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ABSTRACT

Electrical Tomography can produce accurate results only if the underlying 2D or 3D volume
discretization is chosen suitably for the applied numerical algorithm. We give general indications
where and how to optimize a finite element discretization of a volume under investigation to enable
efficient computation of potential distributions and the reconstruction of materials. For this, we present
an error estimator and material-gradient indicator as a driver for adaptive mesh refinement and show
how finite element mesh properties affect the efficiency and accuracy of the solutions.

Keywords 2D/3D Finite Element Method, mesh quality, adaptive meshing, optimal finite element
meshes, 3D visualisation

1 INTRODUCTION

Electrical Tomography (ET) is an imaging method which tries to reconstruct differing electrical
properties of materials within a volume given only surface potential measurements resulting from an
injected current. It is a non-invasive and cost-effective imaging technique based on an iterative
computational algorithm which solves a non-linear least-squares minimization problem.

ET reconstruction procedures can only produce accurate results if the discretization of the volume
under investigation is chosen suitably for the applied numerical algorithm. Often, a poor discretization
yields inaccurate results since it affects several steps of the reconstruction process (forward solution,
inverse problem, final visualisation).

Current ET algorithms employ increasingly the Finite Element (FE) method to obtain a discretization
which is flexible enough to represent arbitrary geometries, robust and simple in terms of numerical
handling and established and well known in many areas of engineering technology (Silvester and
Ferrari, 1996, and Salazar-Palma et al., 1998). Furthermore, the FE representation of a domain allows
for easy application of different types of boundary conditions and effective handling of local refinement
– an important requirement for efficient reconstruction.

One important problem in 2D and 3D Electrical Tomography is therefore the ability to generate quality
FE meshes for arbitrary geometries. In particular medical applications have very demanding
requirements in terms of object shapes where the human head or torso geometry are much more
difficult to represent with FE models than symmetric pipe or vessel structures used in industrial
processes. Moreover, in medicine we have to deal with individual patients so that methods are
required which easily modify/reshape pre-defined template meshes to fit the individual’s geometry
and/or internal structure.

Our aim is to allow not only for an accurate but also for a fast reconstruction. This leads to a balancing
decision between accuracy and speed. However, if certain optimizations are applied to the Finite
Element mesh, accuracy does not have to be an impediment to fast reconstruction.

First, we will outline the algorithm used for electrical tomography reconstruction and the finite element
discretization of the underlying domain. We then discuss as part of section 2 the major factors which
limit the accuracy and reconstruction speed. Quality mesh generation is an important prerequisite for
obtaining suitable meshes and we will present two novel techniques to obtain quality meshes and how
to refine existing meshes based on an error estimator and material-gradient indicator. We also
address major optimization methods which are highly applicable to ET and the general use of ET.
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Finally, we will present some results of forward solutions and reconstructions in section 3 before
drawing our conclusions in section 5.

2 THE FINITE ELEMENT METHOD FOR ELECTRICAL TOMOGRAPHY

The reconstruction algorithm in Electrical Resistance Tomography computes the conductivity distri-
bution σ(r) which minimises the squared error between voltage measurements U0 and their computed
counterparts U(σ), both on the surface of the domain Ω.

The electric field in the volume conductor Ω is governed by the Poisson equation together with
Dirichlet and von Neumann boundary conditions:
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where σ(r) represents the conductivity at position r, and u is the potential distribution in Ω. U0 denotes
the measured voltages at the boundary electrodes δΩVEL, and n denotes the outward normal across
the current injection electrodes δΩCEL where a current of normal density jn is injected. The set of
boundary conditions can differ if specific electrode models are used, for example the Complete
Electrode Model for which Somersalo et al. (1992) have shown uniqueness and a modelling error of
0.1% of the experimental measurements.

The reconstruction algorithm makes intensive use of the solution of the forward problem, which is the
computation of an approximate potential distribution uh(r) on the volume Ω given injected currents I
and an assumed conductivity distribution σ(r). By applying a discretization method to the domain, the
differential equation (1) is transformed into a linear system of equations:

NN IUY =)(σ (4)

where Y is the conductivity dependent admittance matrix of size NxN, UN a vector containing the nodal
voltages and IN a vector describing the injected currents. The size of Y, UN and IN depends on the
number of nodes, N, which is determined by the type of element and the order of the employed
interpolation function for the approximation uh of u:
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where the Ui are the nodal voltages and the ϕi represent basis or shape functions for the solution,
sometimes also called interpolation functions (Burnett, 1987).

For the discretization of the area or volume under investigation, the Finite Element Method (FEM) has
many advantages over other methods. Boundary conditions are easier to apply than for the Finite
Difference Method (FDM), which gives only pointwise approximations compared with piecewise
approximation of the solution in FEM. It is also less straightforward to locally refine a finite difference
mesh around a region of interest. The Boundary Element Method (BEM) is usually applicable only for
cases where there are few regions with differing conductivities in Ω. (Webster, 1990)

2.1 Mesh Quality

The principal factors determining the accuracy and performance of the numerical approximation of the
continuum problem in the FE formulation are
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• element geometry and quality
• element and node density
• boundary representation of domain
• beneficial enumeration of topology and nodes
• order and type of basis functions

Many of the meshing programs available in the public domain often do not fulfil all of the requirements
laid down by the first four items listed. The fifth factor, the use of appropriate interpolation functions on
the discretization, is more a choice of the reconstruction software user. This however is restricted by
the available computational resources and time to be spent. With an appropriate enumeration of the
nodes in the mesh, the matrix operations involved become more efficient. We will have a more
detailed look at some of these factors:

Element Geometry & Quality. Whilst for applications such as viscous fluid flow simulations elements
with high aspect ratios are wanted, general problems with lower variations in flux, such as for example
ET, require elements with more regular shape. In 2D, the use of equilateral triangles and in 3D the use
of regular tetrahedrons allows the discretization of a domain without preferring any particular direction.
This property is known as geometric isotropy (Burnett, 1987) and ensures that one variable is not
represented more accurately than the others.

A limited set of possible measures for the quality of elements, which are equally applicable to 2D and
3D, is given here:
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qgm and qrr are presented and discussed in Robert et al. (1998) in the context of optimising tetrahedral
space station arrangements. The higher the value, the better the quality of the element. We will
employ the quality measure q presented by Golias and Dutton (1997). Ri and Ro denote the radius of
inscribed and circumscribed circle/sphere respectively and D is the dimension of the problem. Figure
1(b) shows a typical quality distribution of q on the 3D mesh in figure 1(a). From the bar graph
distribution, we can visually determine how good the overall mesh quality is. As quantitative
parameters for the quality, we will use the mean value of the q-distribution and its standard deviation.

a) b)

Figure 1: (a) High quality 3D finite element mesh consisting of 6535 tetrahedral elements,
(b) quality plot of the elements contained in the cube (<q> = 0.89)
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Element and Node Density. By applying the Finite Element Method, we convert the continuous
problem into a problem with a finite number of unknowns. It is known that as the element size
decreases to zero, the solution on the discretization tends to the true solution (Burnett, 1987). Too
large a number of elements and nodes makes a reconstruction impractical. An appropriate balance
must be struck between accuracy of solution and the time/memory used in obtaining it.

Often a fine discretization of the domain is not necessary as additional nodes/elements do not lead to
increased accuracy in particular cases or regions. It is possible to generate meshes with elements
whose sizes vary with position according to a desired density distribution. This density distribution
should either be pre-defined by the user (with information from other sources, for example Computer
Tomography images) or should be computed by the software during the course of the reconstruction
(see later discussion on mesh construction and refinement).

Boundary representation. A good discretization will follow the boundary representation as accurately
as possible. Nurbs and Splines are preferable boundary definitions as these represent the boundary
using higher order polynomials, however, often a surface can only be described by point definitions.

It is possible to use isotropic Finite Elements which deform to match the boundary with quadratic
interpolation, however, numerical analysis showed (Szabo, 1986) that this can sometimes introduce
additional errors instead of avoiding them. Sometimes it is desirable to use so-called infinite elements
to model openings of volumes, such as the throat in human head volumes or a section of a pipe.

The geometric accuracy of the boundary definition not only affects the accuracy of solution but can
also introduce artefacts from wrong electrode representations which affect the accuracy of the
boundary conditions. In the case of ET, this will have major negative effects, as the main current
density source will not be represented correctly.

Jain et al. (1997) showed that the error in reconstruction of a volume can reach 37% if a circularly
shaped boundary is assumed instead of a correct elliptical boundary with axis ratio 0.64.

Order of basis interpolation functions. Not only the shape but also the order of the basis functions
on the elements plays an important role in the accurate representation of the solution on the mesh.
The shape functions in equation (5) can be standard polynomials or – depending on the symmetry of
the domain – Bessel or Legendre functions or any other type of C0 functions. It is desirable to use a
problem-adapted base function which simplifies the numerical approximation and provides a high level
of accuracy.

The most suitable shape functions for arbitrary geometries are Lagrange interpolation polynomials.
They provide interpolation up to any desired polynomial order. We note that with increasing order (so-
called p-refinement), the number of interpolation nodes required for a given mesh increases and the
subsequent higher computational cost leads to an increase in computation time. We can see from the
work of Vauhkonen et al. (1999) that for achieving a better accuracy of a factor 2 to 5, the number of
interpolation nodes in the p-refinement case increases by a factor of 7, which leads to a slow-down of
at least a factor 10 in the reconstruction.

We have decided to employ simple piecewise linear shape functions which are both fast to compute
and easy to maintain in programming structures. The computing time saved in this way is then spent
on refining the mesh locally rather than assuming global higher-order functions.

2.2 Mesh Generation & Refinement

Good mesh generators should be able to meet the following criteria:

User Input
• ability to accurately define boundaries
• possibility to specify a node or element density function
• allowing for remeshing of existing meshes

Meshing
• conform to complex boundary
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• create unstructured mesh to avoid anisotropies
• create elements with high quality
• generate element density according to user input
• perform automatic computation without requirement of user interaction
• carry out fast construction of meshes
• being robust: creation of valid meshes

Output
• restricted to useful and meaningful parameters, such as topology and node positions
• possibility of choosing different output structures (topology, edge connection, etc.)

The Handbook of Grid Generation (Thompson et al., 1999) and the Meshing Research Corner
(http://www.andrew.cmu.edu/user/sowen/mesh.html ) present and discuss many different
methods for the generation of finite element meshes. However, it seems that many researchers do
make use of meshing programs without considering the impact of unsuitable volume discretizations on
the reconstruction.

We have found that mesh generation based on physical principles gives best results in terms of
element shape and grading. In particular, we have employed two novel methods of generating high
quality meshes fitted to a given mesh density: (a) a modified version of bubble meshing (Cingoski et
al. 1997) and (b) a vortex dynamics (Fangohr et al., 2000, 2001) meshing technique. Both methods
are based on Molecular Dynamics (MD) principles (Haile, 1997) which minimize the system’s energy:

(a) In modified bubble meshing, the nodes of the mesh are represented by spheres of finite size,
interacting only with their nearest neighbours according to Hooke’s law. The variation of the node
density across the domain results from making the radius of the bubbles a function of their position.

(b) In vortex meshing, repulsive forces govern the equations of motion of the point-like vortices which
have no spatial extension. An additional potential distribution enforces the density variation of nodes in
the mesh.

The theoretical ground state (i.e. the lowest energy configuration) of both methods in the absence of
density variations is in two dimensions a hexagonal lattice and generally the closest sphere packing
configuration (Aste and Weaire, 2000). For bubble meshing, this configuration corresponds to the
lattice of atoms in solid state matter, whereas for vortex meshing it relates to the (two-dimensional)
Abrikosov state (for a review see Blatter et al., 1994) in Type-II Superconductors.

a) b)

Figure 2: (a) ‘Pinning’ potential used for the vortex dynamics meshing method resulting
in (b) high quality 2D mesh with continuous change in density.

The mesh shown in figure 2(b) shows a Delaunay triangulation of a set of node positions generated by
the vortex meshing technique using periodic boundary conditions. The node density in the mesh is
determined by a ‘pinning’ potential as shown in figure 2(a). Vortices are attracted from the pinning
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potential (it reduces their energy) and thus vortices accumulate in the centre of the domain. Figure 3
shows a corresponding result from the bubble meshing technique.

b)a)

Figure 3: (a) ‘Bubbles’ moving to form an optimal configuration and (b) the triangulated positions
of the centres of the bubbles give a finite element mesh with well-defined characteristics.

Meshing algorithms usually employ the Delaunay triangulation method for which fast and hence
efficient algorithms exist, for example the qhull package (Barber et al., 1996). Table 1 gives an over-
view of some meshing methods and their performance benefits.

Method 2D 3D density quality remes hing time
Advancing
front ÿ ÿ adaptive good no fast

Bubble
Meshing ÿ ÿ adaptive high yes fast –

moderate
Vortex
Dynamics ÿ ÿ adaptive very high yes moderate

Mesh
conforming
refinement

ÿ – dependent on
previous mesh

dependent on
previous mesh yes very fast

Table 1: Properties of different Finite Element mesh creation techniques.

Mesh refinement

We have shown that adaptive mesh refinement is a highly applicable technique for 2D Electrical
Impedance Tomography (Molinari et al., 2001). An initial coarse mesh can be refined to improve the
accuracy of the solution as well as the resolution of material boundaries. The local refinement is then
based on error or material gradient indicators, which guide the refinement process in regions of
interest or where the solution varies rapidly. This saves a large amount of computation time for
obtaining results of same accuracy compared to globally fine meshes.

Three major methods of mesh refinement are presented in literature. These include

• h-refinement , where the elements are subdivided into smaller ones
• p-refinement , which uses higher order interpolation functions for the solution
• r-refinement , which relocates the existing nodes in a mesh

Often, techniques for mesh creation or refinement, such as ‘edge swapping’ and ‘element conforming
subdivision’ are much simpler to implement for two dimensions than for three dimensions. For 3D
problems, other methods, such as those presented above have to be devised. We mainly concentrate
on h-refinement of linear elements, which is both computationally efficient and adds a relatively small
number of nodes and elements to the existing mesh.
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Quality q = 0.962 ± 0.044

b)a)

d)c)

Figure 4: (a) The finite element mesh consisting of 6047 nodes and 11890 elements used for the most accurate
computation of the potential shown in (b). The error estimator indicates that the error of the solution is large at

the edges of the electrodes, especially of the two current injection electrodes (c). Graph (d) shows the very
high geometrical quality of the elements in the mesh.

2.3 Error Estimation

Since the true solution for the problem is unknown (otherwise we would not have to compute it
numerically), the error of the approximation on the discretization is unknown. However, once an
approximated solution of the potentials at the nodes of our mesh is obtained, we can calculate a so-
called a posteriori error estimate on an element and the mesh (Salazar-Palma 1998, Bathe 1982).
In Electrical Tomography, the solution of the forward problem gives us the potential at the nodes of our
mesh with linear interpolation. The normal component of the current density within each element has
to be continuous across interelement boundaries. The approximate solution obtained from the FE
discretization usually violates this (smoothness) condition. We can estimate the square norm of the
error of the forward solution on element e, Σf

2(e), by summing the jumps of the squared residuals of the
current density normal components (σ∇∇∇∇u) across the surfaces between element e and its f th
neighbour, given by the outward normal vector sef.
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g(r,σ) is a geometrical factor, taking into account the positions of the nodes, r, and the element’s
conductivity σ. To obtain the total error on the mesh, we sum up the contributions of each element and
take its norm
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This error estimate is both, physically sound and robust (Salazar-Palma, 1998) and can be carried out
quite quickly. Again, for higher order elements, more terms have to be taken into account and integrals
across the element’s surface and in its interior have to be determined, which can slow down the
computation significantly.

Applying this error estimate to an object with surface electrodes attached, we observe that the largest
error is located in regions with highest current density, which is around the electrodes. This error in
boundary regions around the electrodes affects the solution in inner regions of the domain significantly
so that refinement is desirable as presented above.

Another possibility of mesh refinement is based not on the error but on the gradient of conductivity
between neighbouring elements. This results in higher resolution of material boundaries, which allows
for better image resolution in ET. The material gradient estimator used in the inverse problem Σi is
computed using the distance of the centres of mass of the element e and its neighbour f, and their
respective conductivities, σe and σf:
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2.4 Mesh Templating & Deformation

In medical applications such as functional brain imaging, there arises the need for meshes which have
certain built in features, for example a local high mesh density around the optic nerve or pre-defined
materials in local regions. For this purpose, mesh templates can be defined which consist of a mesh
corresponding to an ‘average’ model of the domain, for example the head. Methods are required to
easily modify/deform this pre-defined template mesh to fit individual patients’ geometries and/or
internal material structures. Powerful tools exist for this type of reshaping, however, it would be useful
to have Electrical Tomography software packages which incorporate this possibility.

Our meshing methods allow for the reshaping of existing meshes by changing the bubble size in
bubble meshing or the potential in the vortex dynamics based technique. Hence no new mesh needs
to be computed and optimized mesh templates can be re-applied to many topologically equivalent
shapes.

2.5 Node Renumbering / Parallel Optimization

The solution of the linear system of equations (4) is usually performed by an iterative method, it is
therefore desirable to renumber the nodes in the mesh to obtain a matrix for which the iterative
process will converge quickly. Standard methods for node renumbering exist and can be found in
Pissanetzky (1984). We have also demonstrated that it is possible to obtain the solution of the linear
system (4) using a cluster of computers working in parallel (Blott et al., 2000). This can allow for real-
time reconstruction for continuous monitoring of a patient.

2.6 Visualisation

The results of tomographic reconstruction are often difficult to visualise in a way useful for
clinicians/human monitors. In particular, the three-dimensional visualization is not very simple in the
coding/programming sense.
Commercial software such as, for example, MATLAB from Mathworks enables full three-dimensional
imaging across different Operating System platforms. MATLAB – as well as many other powerful
visualisation packages (DataExplorer, GeomView, AVS, IDL, etc.) – uses OpenGL implementations for
visualisation. With OpenGL, the display of isosurfaces, data interpolations and the application of a
range of image processing algorithms can be carried out with considerable ease. Furthermore, the
supplied flexible graphical user interfaces often simplify functions such as zooming, rotating etc.
OpenGL is a powerful, operating system independent graphics standard for which implementations
such as GLUT or MESA are freely available. In addition, cheap graphics cards aimed at the PC games
market provide highly optimized OpenGL performance, which was only possible on expensive
graphics workstations a few years ago.
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The FE meshes used for reconstruction can also be used for visualisation. By applying clipping planes
or isosurface display techniques, quantities such as potential, current density, material, etc. in the
interior of a volume can efficiently be presented to the user.

3 RESULTS

We show Electrical Tomography reconstructions of the same configuration on different types of 2D
Finite Element meshes. All meshes are based on first order linear interpolation functions with constant
conductivity values across the elements. The quality of the mesh can be given as a bargraph or – as
we applied it – as a mean value of the distribution and its standard deviation. The following table gives
a quantitative overview of the different meshes used.

# Nodes # Elements Quality Q Error E Time (ms)
17 16 0.63 0.40 10

27 36 0.92 0.24 10

43 68 0.96 0.21 14

56 91 0.95 0.19 20

77 121 0.93 0.17 30

136 233 0.95 0.14 50

267 472 0.94 0.12 100

511 947 0.96 0.09 230

823 1542 0.95 0.07 441

2447 4727 0.96 0.01 3560

6047 11890 0.96 (0.00) ~19 sec
Table 2: Different timings for meshes on which the solution of the forward problem in

ET was computed. Please find the explanation for the variables in the text.

136n, 233e
E = 0.14

17n, 16e
E = 0.40

2447n, 4727e
E = 0.01

267n, 738e
E = 0.12

43n, 68e
E = 0.21

77n,121e
E = 0.17

Figure 5: Potential distribution for differing finite element meshes. The numbers next to the meshes indicate
the number of nodes and elements used. E denotes the error of the solution on the mesh.

Q is calculated as the mean of qe = 2 Ri(triangle e) / Ro(triangle e). The error E indicates the
normalised difference between computed and measured voltages Ucomp and Umeas at the electrodes, E
= ||Ucomp – Umeas|| / ||Umeas||. The time given was spent on computing not only the solution but also on
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memory allocation and assembly of the system matrix, computation of the matrices relevant for the
complete electrode model (CEM), assembly of the CEM system matrix and finally the solution of the
system given in (4). The time was taken on an AMD Athlon Processor running at 500 MHz and using
MATLAB as a prototyping software package. To obtain an accurate estimate of the ‘true’ solution we
computed the voltages at the electrodes Umeas using the mesh with 11890 elements and used these in
the calculation of E.

We can see that the element density is the most critical component in terms of accuracy. In figure 5,
we present the variation in the potential distribution for an identical current injection all cases, coming
in at three o’clock through the electrode indicated by the bar around the boundary and coming out at
the opposite electrode, positioned at nine o’clock.

By making the mesh denser or improving the quality we can see that forward solution and resolution
improve by a factor of approximately 2 for employing ten times as many elements/nodes resulting in
ten times the computation speed.

Table 3 contains the refinement steps carried out on the initially very coarse and unsuitable mesh with
17 nodes and 16 elements. Figure 6 shows the improvement of accuracy in the forward solution by
using adaptive, error-estimator based refinement. Comparing the time (81 ms) and error (0.110) to the
values given above, we achieved a result equivalent to the use of a mesh of size 267 nodes or 472
elements respectively.

# Nodes # Elements Error E Time (ms)
Starting state 17 16 0.400 11
Refinement 1 31 38 0.235 20
Refinement 2 47 64 0.191 20
Refinement 3 69 100 0.110 20
Result: 69 100 0.110 71

Table 3: Auto-adaptive refinement decreases the error on the solution using less
nodes / elements than the ‘standard’ case and even in less time!

4 CONCLUSIONS

We have addressed important issues of the reconstruction process in Electrical Tomography Imaging.
The underlying finite element discretization affects the results to a great extend and certain
optimizations such as optimal meshing at the start of the imaging process as well as adaptive meshing
during the course of the reconstruction process are highly desirable.
Results show that even for simple 2D meshes, a significant improvement in performance can be
achieved without much effort if the discussed optimizations are employed. We believe that this work
contributes to the realisation of fully non-linear real-time imaging or patient monitoring in hospitals.
Further work will incorporate most of the techniques presented here in a parallel non-linear solver to
enable fast and accurate electrical impedance reconstructions for medical and industrial application.
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