First, we define constraints by considering invariant features. Secondly, we consider constraints
defined via gradient direction information. Our results show that these constraints can significantly improve the
gathering strategy, leading to identification of the correct parameters. The presented formulation is valid for any rigid
transformations represented by affine mappings. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of model shape extraction can be
viewed as an estimation problem in which the free
parameters of an equation are determined such
that they define a curve that corresponds to an
image primitive (Roth and Levine, 1993). The
Hough Transform (HT) is a well-established
technique for shape extraction (Stockman and
Agarwala, 1977; Sklansky, 1978; Illingworth and
Kittler, 1993; Leavers, 1993). The technique
gathers evidence for the potential parameters of

*Corresponding author. Tel.: +44-1483-876044; fax: +44-
1483-534139.

E-mail address: A.Aguado@eim.surrey.ac.uk (A.S. Agu-
ado).

the equation that defines a shape, by mapping
image points into the space defined by the pa-
rameters of the curve. After gathering the evidence
of all the image points, shapes are determined by
local maxima in the parameter space (i.e., local
peaks).

The HT was first applied to extract straight
lines and was then extended to the extraction of
quadratic curves such as circles and ellipses (I1-
lingworth and Kittler, 1993; Leavers, 1993). In a
broader definition, the HT can be generalised to
the extraction of arbitrary models by changing the
equation of the curve under detection (Sklansky,
1978). An arbitrary model can be defined by
combining the equation of a shape with a param-
eterised transformation (Aguado et al., 1998).
Thus, the parameters of the model are actually the
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parameters of the transformation that represents
the different appearances of a shape in an image.
This generalisation has been mainly defined for
similarity transformations (Ballard, 1981; Ser and
Siu, 1995; Yip et al., 1995), although recently there
has been an interest in affine transformations and
more general transformations (Aguado et al.,
1997; Dufresne and Dhawan, 1995; Lo and Tsai,
1997; Yuen and Ma, 1997).

Geometric hashing and cluster techniques
(Grimson and Huttenlocher, 1990; Aguado et al.,
2000; Grimson and Huttenlocher, 1991; Bhan-
darkar and Su, 1991; Chakravarthy and Kasturi,
1991; Lamdan and Wolfson, 1991) are closely re-
lated to the HT. Both approaches gather evidence
of a shape. However, whilst geometric hashing
uses primitives such as lines, or curves, the HT
gathers evidence by considering the duality of edge
points. This makes the two techniques funda-
mentally different. As consequence of their defini-
tion, geometric hashing and clustering techniques
require less computational resources than the HT.
However, these techniques can suffer when primi-
tives are not accurately computed (Grimson and
Huttenlocher, 1990; Aguado et al., 2000). A sig-
nificant amount of work has been aimed to analyse
the performance and to present alternative com-
putation strategies in geometric hashing (e.g.,
Grimson and Huttenlocher, 1991; Bhandarkar and
Su, 1991; Chakravarthy and Kasturi, 1991; Lam-
dan and Wolfson, 1991). Conversely, less interest
has been given to the HT. Some works have shown
that the HT can actually be generalised to extract
arbitrary shapes under rigid transformations.
However, there is little analysis about the process.
In general, analyses on geometric hashing cannot
be applied to the HT (Aguado et al., 2000).

This paper considers the application of the HT
to extract shapes under affine transformations.
The paper has two main contributions. First, we
show that the performance of the HT can be re-
duced due to the generality of the transformation.
Intuitively as the transformation, that defines the
appearance of a model shape, becomes more gen-
eral then local image information loses signifi-
cance. That is, the model increases the number of
possible forms to be matched. Therefore, the
model can easily be matched to noise or to seg-

ments of objects that do not correspond to the
description of the whole shape. The false evidence
thus generated can interfere seriously with the
detection process causing inaccurate, or even in-
correct, results. As a second contribution, we
consider whether the inclusion of geometric con-
straints can improve the gathering process. We
consider two types of constraints. First, we define
constraints based on invariant features. Secondly,
we consider constraints defined via gradient di-
rection information. Gradient constraints have
been previously used for the extraction of lines,
quadratic forms (Aguado et al., 1996) and for
shapes under similarity transformations (Ballard,
1981). Here we show that these constraints are also
very important for shapes under affine mappings.
Our results show that invariant and gradient di-
rection constraints can significantly improve the
gathering strategy of the HT.

This paper is organised as follows. Section 2
introduces the notation used in this paper. For
completeness, Section 3 presents the definition of
the HT for arbitrary shapes. Arbitrary shapes are
parameterised by a continuous curve under rigid
transformations represented by affine mappings.
Our formulation is valid for general geometric
transformations, however, our examples and re-
sults are developed for affine transformations only.
In Section 4 we discuss the source of wrong evi-
dence in the HT. Notice that this is different to the
combinatorial error discussed in (Grimson and
Huttenlocher, 1990). In the HT wrong evidence is
generated when the model is matched against false
evidence independently of the accuracy in the data.
In Section 5 we consider constraints to reduce false
evidence during the gathering process. Section 7
presents implementations and examples. Section 6
includes conclusions.

2. Notation

In this paper, we consider an image and a model
shape as a collection of points in the two-dimen-
sional Euclidean space. A collection of points in
the image is denoted as uppercase bold letters and
a collection of points in the model is denoted as
uppercase Greek characters. An image point is
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denoted as a lowercase bold letter and a point in
the model as a lowercase character. Several points
are distinguished by sub-indices. Thus, P = {p,, p,,
P} denotes a collection of three image points and
I' = {v1, v2, 03} denotes a collection of three model
points. The co-ordinates of each point are indi-
cated by using the sub-index x and y, thus,
Py = (p1.,P1,)- A shape is defined by the curve of
an arbitrary function and is denoted as v( ). A
parametric model is the curve of a function with
two arguments and is denoted as w(a, b). Here, we
divide the parameters into translation parameters
b and what we call deformation parameters a. A
numerical value obtained based on the geometric
properties of a single point or a collection of points
is called a feature or a measure and is represented
as a function. Thus, for example, G(p;) is the
gradient direction at a point p;.

3. Arbitrary shapes under affine mappings
3.1. General HT

The HT gathers evidence of a model shape
through a mapping defined between the image
space and the parameter space. In this section,
we are interested in obtaining a formal repre-
sentation of this mapping when the model is
given by an arbitrary shape under an affine
mapping.

The HT can be defined for arbitrary shapes
by considering two components in the definition
of a model. First, we can consider a shape rep-
resented by an equation without any free pa-
rameter. Secondly, the model can be obtained by
applying a parameterised transformation that
defines the potential appearances of the shape.
Thus, the parameters of the transformation be-
come the parameters of the model. In order to
exemplify these concepts we can consider a circle
with radius unity and centred on the origin to be
a shape without any parameters. If we scale the
circle (in the x and y directions), rotate it and
translate it, then we obtain a model defined by
an ellipse. Each of the five parameters of the
ellipse is related to a parameter of the transfor-
mation. Thus, if we want to find an ellipse in an

image, we need to find the parameters of the
transformation that map a circle into an ellipse.
This idea can be generalised by replacing the
circle for another curve that defines the shape of
an arbitrary object. As such, we will aim at
finding the parameters that map the shape of the
object into the shape in an image. It is important
to notice that in this approach the complexity of
the extraction process is independent of the
complexity of the shape. That is, if we replace
the circle by a complex shape such as the profile
of a mountain or the course of a river, then the
model governing its appearance will still have the
same number of free parameters. Therefore,
the HT mapping for the circle and the complex
shapes both have a five-dimensional accumulator
space and the extraction process involves the
same complexity.

If we consider an arbitrary shape given by the
curve v( ), then a parametric model is composed of
the points

w(a,b,v) = f(a,v) +b (1)

for v € v(s) a point in the shape. Here the function
f(a,v) represents a transformation that defines a
new curve by mapping the points of v( ) according
to the deformation parameters a. The vector b
represents a translation.

If we consider an image point p, then we can
match this point to a point in the model. This
would imply that p = w(a, b,v). Thus, by solving
for b in Eq. (1), we have that

b(pa Uva) =P —f(tl, U)' (2)

Here, the function b(p, v, a) represents a mapping
that obtains the location parameters for each
potential value of the parameters a, given an
image point p and a model point v. That is, it
defines the point spread function (psf). This
function traces a curve in the parameter space.
The HT defines the parameter space by an
accumulator. Thus, evidence is gathered by
increasing the elements defined by the psf. After
all evidence has been gathered, then maxima in
the parameter space define the best values a* and
b* that represent the transformation that maps
the model into the image.
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3.2. Affine transformations

The mapping in Eq. (2) can be defined for
several transformations f'(a, v). For affine or linear
transformations, we have that

o[£ 3L

This transformation includes other transformations
such as scale, rotation and shear and it is very useful
to approximate the appearance of object under rigid
motions. Let us suppose that instead of considering
one single point p in the image and a single point v in
the model, we have a collection of points P in the
image and a collection of points I" in the model.
Thus, we have that P={p,,p,,p;} and
I' = {vy, v2,03}. By considering Eq. (2), we can ob-
tain the simultaneous equations:

P — D :f(a7 l)]) _f(aa ')2)3
pi —ps =f(a,0) — f(a,v3)

which can be developed as two independent
equations by considering the orthogonal compo-
nents of each point. That is,
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In general, we can redefine Eq. (2) as the pair of
equations

b(P,F):p—f(S(P,F),D), (5)
a(P,I') = S(P,T)
for pe P and v € I'. Here the function S(P,I)
obtains the transformation parameters from the
collections P and I'. That is it is defined by Eq. (4).
Eq. (5) defines a general parameter decompo-
sition of the HT. The first equation defines the
location parameters independently of the param-
eters in a. The second equation solves for the

deformation parameters in @ independently of the
location parameters. This approach corresponds
to a generalisation of the parameter space de-
composition for quadratic forms. The reduction in
the dimensions of the parameter space makes
Eq. (5) much more amenable for practical imple-
mentation than Eq. (2).

4. Wrong evidence

In Eq. (2) we associate a point p in an image to
a point v in the model. In a straightforward im-
plementation, we can consider for each point p all
the points v that form the model. However, this
generates wrong evidence since we consider pairs
(p,v) that do not give the correct transformation.
This wrong evidence is not related to the extension
of the psf as in the case of clustering techniques
(Califano and Mohan, 1994). Wrong evidence
corresponds to psfs that do not define the primi-
tive.

Eq. (2) provides the correct values of b and a
only when the values of p and v are related by
Eq. (1). That is, when

p=fla,v)+h, (6)

where b* and a* are the parameters that map the
model shape into the image primitive. Accord-
ingly, only one point in the psf generates true ev-
idence, the evidence for the remainder is wrong.
This problem is more significant for Eq. (5) since
many more pairs (P, I') can be generated from the
combinations associated with a collection of
points. In this case the correct value of the pa-
rameters is obtained only when the points match
the transformed model. That is,

pi—fl@,v)+b" =0 Vp,eP, vecl. (7)

If we consider nimage points (i.e., P = {p;,...,p,})
in Eq. (5), then for m model points there are ,,C,
combinations of possible pairs (P, I') for each set P.
One of these pairs gives the correct transformation
whilst the others generate wrong evidence. As we
shall show in the examples in Section 6, this wrong
evidence can easily lead to incorrect results. The
obvious solution to this problem is to control the
selection of the pointsin P and I'.
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5. Gathering constraints
5.1. Invariance constraints

In order to reduce the wrong evidence, we can
establish a mechanism aimed to select the points in
P and I that satisfy Eq. (7). As such, we can
consider a verification stage, which ensures that
only the points that share a measured feature in
the model and in the image are used in Eq. (5). If
points share a feature, then it is probable that they
correspond to the same point in the model and in
the shape in the image. Accordingly, it is probable
that they satisfy Eq. (7). Previous work has con-
sidered the use of intensity or chromatic attributes
as a possible characterisation of image points
(Grimson and Huttenlocher, 1990). Here we focus
on obtaining a geometric characterisation rather
than a chromatic constraint.

As a starting point we could define a constraint
such that each pair p and v have the same gradient
direction. That is, if G(p) = G(v) (Ballard, 1981).
However, this information cannot characterise
points if the transformation includes rotation.
Thus, an effective characterisation should be in-
dependent of the transformation that dictates a
shape’s appearance. Thus, we should consider a
pair of points p and v only if

where Q is invariant with respect to the transfor-
mation and with respect to translation. That is,

O(f(a,v)) = O(v).
From Eq. (5), we have that
O(P) = 0(I),

which indicates an invariant correspondence be-
tween a collection of points.

An invariance characterisation is not unique.
Thus, given a point p or a collection of points P,
we can identify several points v or I, respectively.
Accordingly, if we denote the points in the model
characterised by the same invariant feature as
W (P), then

W(P)={I'Q(P)-Q(I) =0, I'c{v}}, (8

for all the combinations of points in the model {v}.
Based on this constraint, we can rewrite Eq. (5) as

b(P,F):p—f(S(P,F),D) VFQW(P), (9)
a(P,I')=S(P,I') VI € W(P).

These equations indicate that evidence will only
be gathered when the invariant feature Q in the
model and in the image is the same.

5.2. Gradient direction constraints

The constraints in Eq. (9) reduce false evidence
by considering a selection process, which deter-
mines whether local geometric information has the
same characterisation in the model and in the
image. However, this constraint relies on the sup-
position that the cardinality of W (P) is small and
it does not consider the false evidence generated by
background objects or other scene artifacts.

We can consider a verification process that de-
termines when the transformation defined by the
points P and I is congruent to image data, in a
manner similar to backmapping. This can be for-
malised by considering that the solution of Eq. (9)
defines the parameters of a transformation that
maps the points I" into P. That is, we can consider
the solution in Eq. (9) in Eq. (7). Thus, we have
that

pi=f(a(P,I),v;)+ b(P,T). (10)

This means that if we apply the transformation
defined by Eq. (9) to the model point v;, then we
obtain the co-ordinates of the point in the image.
Thus, in order to verify the validity of the trans-
formation we can consider whether additional
points in the model and not in I', are mapped to
points in the image. In general, we can expect that
for each point in the model we have a point in the
image. However, the transformation will not give a
perfect match since there might be noise or oc-
clusion. Thus, we would need to consider several
points to analyse whether the transformation is
congruent with the image information. In order to
avoid comparing a large number of points, we only
compare features of the points in P with features
of the points in I" after the transformation. That is,
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we compute the gradient direction G(p,) for p, € P
and compare it against the value of

G(f(a(P,F),vi) +b(P7 F))

Thus, evidence is gathered only if the value is the
same for all the points in the collection. That is, we
constrain the gathering process in Eq. (10) to
values (P, I") for which

G(p) = G(f(a(P,T),v:) + b(P,T)). (11)

Thus, the solution of Eq. (9) is considered in the
gathering process if the gradient direction of the
points in the image is the same that the gradient of
the points in the model after transformation.
Gradient direction has been previously used in
several techniques to reduce the computational
requirements of the HT (e.g., Tsuji and Matsum-
oto, 1978; Yoo and Sethi, 1993; Wu and Wang,
1993). This information cannot be used for general
geometric transformations since the characterisa-
tion of points must be invariant. Nevertheless, its
use in a post-verification process provides impor-
tant information for shape extraction.

6. Implementation and examples

The gathering process can be performed by
considering the invariant properties in Eq. (9) with
the verification process in Eq. (11). In our imple-
mentation, we defined the invariant feature Q(P)
as the ratio of length of two parallel line segments.
That is, Q(P) = |p, — p,|/|ps — ps|l- Thus, the
gathering process can be implemented in four main
stages. First, for each point in the image, we select
another three points such that they define two
parallel line segments. Then, we search for a col-
lection of points in the model which satisfy Eq. (8).
That is, points for which Q(P) = Q(I'). Following
this, we solve for the parameters of the transfor-
mation according to Eq. (5). Finally, we verify the
constraint in Eq. (11) and we gather evidence of
the parameters in three two-dimensional accumu-
lators: one for the location parameters and the
other two for the deformation parameters.

In a straightforward implementation, we need
to consider all the potential combinations of four
points in the image and then search for the cor-

responding points in the model. The number of
combinations makes the selection of all the points
and the search for corresponding points compu-
tationally impossible. In order to reduce the
number of combinations, we constrain the points
P, and p, to a subset of points of high curvature.
That is, given a point p,, we select the points p;,
and p, from a list of high curvature points. Then,
the point p, is selected by looking along the line
that passes through p, and whose slope is equal to
the slope of the line p,p,. We select points of high
curvature in the image and in the model, thus re-
ducing the combinations used to gather evidence
and the search for corresponding points. If we
locate m points of high curvature in an image, then
we have that each point can be associated to ,,C;
lines p,p,. Therefore, if an image has n points, then
the gathering process is repeated n,C, times. For
each of these four-point combinations, we must
search for the corresponding four points in the
model. If the model has #' points and m’ points of
high curvature, then we need to search for
(n,,C5)(n,,C,) pairs in the model. The number of
points of high curvature can be reduced by setting
a high threshold value in the selection process.
When the number of high curvature points is large,
the combinations can be reduced by considering
just the lines within a distance from the point. That
is, we can select the points p; and p, as the high
curvature points closest to p,. It is important to
say that the reduction in the number of combina-
tions reduces the number of votes, however the
invariance constraint and the verification process
still can produce a clear peak in the accumulators.

Fig. 1 shows an example of the extraction of the
HT for affine shapes. Fig. 1(a) shows the model
used in this example. This model is actually de-
fined by a continuous curve with 15 Fourier co-
efficients (Aguado et al., 1998). The image in Fig.
1(b) contains a primitive that approximates a lin-
ear transformation of the model in Fig. 1(a). The
accumulators in Fig. 1(c)-(e) were obtained by
gathering evidence according to Eq. (9). These
accumulators have well-defined peaks which define
an accurate value of the parameters of the trans-
formation. The pair of peaks in the accumulators
of Fig. 1(d) and (e) show that the matching allows
two solutions that correspond to mirror
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(a) (b)

(e) ()

Fig. 1. Example of the extraction process under affine transformations: (a) model shape; (b) raw image; (c) accumulator for the
translation parameters; (d) accumulator for the parameters A B; (e) accumulator for the parameters C D; (f) extraction result.

F / /
(" (’L} 70 /""
{ 9 L € IP"" .
(a) (b) ()

Fig. 2. Example of wrong extraction for two primitives: (a) raw image; (b) edge points; (c) translation parameters accumulator.
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transformations. The shape defined by these
transformations is shown in Fig. 1(f) superim-
posed on the original image.

The well-defined peaks in the accumulators of
the example in Fig. 1 show that the mapping in Eq.
(9) provides an effective approach for gathering
evidence of arbitrary shapes under rigid transfor-
mations. However, the generality of the transfor-
mation can lead to incorrect results. This case is
illustrated in the example as shown in Fig. 2. This
example was obtained by considering the same
gathering process as the one used in the example in
Fig. 1. The only difference is that the input image
contains an extra object. However, the accumula-
tor for the location parameters in Fig. 2(c), con-
tains two well-defined peaks which suggest that
both objects correspond to the model. Further-
more, the largest peak is associated with the letter
“S”, not the letter “I”, so the wrong shape/trans-
formation is actually selected. An analysis of the
evidence gathering process shows that the incor-
rect location is due to the wrong values produced
by the lack of discriminatory power of the in-
variance constraints. That is, points in the incor-
rect shape are identified with points in the model
and wrong evidence is then generated. This can be
seen in the example shown in Fig. 3. Fig. 3(a)
shows the true primitive in the image whilst
Fig. 3(b) shows the object that is wrongly identi-
fied with the model. Fig. 3(a) shows four points
used to gather evidence. These points are identified
with the points in the model shown in Fig. 3(c).
The points in Figs. 3(a) and in (c) define the same
invariance, then evidence of the true shape is
generated. Fig. 3(b) shows four points whose in-
variance value is the same as that for the points in

e
7 Rf O
p ,rr ;p
I _'.2 !
.3’3 . . b B
‘Ij" - 4
@ (b) ©

Fig. 3. Example of corresponding points: (a) points in an image
primitive; (b) points in a background object; (c¢) corresponding
points in the model shape for (a) and (b).

Fig. 3(c). Thus, the points generate wrong evi-
dence. This evidence defines the model shape su-
perimposed in Fig. 3(b). Actually, the generality of
the transformation can produce more mismatching
cases than that in Fig. 3(b). This problem can se-
riously interfere with the detection process and a
shape that does not correspond to the model is
then located.

The lack of discriminatory ability is due to the
myopic nature of local analysis. That is, the value
of the invariance is aimed to identify equivalence
of local shape information when it has suffered a
transformation, and not to distinguish when two
shapes are different. In consequence, Eq. (9) only
defines conditions under which local image infor-
mation corresponds to a transformed version of
local information in the model without any con-
sideration about an object’s identity.

The constraint in Eq. (11) eliminates false evi-
dence by considering gradient direction informa-
tion. According to this equation, evidence is
gathered only if the transformation is consistent
with the image data. That is, only if the gradient
direction computed at the image points is the same
as the gradient direction computed at the model
shape transformed according to the parameters.
For the example in Fig. 3(b) this is equivalent to
verifying that the gradient direction at the points
DP1» P2s P35, and p, for the two superimposed shapes
is the same. In implementation, only an estimate of
gradient direction can be obtained from the in-
formation in the image. Consequently, the con-
straint can only verify that the values of gradient
direction in an image are similar to the gradient
direction in the transformed model.

The effectiveness of this constraint is illustrated
in the example in Fig. 4. The image in Fig. 4(a)
contains four objects, two of which are instances
of the model shape. Fig. 4(b) shows the edges used
in the gathering evidence process, together with
the (encircled) points of high curvature. Fig. 4(c)
shows the accumulator obtained by using the HT
without any constraint. Here we can see that the
two of the four objects are incorrectly located.
Fig. 4(d) shows the accumulator obtained by
constraining the gathering process. The accumu-
lator presents two well-defined peaks that provide
an accurate estimate of the position of the
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(b)

(d)

(c)

Fig. 4. Example of the extraction process: (a) raw image; (b) edge points; (c) translation parameter accumulator; (d) improved

accumulator; (e) extraction result.

instances of the primitive. Fig. 4(e) shows the re-
sult of the complete extraction process superim-
posed on the original image.

Fig. 5 shows another example of the improve-
ment achieved in the gathering process when the
constraint in Eq. (11) is used. The edges in Fig.
5(b) were obtained from the image in Fig. 5(a) and
used to gather evidence of the model shape in
Fig. 5(c). This model was actually defined by a
continuous curve with 15 Fourier coeflicients.
Fig. 5(d) shows the accumulator obtained ac-
cording to Eq. (9). The accumulator in Fig. 5(e)
was obtained by including the constraint in
Eq. (11). Comparison of the accumulator arrays
accumulator in Fig. 5(d) and (e) shows that
prominent wrong peaks are completely eliminated,
producing a single well-defined peak. Fig. 5(f)
shows the result (superimposed in black) obtained
by the extraction technique.

7. Conclusions

The analytic formulation of the HT can be
extended to extract arbitrary shapes under gen-
eral transformations. The generality of this ex-
tension increases significantly the amount of false
evidence. Geometric invariant features can be
included in the formulation as an effective way of
reducing the dimensionality of the transformation
and to reduce the amount of false evidence
gathered. However, the generality of the trans-
formation can still produce an excessive amount
of false evidence, potentially leading to incorrect
results.

A significant reduction of false evidence can be
obtained by considering a verification process
that evaluates whether the parameters given by
the HT mapping define a transformation that is
congruent to other image data. In this paper, we



968 E. Montiel et al. | Pattern Recognition Letters 22 (2001) 959-969

(b)

X
(d)

Fig. 5. Example of the extraction process: (a) raw image; (b) edges; (c) model shape; (d) translation parameters accumulator;

(e) improved accumulator; (f) extraction result.

have used gradient direction information to re-
duce the false evidence in affine mappings. Ex-
perimental results show that this approach can
improve the extraction process significantly lead-
ing to correct identification of the appearance
parameters even when the original situation
would have appeared ambiguous to an uncon-
strained approach.
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