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Introduction

An essential factor in functional source imaging is the
accurate knowledge of the conductivity distribution
inside the body. Current models for electrophysiolog-
ical forward and inverse problems use tabulated con-
ductivity values obtained from experiments. These
quantities usually show large standard deviations and
an individual patient’s conductivities might depart
siginificantly from average values.

Electrical impedance tomography (EIT) provides a
method of non-invasively obtaining information about
in-vivo tissue conductivities by means of measuring
surface potentials resulting from small injected cur-
rents. Fig. 1 shows how EIT-derived conductivities
can be used in EEG reconstructions for a head slice.
Previous work has been carried out to approximate tis-
sue conductivities on simplified models with few vari-
able conductivities, for example in [1] and [2]. Recent
advances in EIT, however, show that it is theoretically
possible to obtain good approximations of absolute
conductivities for medical applications [3].

We address the influence of a finite element discretiza-
tion on the solution of forward and inverse problem in
tomographic reconstructions, discuss the implementa-
tion of an adaptive mesh refinement technique and
present results from current density determination
based on the improved conductivity image obtained
by EIT.

Method

The electric potential ¢(r) at location r inside the
body with conductivity distribution o(r) is governed
in EIT by the equation

V- (o(r)Ve(r)) =0 (1)

along with boundary conditions imposed by the em-
ployed electrode model.

The solution of this equation for ¢ is based on the
non-linear minimization of the functional
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A good fit between measured, V, and computed,
U(o), electrode voltages is reached when x? ~ M =
the number of independent measurements made. 6V
contains the individual measurement errors and the

Figure 1: Inter-dependence of EIT and EEG recon-
struction. The conductivity distribution obtained by
EIT can be used for more accurate EEG inverse cur-
rent dipole estimation.

image smoothness term ¥ ensures a well-defined re-
construction. A more detailed dicussion of this func-
tional and the determination of the parameter A can
be found in [4] and [5].

For the numerical minimization of equation (2), we
discretize the volume under investigation with tetra-
hedral finite elements with linear base functions for
the potentials and a constant conductivity parameter
for each element. The forward solution — which is re-
quired for the iterative minimization algorithm — can
then be stated as linear system:

U=[Y(D,0)] 'L (3)

I contains the currents injected through the electrodes
and Y denotes the admittance matrix. The finite ele-
ment discretization D significantly influences both the
forward and the inverse solution in EIT. In the case of
reconstructing neuro-active generators, we encounter
a similarity: the formulation of the problem is given
as K(D, o) J =V, where K is the D and o dependent
lead field matrix and J represents the sought current
sources. To reduce the effects of the numerical dis-
cretization, we have developed a conjugate gradient
based algorithm incoporating 3D auto-adaptive mesh
refinement techniques. We have shown elsewhere that
adaptive meshing is an optimal technique for the effi-
cient solution of the forward problem [6] and necces-
sary to achieve the image resolution intrinsic in the
measurement data [5].

For our studies, we use a 3D finite element head model
with geometry derived from the Visual Human data



set and apply a set of 32 point electrodes across the
surface. Current injections through opposite located
electrodes are made and the corresponding potential
measurements are assumed to exhibit a measurement
noise of 0.1%.

The measurement simulation was carried out on a
head model consisting of 92 072 elements and con-
taining regions with assigned conductivities of scalp
(0.44 S/m), skull (0.02 S/m), CSF (1.55 S/m) and
brain (0.25 S/m).

The initial mesh for the inverse solution contained
11 509 elements which corresponds to a spatial res-
olution of approximately 3%. As starting vector for
the inverse solver, a homogenous ¢ distribution was
determined.

To compare the obtained results, we compute the av-
erage relative voxel error in the conductivity image by
resampling the conductivities on a 100x100x100 cube
grid and by establishing the Frobenius norm between
simulated ¢° and reconstructed o:
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In addition, we investigated the effects of adaptive
meshing on the reconstruction accuracy of a current
source defined in a single finite element model in the
brain. The relative error of this reconstruction was
obtained similar to above by resampling the current
density vector and evaluating a 3D Frobenius norm
with the simulated current density.

Results

The numerical simulations show that the error of re-
constructed tissue conductivities can be reduced from
an initial 14% to approximately 4.2% when auto-
adaptive 3D mesh refinement techniques are employed
to decrease the influence of the finite element dis-
cretization on the imaging process.

The effect of mesh refinement on the reconstruction of
a simulated current density distribution are also evi-
dent: the error reduces by about a factor of 3 for all
o estimates obtained from the EIT reconstructions.
The lowest error is achieved for the best conductivity
estimate. Fig. 2 shows the computed errors in con-
ductivity and current density reconstruction.

Discussion

The presented results show that adaptive mesh refine-
ment methods can improve tissue conductivity reso-
lution in EIT significantly by reducing the effects of
the finite element discretization on the reconstruction
process. The same technique can be used to increase
the spatial resolution in current source determination.
Although EIT performs well in simulations, in-vivo
measurements are the real challenge and have to prove
in future work how applicable these methods are.

Acknowledgments

M. Molinari is grateful to EPSRC(UK) for funding.

—
()
=

= =
N ~

=
[S)

N

. . . .
0 1 2 3
Mesh refinement levels

Relative voxel conductivity error E (%)
©

(b) 30
il E =42%
- 5= o
?26’ — E:: 4.95%
e\:24f o E = 79%
Sl e E=137% 1
Q
2208 1
2
S 18t 4
o°
=16} ]
g
5 14p q
5]
o121 d
x
S1o0f 1
Q
2 8r 1
= 6
¢
A 1
21 1
0

. . . .
0 1 2 3
Mesh refinement levels

Figure 2: Average vozel error of (a) the EIT recon-
structed tissue conductivity and (b) the localization of
a simulated current source when the tissue conductiv-
ities from (a) are used.
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