

# LOW POWER TEST COMPATIBILITY CLASSES: EXPLOITING REGULARITY FOR SIMULTANEOUS REDUCTION IN TEST APPLICATION TIME AND POWER DISSIPATION

Nicola Nicolici

Computer-Aided Design and Test Group  
Dept. of Electrical & Computer Engineering  
McMaster University  
Hamilton, ON L8S 4K1, Canada  
nicola@ece.mcmaster.ca

Bashir M. Al-Hashimi

Electronic Systems Design Group  
Dept. of Electronics and Computer Science  
University of Southampton  
Southampton SO17 1BJ, U.K.  
bmah@ecs.soton.ac.uk

## Abstract

*Traditional DFT methodologies increase useless power dissipation during testing and are not suitable for testing low power VLSI circuits leading to lower reliability and manufacturing yield. Traditional test scheduling approaches based on fixed test resource allocation decrease power dissipation at the expense of higher test application time. On the one hand it was shown that power conscious test synthesis and scheduling eliminate useless power dissipation. On the other hand by exploiting regularity in BIST RTL data paths using test compatibility classes an improvement in test application time, BIST area overhead, performance degradation, volume of test data, and fault escape probability is achieved. This paper shows that when combining power conscious test synthesis and scheduling with the test compatibility classes into low power test compatibility classes, simultaneous reduction in test application time and power dissipation is obtained.*

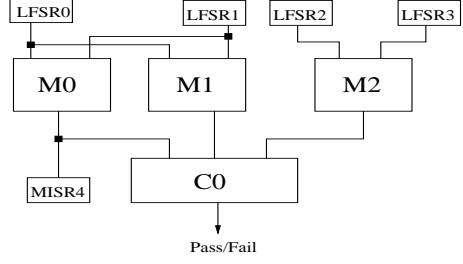
## 1. Introduction

The demand for low power very large scale integrated (VLSI) circuits in the growth area of portable communications will continue to increase in the future. Cost and lifetime cycle of near future portable communications and computing systems will depend not only on VLSI circuits designed using low power synthesis techniques, but also on new design for test (DFT) methods targeting power minimization during test application. This is because traditional DFT methods increase power dissipation during test application and are not suitable for testing low power VLSI circuits leading to lower reliability and manufacturing yield. To avoid unnecessary iterations in the design flow, recent research interests have shifted towards addressing testability

during the early stages of the VLSI design flow [7]. A novel built-in self-test (BIST) methodology for register transfer-level (RTL) data paths using a new concept called test compatibility classes (TCC) which overcomes the problems of test application time, BIST area overhead, performance degradation, volume of test data, and fault-escape probability associated with traditional BIST embedding methodology [14, 15], was proposed recently in [20, 22]. To fully exploit the testability benefits of BIST RTL data paths, power dissipation during test application in BIST RTL data paths needs to be accounted, and novel power conscious test synthesis and scheduling algorithms equally applicable to BIST embedding and TCC grouping methodologies need to be developed. This is of particular importance when power dissipation during the functional operation is not exceeding a given power constraint as it is the case for RTL data paths synthesized using low power high level synthesis algorithms [8, 10, 11]. Previous test scheduling algorithms [4, 12, 13, 17, 18, 24, 23, 25] are not suitable for BIST RTL data paths due to the following three problems:

- a. test scheduling assumes fixed amount of power dissipation associated with each test which is not the case for BIST RTL data paths;
- b. test scheduling is performed on a fixed test resource allocation without considering the strong interrelation between test synthesis and test scheduling;
- c. reduction in test application time is achieved at the expense of higher power dissipation;

Recently novel power conscious test synthesis and scheduling for BIST RTL data paths [21] have successfully addressed the first two problems (a) and (b) for the traditional BIST embedding methodology [14, 15]. However, to achieve simultaneous reduction in power dissipation in test application time (problem (c)) new approaches are required.


The aim of this paper is to show that when combining power conscious test synthesis and test scheduling algorithms with the test compatibility classes, simultaneous reduction in test application time and power dissipation is achieved with constant savings in BIST area overhead when compared to the traditional BIST embedding methodology. The rest of the paper is organized as follows. Sections 2 and 3 overview low power BIST for RTL data paths [21] and test compatibility classes [22]. Section 4 introduces new low power test compatibility classes. Experimental results and conclusions are given in Sections 5 and 6 respectively.

## 2. Low Power BIST for RTL Data Paths

This section gives a taxonomy of power dissipation during testing in BIST RTL data paths introduced in [21].

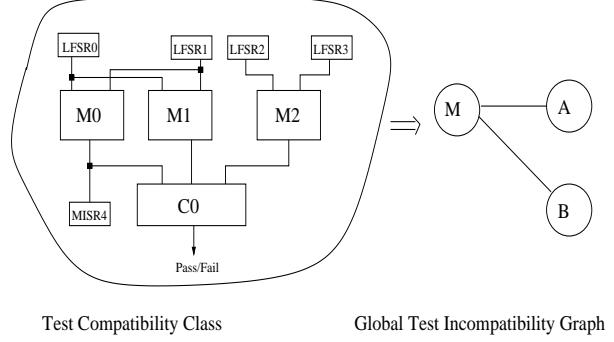
According to the necessity for achieving the required test efficiency, power dissipation is classified into necessary and useless power dissipation. *Necessary power dissipation* is the power dissipated in test registers and tested modules during each test session and the power dissipated in test registers while shifting in seeds for test pattern generators and shifting out responses from signature analyzers. Necessary power dissipation is compulsory for achieving the required test efficiency, however, the useless power dissipation must be eliminated using power conscious test synthesis and scheduling ([21] and Section 4). In order to define useless power dissipation, firstly spurious transitions in BIST RTL data paths are introduced. A spurious transition when employing BIST for RTL data paths is a transition which occurs in modules and/or registers which are not used in the current test session. These transitions do not have any influence on test efficiency since the values at the input and output of modules and/or values loaded in registers are not useful test data. *Useless power dissipation* is the power dissipated in registers and untested modules due to spurious transitions which cannot be eliminated by any configuration of control signals of data path multiplexers.

According to the occurrence during the testing process power dissipation is classified into test application and shifting power dissipation. *Test Application Power dissipation* (TAP) is the power which occurs during execution of each test session when test patterns, necessary to achieve the required test efficiency, are applied to modules. *Shifting Power dissipation* (SP) is the power which occurs while shifting in the seeds for test pattern generators, required for next test session, and shifting out the responses stored in signature analyzers at the end of the previous test session. It should be noted that multiplexer power is low during testing since multiplexer control signals are modified only at the start and at the end of every test session, thus avoiding any glitching activity which can propagate from control logic.



**Figure 1. Test Compatibility Class**

## 3. Test Compatibility Classes

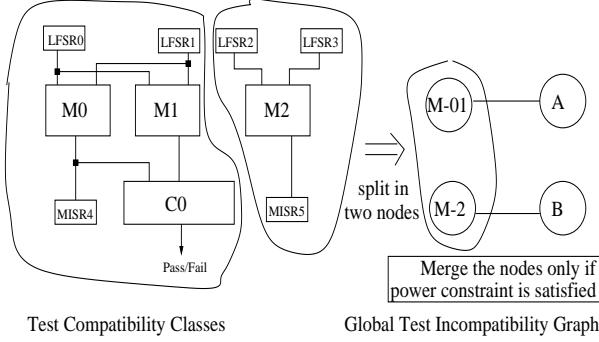

This section summarizes test compatibility classes (TCC) that exploit the regularity of data path circuits to reduce test application time, BIST area overhead, performance degradation, volume of test data, and fault-escape probability [20, 22].

Traditional BIST embedding methodology embeds every module port between a test pattern generator and a signature analysis register. This may lead to conflicts between different test resources when maximum test concurrency is targeted. Furthermore the number of test resources for low test application time is extremely high leading to both high BIST area overhead and performance degradation. The TCC grouping methodology [20, 22] takes advantage of the structural information of RTL data path and reduces the test application time by grouping same-type modules into test compatibility classes. Two modules are of the same type if they are two different instances of the same module library prototype and hence they have the identical physical and structural information. Due to the identical physical and structural information the fault sets of two same-type modules have the same detection probability profile [2]. Thus, the same test pattern generators can be used simultaneously (no need to schedule the tests at different test times) for two or more same-type modules without decreasing the fault coverage. On the other hand fault sets of different-type modules have different detection probability profiles and hence different test pattern generators and different test application times are needed to satisfy the required fault coverage. The use of hard macro implementations of library modules which have identical physical and structural information can significantly improve the final design [3]. Furthermore, design methodologies which use regular elements and identify similarity need to be incorporated in state of the art CAD tools [3, 6]. Therefore TCC grouping [20, 22] is targeting design flows that use few pre-designed module types with identical physical and structural information and *exploits the regularity* of the data path to reduce test application time and BIST area overhead as shown in Figure 1.

**Example 1** To give an insight into the TCC grouping methodology consider a small part of a complex data path as shown in Figure 1. The part of the data path has 3 modules of module-type  $M_{type}$  and 5 registers. Each module is annotated with its name ( $M_0 - M_2$ ). Since  $M_{type}$  modules are instances of the same module library prototype, then they have identical physical and structural information and hence identical detection probability profile. Thus if test patterns are applied to modules  $M_0 - M_2$  simultaneously same fault coverage is achieved when compared to applying test patterns in different test sessions. Note that  $LFSR_0$  is the only test register which applies test patterns to left input port of  $M_0$  and  $M_1$ . Also  $LFSR_2$  generates test patterns to left input port of  $M_2$  and needs to be initialized with the same seed as  $LFSR_0$  before beginning of the test session. The same applies to  $LFSR_1$  and  $LFSR_3$ . When same test patterns are generated by  $LFSR_0$  and  $LFSR_2$  at left input port ( $LFSR_1$  and  $LFSR_3$  at right input port) of  $M_0$ ,  $M_1$ , and  $M_2$ , identical output responses are expected at the *same time*. Hence a comparator  $C_0$  is used to check the output responses. Only a single signature analyzer  $MISR_4$  is allocated to compress the output responses of all the modules  $M_0$ ,  $M_1$ , and  $M_2$  which are tested simultaneously. The signature analysis register  $MISR_4$  is necessary to detect faults in the case when output responses of all the three modules  $M_0$ ,  $M_1$ , and  $M_2$  are equal during the entire test application period but different from the fault-free output response. The use of comparators solves three problems. Firstly it reduces both BIST area overhead (1 MISR and 1 comparator vs. 3 MISRs) and performance degradation (1 MISR vs. 3 MISRs embedded in data path). Secondly it reduces fault-escape probability since faulty output responses which map into fault-free signatures in the BIST embedding methodology will be detected by the comparators. And thirdly, the number of signatures is reduced which has the following two implications: volume of test data is reduced which leads to less storage requirements and test application time is minimized due to less clock cycles needed to shift out the test responses.

#### 4. Low Power Test Compatibility Classes

Power conscious test synthesis and scheduling described in [21] are equally applicable to both BIST embedding [15, 14] and TCC grouping methodologies [20, 22]. Power conscious test synthesis and scheduling are based on the analysis of the effect of test synthesis and scheduling on useless power dissipation (Section 2). Thereafter, test resources allocation (*test synthesis*) and module selection for concurrent testing (*test scheduling*) are done by power conscious algorithms *ACCEPT-MOVE* and *SELECT-MODULE* described in [21]. The final step is to synthesize a BIST controller that controls the execution of test sessions, shifts in the seeds for LFSRs, shifts out the signatures stored




**Figure 2. Single Test Compatibility Class During Incremental Test Scheduling**

in MISRs, and assigns proper values to multiplexer control signals such that useless power is eliminated. In order to achieve minimum area overhead, the BIST controller is merged with the functional controller into a single control unit for the data path. This section focuses only on the power conscious changes to the BIST hardware synthesis algorithm described in [22]. A detailed and self-contained explanation is given in [19].

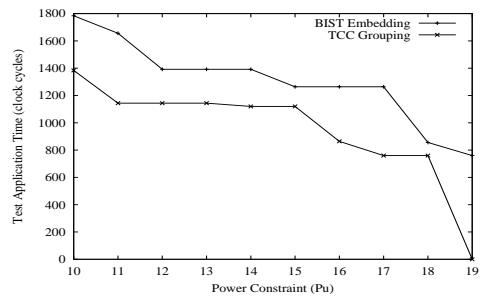
To achieve maximum test concurrency it is required that a large number of different-type test compatibility classes are compatible. Therefore, a high number of incompatible modules are sought to be merged in a small number of incompatible TCCs. This will reduce the number of edges in the global test incompatibility graph defined as follows. A global test incompatibility graph (G-TIG) is a graph where a node appears for every TCC. As shown in Figure 2 an edge exists between nodes  $M$  and  $A$  if test compatibility classes for module types  $M_{type}$  and  $A_{type}$  and are incompatible. Test scheduling is performed using the global test incompatibility graph. Fault sets of different-type modules have different detection probability profiles, and, hence, TCCs of different module-types need different test application times to satisfy the required fault coverage. Thus, the incremental TCC scheduling algorithm deals with unequal test lengths. The test scheduling algorithm for partitioned testing with run to completion from [5] has been modified such that test scheduling and signature analysis registers allocation is done simultaneously [20, 22]. In order to increase test concurrency of test compatibility classes while satisfying a given power constraint two modifications to the incremental TCC scheduling algorithm [22, 19] are necessary:

- While generating the G-TIG for maximum test concurrency the unassigned modules which are compatible with all the existing TCCs need not to be assigned such that a maximum increase in output register set is achieved. Each unassigned module creates a new TCC

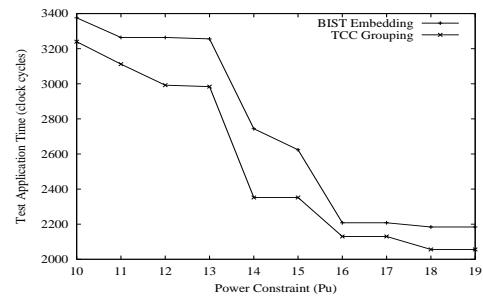


**Figure 3. Two Test Compatibility Classes During Incremental Test Scheduling**

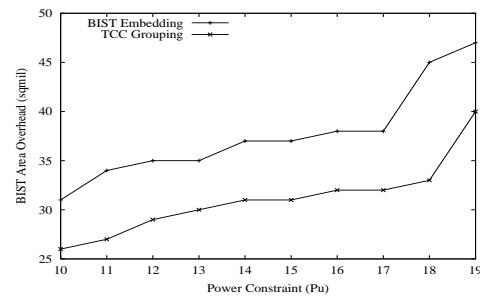
consisting of a single module. This will lead to higher number of nodes in the G-TIG. However the total necessary power dissipated by each TCC is lower. Thus instead of merging all the compatible modules prior to TCC scheduling, there are more nodes created in the G-TIG and they will be merged later if the power constraint is satisfied. Therefore, if two TCCs of the same type present in G-TIG are compatible then during the incremental test scheduling they are merged as explained in the following modification.


- During the simultaneous TCC scheduling and signature analysis allocation algorithm [22] if two test compatibility classes are compatible then they are merged if they meet the given power constraint. This will lead to an incremental generation of maximal test concurrency within the G-TIG *only if* power constraints are satisfied. The assignment of conflict free modules to TCCs is driven by power constraint and not by the increase in the size of the output register set as in the case of [22]. This causes both high test concurrency and satisfaction of power constraints at the expense of a decrease in the size of the output register set and hence the potential reuse of signature analysis registers.

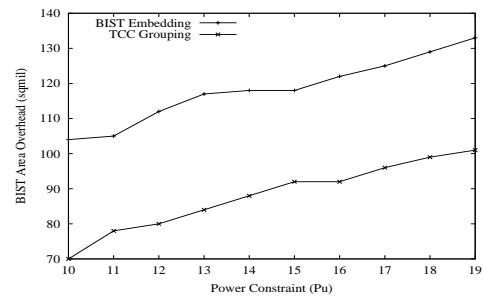
The previous two modifications can be explained using Figure 3. For example, module  $M_2$  is not merged with module  $M_0$  and  $M_1$  into a single test compatibility class (Figure 2) prior to the generation of the G-TIG and TCC scheduling. Rather, two separate nodes are created in G-TIG ( $M - 01$  and  $M - 02$ ) (Figure 3). **Only if** if the power constraint is satisfied the modules are merged into a single TCC. Otherwise, two test compatibility classes are required with small area overhead due to  $MISR_5$ . However, when compared to BIST embedding methodology [15, 14] savings in BIST area overhead are preserved, as well as reduction in test application time as described in the experimental results.


## 5. Experimental Results

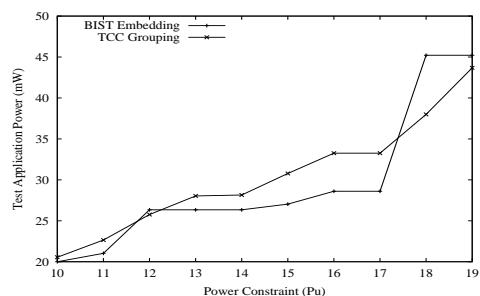
To outline the advantages of combining the TCC grouping methodology [22] with power conscious test synthesis and scheduling [21], Figures 4 and 5 give a comparison in terms of test application time (TAT), BIST area overhead (BAO), test application power (TAP), and shifting power (SP) for traditional BIST embedding [15, 14] and the TCC grouping [20, 22] methodologies. To show the suitability of TCC grouping for various power constraints, experiments were done on elliptic wave digital filter (Figure 4) and 32 point discrete cosine transform (Figure 5) using synthesized using the ARGEN high level synthesis system [9]. Test application time (TAT) for adders and multipliers are assumed to be  $T_+ = T_u$ , and respectively  $T_* = 4 \times T_u$ , where  $T_u = 128$  for achieving 100% fault coverage for 8 bit data path modules technology mapped into AMS 0.35 micron technology [1]. During the power conscious testable design space exploration power dissipation for registers, adders and multipliers is assumed to be  $P_{REG} = P_u$ ,  $P_+ = P_u$  and  $P_* = 4 \times P_u$ , where  $P_u$  is a generic high level model for power dissipation that provides the flexibility of applying the proposed algorithms to various library modules with different power characterization. To validate the high level generic values, using a real delay model simulator [16] and AMS 0.35 micron timing and power information operating at supply voltage 3.3V and clock frequency 100MHz, and hence accounting for glitching activity, the following values were obtained for 8 bit data path width using pseudorandom sequences applied during testing:  $P_{REG} = 0.8mW$ ,  $P_{LFSR} = 1mW$ ,  $P_{MISR} = 2mW$ ,  $P_{BILBO} = 2.5mW$ ,  $P_+ = 3.5mW$ , and  $P_* = 11.5mW$ .


As it is clearly seen in Figures 4(a) and 5(a) the proposed TCC grouping methodology *constantly* yields lower test application time when compared to the traditional BIST embedding methodology. Similarly, Figures 4(b) and 5(b) show that TCC grouping methodology produces lower BIST area overhead with *similar* values for test application power (Figures 4(c) and 5(c)) and shifting power (Figures 4(d) and 5(d)). For example, in the case of elliptic wave digital filter (Figure 4(c)) test application power for TCC grouping varies from 20mW to 44mW while for BIST embedding it varies from 21mW to 45mW. This implies that when applying low power test compatibility classes described in Section 4 there is no penalty in power dissipation at the benefit of lower test application time and BIST area overhead when compared to traditional BIST embedding methodology [14, 15]. Therefore it may be concluded that when power conscious algorithms not only fixed test resource allocation and fixed amount of power dissipation are overcome, problems (a) and (b) of previous approaches [4, 12, 13, 17, 18, 24, 23, 25] outlined in Section 1, but also a new methodology for simultaneously reducing test applica-

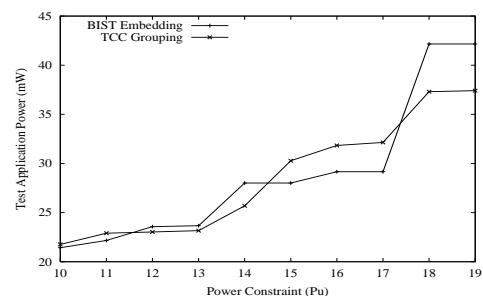



(a) Test Application Time

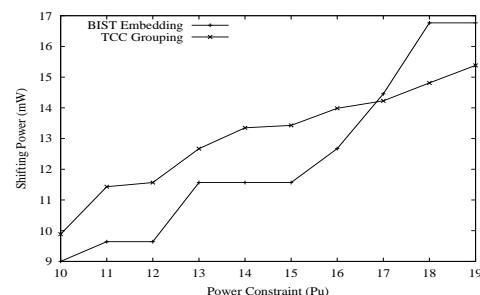



(a) Test Application Time

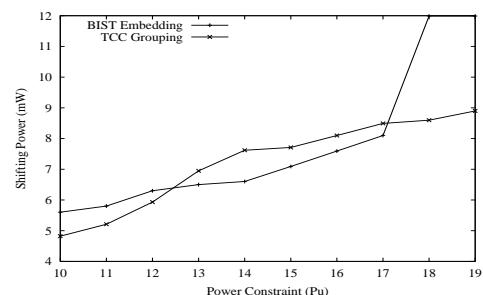



(b) BIST area overhead




(b) BIST area overhead




(c) Test Application Power Dissipation



(c) Test Application Power Dissipation



(d) Shifting Power Dissipation



(d) Shifting Power Dissipation

**Figure 4. Comparison for elliptic waveform digital filter**

**Figure 5. Comparison for 32 point discrete cosine transform**

tion time and power dissipation is provided (problem (c) in Section 1). Reducing test application time and power dissipation simultaneously using TCCs is particularly important for high performance low power RTL data paths generated using low power high level synthesis algorithms [8, 10, 11].

## 6. Conclusions

Traditional power constrained test scheduling algorithms [4, 12, 13, 17, 18, 24, 23, 25] decrease power dissipation at the expense of higher test application time. This paper has shown that when combining power conscious test synthesis and test scheduling algorithms [21] with test compatibility classes [22] into *low power test compatibility classes*, simultaneous reduction in test application time and power dissipation is obtained when compared to traditional BIST embedding methodologies for BIST RTL data paths [15, 14].

## 7 References

- [1] AMS. *0.35 Micron CMOS Process Parameters*. Austria Mikro Systeme International AG, 1998.
- [2] P. Bardell, W. McAnney, and J. Savir. *Built-In Self Test - Pseudorandom Techniques*. John Wiley & Sons, 1986.
- [3] D. Chinnery and K. Keutzer. Closing the gap between ASIC and custom: An ASIC perspective. In *Proc. 37th IEEE/ACM Design Automation Conference (DAC)*, pages 637–642, 2000.
- [4] R. Chou, K. Saluja, and V. Agrawal. Scheduling tests for VLSI systems under power constraints. *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, 5(2):175–184, June 1997.
- [5] G. Craig, C. Kime, and K. Saluja. Test scheduling and control for VLSI built-in self-test. *IEEE Transactions on Computers*, 37(9):1099–1109, September 1988.
- [6] W. Dally and A. Chang. The role of custom design in ASIC chips. In *Proc. 37th IEEE/ACM Design Automation Conference (DAC)*, pages 643–647, 2000.
- [7] S. Dey, A. Raghunathan, and K. Wagner. Design for testability techniques at the behavioural and register-transfer levels. *Journal of Electronic Testing: Theory and Applications (JETTA)*, 13(2):79–91, October 1998.
- [8] K. Khouri, G. Lakshminarayana, and N. Jha. High-level synthesis of low-power control-flow intensive circuits. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 18(December):1715–1729, 12 1999.
- [9] P. Kollig and B. Al-Hashimi. A new approach to simultaneous scheduling, allocation and binding in high level synthesis. *IEE Electronics Letters*, 33(18):1516–1518, August 1997.
- [10] G. Lakshminarayana and N. Jha. High-level synthesis of power-optimized and area-optimized circuits from hierarchical data-flow intensive behaviors. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 18(3):265–281, March 1999.
- [11] G. Lakshminarayana, A. Raghunathan, N. Jha, and S. Dey. Power management in high level synthesis. *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, 7(1):7–15, March 1999.
- [12] E. Larsson and Z. Peng. A technique for test infrastructure design and test scheduling. In *Design and Diagnostic of Electronic Circuits and Systems Workshop (DDECS 2000)*, 2000.
- [13] E. Larsson and Z. Peng. Test infrastructure design and test scheduling optimization. In *IEEE European Test Workshop*, 2000.
- [14] S. Lin. *A Design System to Support Built-In Self-Test of VLSI Circuits Using BILBO-Oriented Test Methodologies*. PhD thesis, University of Southern California, May 1994.
- [15] S. Lin, C. Njinda, and M. Breuer. Generating a family of testable designs using the BILBO methodology. *Journal of Electronic Testing: Theory and Applications (JETTA)*, 4(2):71–89, 1993.
- [16] Model Technology. *ModelSim Tutorial*. Model Technology Incorporated, 2000.
- [17] V. Muresan, V. Muresan, X. Wang, and M. Vladutiu. The left edge algorithm and the tree growing technique in block-test scheduling under power constraints. In *Proc. of the 18th IEEE VLSI Test Symposium*, pages 417–422, 2000.
- [18] V. Muresan, X. Wang, V. Muresan, and M. Vladutiu. A comparison of classical scheduling approaches in power-constrained block-test scheduling. In *Proc. IEEE International Test Conference (ITC 2000)*, pages 882–891, 2000.
- [19] N. Nicolici. *Power Minimisation Techniques for Testing Low Power VLSI Circuits*. PhD thesis, University of Southampton, U.K., October 2000.
- [20] N. Nicolici and B. Al-Hashimi. Efficient BIST hardware insertion with low test application time for synthesized data paths. In *Proc. IEEE/ACM Design Automation and Test in Europe (DATE 99)*, pages 289–295, 1999.
- [21] N. Nicolici and B. Al-Hashimi. Power conscious test synthesis and scheduling for BIST RTL data paths. In *Proc. IEEE International Test Conference (ITC 2000)*, pages 662–671, 2000.
- [22] N. Nicolici, B. Al-Hashimi, A. Brown, and A. Williams. BIST hardware synthesis for RTL data paths based on test compatibility classes. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 19(11):1375–1385, November 2000.
- [23] C. Ravikumar, G. Chandra, and A. Verma. Simultaneous module selection and scheduling for power-constrained testing of core based systems. In *13th International Conference on VLSI Design*, pages 462–467, 2000.
- [24] C. Ravikumar, A. Verma, and G. Chandra. A polynomial-time algorithm for power constrained testing of core based systems. In *8th Asian Test Symp.*, pages 107–112, 1999.
- [25] Y. Zorian. A distributed BIST control scheme for complex VLSI devices. In *Proc. 11th IEEE VLSI Test Symposium*, pages 4–9, 1993.