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ABSTRACT

Non-linear electrical tomography imaging can be performed efficiently if certain optimisations are
applied to the computational reconstruction process. We present a 3D non-linear reconstruction
algorithm based on a regularized conjugate gradient solver and discuss the optimisations which we
incorporated to allow for an efficient and accurate reconstruction. In particular, the application of image
smoothness constraints or other regularization techniques and auto-adaptive mesh refinement are
highly relevant. We demonstrate the results of applying this algorithm to the reconstruction of a
simulated material distribution in a cubic volume.

Keywords 3D non-linear electrical impedance tomography, optimised reconstruction algorithm,
increased spatial resolution, parallel computing

1 INTRODUCTION

For many applications in industry as well as in medicine and geological research, it would be useful to
know the distribution of differing materials inside a given volume. Electrical Tomography (ET) offers
the possibility to reconstruct differing electrical properties of materials to give an accurate picture of
their quantitative distribution. ET has numerous advantages over other methods: it is non-destructive,
non-invasive and relatively inexpensive compared with competing imaging methods, such as Magnetic
Resonance or X-Ray Imaging. Electrical conductivity and permittivity are reconstructed from measure-
ments of the resulting potential distribution at surface electrodes after injection of a small current into
the volume under investigation. ET does not require direct visual contact to substances within, for
example, stirring vessels and can hence be used for applications where optical evaluation of the
contents is impossible.

In process tomography, this gives information about mixing processes as well as (unwanted) cluster
formations of materials in pipes. In the medical field, tomographic reconstructions can give information
about lung and stomach fillings in monitoring applications as well as support the accurate location of
electrical sources in the brain for Electric Encephalography (EEG) reconstructions in functional brain
imaging (Committee on the Mathematics and Physics of Emerging Dynamic, 1996 and Ollikainen et al,
1996). Geological applications include detection of buried objects or historic buildings or determination
of differing geological formations (Szymanski and Tsourlos, 1993).

The reconstruction of the material distribution inside the volume is a computationally very demanding
process and in mathematical terms a highly ill-conditioned non-linear problem. The ill-conditioning
results from the fact that one tries to obtain an image of the interior of a volume which can consist of
thousands of pixels from a small set of surface measurements. Backprojection algorithms – such as
used for Computed Tomography (CT) reconstruction – have proved to be inadequate for many
applications, especially in the medical ET field since they lack an appropriate reconstruction and
produce images of only minor quality. Though single step update reconstruction algorithms, such as
the NOSER (Newton One Step Error Reconstruction, Cheney et al, 1990) proved to be better suited,
they lack the full possible reconstruction of the non-linear nature of the problem.

So far, many algorithms focus on 2D reconstruction of certain sections through an object. They do not
account for the 3D off-plane structures and their effects on the resulting potential distribution which
affects the reconstructed image. Only few algorithms have been developed which take into account a
3D reconstruction volume (Blue et al, 2000, Metherall et al, 1996, Vauhkonen et al, 1999, Wexler, 1988).
Recent industrial and medical interest is focused on 3D reconstruction. We have developed an
efficient 3D non-linear reconstruction algorithm based on a regularized conjugate gradient solver. We
will present this algorithm in section 2 and discuss some of the incorporated optimisations to allow for
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an efficient and accurate reconstruction in section 3. Results from a simple 3D ET reconstruction
problem show the achievable resolution and performance in section 4 before we draw our conclusions.

2 RECONSTRUCTION ALGORITHM

Electrical Tomography is based on the electrical properties of differing materials in a volume conductor
Ω. Tomographic reconstruction tries to image the electric permeability ε and the electric conductivity
distribution σ within the domain Ω. To achieve this, a small current of normal density jn and frequency
ω is injected into the volume conductor and the resulting potential distribution U is measured using
surface electrodes. The electric field inside Ω is then governed by Poisson’s equation
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and the following boundary conditions
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Here, U0 are the measured voltages at the boundary electrodes δΩVEL, and n denotes the unit outward
normal across the current injection electrodes δΩCEL. Together with the law of conservation of charge
and the choice of a reference point for the voltages, the requirement for existence and uniqueness of a
solution are satisfied (Somersalo et al, 1992). Both material parameters are functions of the position
within the object, σ(r) and ε(r). For reasons of clarity, we will consider imaging σ only, however, all our
formulations can be extended to image the full complex material admittivity σ+iωε.

For the reconstruction of electrical conductivity, we define an objective function φ representing the
error between measured electrode voltages U0 and the electrode voltages U(σ) obtained from the
computed conductivity distribution σ.
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The number of electrodes is NL and the subscript l denotes the l’th component of the voltage vectors.
We want to minimise φ with respect to the conductivity σ. To perform this numerically, we need to
discretise the continuous problem in a way to obtain a good approximation of the real potential
distribution across Ω. We employ the Finite Element method (FEM), which is a standard tool in
engineering for solving elliptic partial differential equations such as the above. The potential distribu-
tion U is then approximated on the finite element mesh with N nodes and we obtain the discrete nodal
potential distribution UN from solving the forward problem represented by a system of linear equations

IUY N =)(σ (5)

The nodal voltages UN are obtained by applying the inverse of the admittance matrix Y of size N x N to
the vector of injected currents I. Y is a very sparse matrix and the solution of even large systems can
be performed efficiently when certain optimisations are applied. Equation 5 is slightly extended if, for
example, the Complete Electrode Model is used which takes into account the contact impedances
under the electrodes and for which Somersalo et al (1992) showed uniqueness and a modelling error
of less than 0.1%.
There exist several methods for solving the actual inverse problem – the least square minimization of
the objective function φ with respect to the unknown conductivities. Yorkey et al (1987) have shown
that the modified Newton-Raphson method is the most suitable and efficient method to solve the
minimization problem. Figure 1 shows an outline of this algorithm.
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Make initial σσσσ guess

Compute objective function φ

φ < φmax ?

End

Update σσσσ by ∆σσσσ

Determine forward solution U(σσσσ)

yes

no

Compute ∆σσσσ from
(JTJ) ∆σ σ σ σ = -JT(U(σσσσ) – U0)

Figure 1: Outline of standard non-linear Newton-Raphson reconstruction algorithm

The resistivity update ∆σ for each iteration step k of the non-linear algorithm is calculated by solving
the following linear system of equations:

( )0)()( UUJJJ kTkT −−=∆ σσ (6)

where J is the Jacobian of the electrode potentials with respect to the elements’ conductivities and JT

is the transposed of J.
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The matrix JTJ is highly ill-conditioned in the Hadamard sense (Lamm, 1993) and the solution of this
system hence requires the application of appropriate numerical techniques. Additional properties of
JTJ are positive definiteness and its size is the number of elements squared (nE

2).

3 OPTIMIZATIONS

We identified the requirements for an efficient reconstruction algorithm previously (Molinari et al, 2001b)
as follows:

Speed
• application of sparse matrix storage schemes and solver techniques
• problem-adapted mesh density
• parallelization of code

Accuracy
• usage of high-quality domain discretization
• robustness with respect to noise
• minimal influence of constraints and regularization on the accuracy of the solution
• suitable algorithm for the problem’s non-linear nature

Flexibility
• accurate modelling of complex 2D and 3D geometries
• allow for easy application of differing boundary conditions
• possibility of FE mesh "templating" and node relocation for dynamic imaging

We will discuss some of these aspects with respect to optimisation of ET algorithms in more detail:
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3.1 Finite Element Discretization

By applying the Finite Element Method (FEM), we converted the continuous problem into a problem
with a finite number of unknowns. It is a known fact that the solution on the discretization tends to the
true solution as the element size decreases to zero (Burnett, 1987). However, to obtain a fast algo-
rithm, as few as possible elements should be used, but also as many as necessary to produce
accurate solutions. It is desirable to start with a rather coarse mesh with a minimum of desired spatial
resolution and then refine the discretization only where necessary.

Often, algorithms are constrained to a specific geometry (such as for example circular pipe) and the
achievable performance is based on these assumptions (using cylindrical base functions). However, if
the underlying geometry is of more general shape (for example the human head), the Finite Element
method provides a most suitable basis for the reconstruction as it is flexible in terms of geometry and
boundary conditions. We will constrain the algorithm towards the use of tetrahedral finite elements with
linear base/shape functions and constant material throughout an element. This configuration allows for
reduced storage as well as high computation speed.

3.2 Auto-Adaptive Mesh Refinement

If insufficient elements are used in the initial FE mesh of the problem domain Ω, the choice of
discretization will affect the accuracy of the potential distribution, and also the calculation of the
Jacobian in the non-linear reconstruction of the conductivities. It is therefore usual to refine the mesh
globally to improve the accuracy of the solution across the whole domain. However, it is in fact only
necessary to refine the mesh where the error is large: the paradox is that the exact error is only known
if the exact solution is available!

We therefore use an a posteriori error estimate Σf (see Molinari et al, these proceedings) which
determines where refinement of the mesh is required. Starting with an initially rather coarse quality
mesh, we refine according to this estimator and adapt the mesh to give an accurate solution. Refining
of the mesh can be done in three ways:

h-refinement consists of subdividing elements into smaller elements (Burnett 1987).

p-refinement uses higher order interpolating basis functions on the elements (Zienkiewicz
and Craig 1986).

r-refinement relocates the existing nodes of a mesh without adding new ones (Shepard 1985).

Efficient hybrids of these methods also exist, but can be complicated to implement. We focus on h-
refinement of linear elements, which can be implemented very efficiently. p-refinement is an already
commonly used improvement but produces larger matrices with increasing polynomial order. r-
refinement does usually not significantly improve the solution, however, it might be useful in dynamic
imaging problems, where the nodes of the mesh can follow predefined trajectories.

We have shown previously (Molinari et al, 2001a) that adaptive mesh refinement saves a factor of 3 in
number of required elements to model the forward solution as accurately as in a globally fine mesh.
This results in the speed-up of the algorithm of a factor of approximately 10 for 2D problems. Adaptive
mesh refinement as part of the inverse problem based on the material gradient between elements can
be used to increase the spatial resolution of the reconstructed conductivities and reduce image
distortion. We have incorporated automatic mesh refinement into the reconstruction algorithm from
figure 1. The algorithm allows auto-adaptive mesh refinement based on the computed a posteriori
error estimate of the forward solution and uses material gradient-dependent refinement on the finally
obtained solution of the inverse problem to increase resolution of material boundaries. Figure 2 shows
an outline of the modified auto-adaptive algorithm.

3.3 Conjugate Gradient Solver

The conjugate gradient (CG) method is a very popular iterative method for solving large-scale systems
of linear equations. It is most effective for sparse systems as its complexity scales with approximately
O(nE

3/2) in 2D and O(nE
4/3) in 3D for matrices of size nE x nE. Piccolomini and Zama (1999) showed that
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for large problems, such as given in equation 6 for 3D imaging, methods based on the CG iterations
are more efficient than other methods like LU or Cholesky decomposition.

Start

Make initial σσσσ guess

Compute objective function φ

φ < φmax ?

End

Update σσσσ by ∆σσσσDetermine forward solution u(σσσσ)

Calculate error estimates ΣΣΣΣf(u)
Refine mesh
where ΣΣΣΣf large

||ΣΣΣΣf|| < Σf,max ?

yes

no

yes

no

Compute ∆σσσσ from
(JTJ) ∆σ σ σ σ = -JT(U(σσσσ) – U0)

Append

Display image

Update σσσσ by ∆σσσσ from
(JTJ) ∆σ σ σ σ = -JT(U(σσσσ) – U0)

Determine forward solution u(σσσσ)

σσσσ known on coarse mesh

Calculate material gradient ΣΣΣΣi(σσσσ)

max(ΣΣΣΣi) < Σi,max ?

yes

no

Refine mesh where ΣΣΣΣi large

Figure 2: Modified reconstruction algorithm, incorporating error estimation
and auto-adaptive mesh refinement for accurate forward solution (left) and

material-gradient based mesh refinement step to improve image resolution (right)

As for ill-conditioned systems, the CG method often converges very well in the first iterations before
noise in the singular value decomposition (SVD) components breaks down the conjugacy (Shewchuk,
1994). Piccolomini and Zama (1999) showed that this problem can be overcome by choosing an
optimal stopping criterion based on the SVD data or by regularizing the problem, for example by
Tikhonov Regularization (Groetsch, 1993). An alternative is the pre-conditioning of CG with an
incomplete Cholesky factorisation of JTJ. Although our CG based algorithm shows good results without
preconditioning or regularization, it converges faster when one or both of these optimisations are
applied.

3.4 Image Smoothness Constraint & Regularization

Blott et al (1998) have shown that non-linear reconstruction can only provide images with well-defined
characteristics when appropriate constraints, such as image smoothness, are applied to the problem.
Following this, we alter the above equation to include their presented physically sound smoothness
term and the possible noise in measurements δU0 – which many works simply ignore in the
reconstruction process – to obtain the modified objective function φmod:
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φmod is now a functional incorporating a weighting Lagrange multiplier λL for the χ2 statistic. The loga-
rithmic constraint ensures a well-defined reconstruction and allows equally for smoothing conductivity
and resistivity distributions. This image smoothness constraint has proven to produce very accurate
results with real measured tank data in the case of imaging the fractional content of blood in the
cranio-spinal fluid for intraventricular haemorrhage detection.
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The determination of the parameter λ is part of the process to achieve equality between the χ2

criterion and the number of independent measurements.

3.5 Parallel Computing

Parallel Computing methods are highly applicable to our reconstruction algorithm. We have
demonstrated that a solution of the linear system (5) can be obtained using a cluster of computers
working in parallel (Blott et al, 2000). In particular, the conjugate gradient solver is very efficient in a
parallelised version where the workload is distributed onto several processors (Hake, 1992). Current
work involves the implementation of these techniques in object oriented C++ code using MPI
(Message Passing Interface) programming. The performance increase using parallel systems can
allow for real-time reconstruction for continuous monitoring of industrial processes or medical
parameters of patients.

3.6 Further Optimisations

Please find further optimisation techniques and visualisation possibilities of the results in our paper
“Finite Element Optimisations for Fast non-linear Electrical Tomography Reconstruction” in these
proceedings.

4 SIMULATION RESULTS AND DISCUSSION

We implemented our algorithm using the commercial ‘MATLAB’ package and used it to reconstruct a
simulated material distribution of three bubbles of differing size and material contained in a cube with
background conductivity of 20 S/unit length. The positions, size and conductivities of the objects are
as follows:

Position
(units)

Size / Radius
(units)

Conductivity
(S/unit)

Cube 0 / 0 / 0 1 x 1 x 1 20
Bubble 1 0.25 / 0.25 / 0.25 0.15 200
Bubble 2 0.4 / 0.6 / 0.6 0.25 100
Bubble 3 0.8 / 0.3 / 0.5 0.10 1

Table 1: Positions, size and material of simulated objects

Figure 3a shows the simulated configuration, the dark areas in figure 3b indicate the electrode
positions on the cube’s surface. For the simulation, we assumed a set-up of 24 electrodes on the
cubes surface, four on each face, and used 24 out of the possible 276 current patterns with cross-
sectional current injection to obtain better sensitivity. The contact impedance used in the complete
electrode model computation was assumed 100 S/unit length. A Tikhonov regularization parameter
λ=0.7x10-4 was employed together with a zeroth order regularization matrix. The mesh for the recon-
struction consisted of 1286 elements and 377 nodes, which corresponds to a spatial resolution of
approximately 10%. After error estimator based refinement with a refinement parameter of 40% of the
maximal occurring error, the node and element density increases particularly in regions of high current
density. A final material-gradient refinement enhances the spatial resolution at material boundaries.

The algorithm needed eight iteration steps to converge to the material distribution given in figure 3. 2D
algorithms usually require only four iteration steps to reach a final solution. This increase for three-
dimensional problems is probably due to the increased ill-conditioning caused by the much larger
number of degrees of freedom in the process. This could be avoided in 2D by grouping elements
together and using mesh conforming refinement for the forward solution, but poses a challenge for
general 3D problems.

Figure 4 shows xy-plane slices through an interpolated 3D reconstruction with outlines of the spheres.
The poor resolution is mainly caused by the large electrodes used as one of the main factors for
resolving small structures is the size of electrodes and the area which they cover. Clearly, the regions
of differing conductivity can be resolved. Image enhancement is hence possible using smaller
electrodes.
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Figure 3: (a) Simulated conductivity distribution, sphere parameters are given in table 1, (b) size
and position of attached electrodes used for current injection and voltage measurement.

Figure 4: 2D slices through the cube at height z.
Left: original conductivity distribution with indication of

the spheres’ boundaries, right: reconstructed conductivity
distribution; the gaps represent interpolation errors.

Table 2 shows the improvement in reconstruction speed and the reduced memory requirements for
the example when the optimisations we have presented above are incorporated in the reconstruction
algorithm. The values are shown in comparison to a standard Newton-Raphson based algorithm,
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employing LU decomposition for the solution on a mesh comprised of 6535 elements and 1472 nodes.
All quantities were obtained using MATLAB Version 6.0 on a 500MHz AMD Athlon processor.

Mesh: 1286 elements, 377 nodes speed-up factor memory saving factor
Sparse matrix techniques 5.13 / iteration 61.2
Adaptive meshing ~3.8 ~1.27
Pure CG solver / regularised LU solver 2.36 1.02
Tikhonov Regularization / pure CG solver ~2.1 -
Parallelization (8 cluster nodes) estimated 8 -

Table 2: Performance improvement of tomographic reconstruction algorithms
by application of optimisation techniques.

5 CONCLUSIONS AND FURTHER WORK

We have developed an efficient 3D non-linear Electrical Tomography reconstruction algorithm
incorporating a regularized conjugate gradient solver and an auto-adaptive mesh refinement process.
The image smoothness constraint allows for increased accuracy based on physical properties of the
solution, and material-gradient dependent adaptive mesh refinement allows for better image
resolution.
We show that the reconstruction performance is improved by regularizing the ill-conditioned inverse
problem and other optimisations such as sparse matrix techniques and (auto-)adaptive meshing.
Finally, parallel computing methods are highly applicable.

Our results indicate that it is possible to reduce the image reconstruction time towards real time by a
large factor compared with ‘standard’ 3D algorithms. This increases the feasibility of performing fully
nonlinear reconstructions for complex large-scale industrial and biomedical problems using standard
PC technology. Future work will focus on parallelizing this algorithm for the execution on a PC cluster.
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