The University of Southampton
University of Southampton Institutional Repository

Linear spectral mixture models and support vector machines for remote sensing

Linear spectral mixture models and support vector machines for remote sensing
Linear spectral mixture models and support vector machines for remote sensing
Mixture modeling is becoming an increasingly important tool in the remote sensing community as researchers attempt to resolve subpixel, area information. This paper compares a well-established technique, linear spectral mixture models (LSMM), with a much newer idea based on data selection, support vector machines (SVM). It is shown that the constrained least squares LSMM is equivalent to the linear SVM, which relies on proving that the LSMM algorithm possesses the “maximum margin” property. This in turn shows that the LSMM algorithm can be derived from the same optimality conditions as the linear SVM, which provides important insights about the role of the bias term and rank deficiency in the pure pixel matrix within the LSMM algorithm. It also highlights one of the main advantages for using the linear SVM algorithm in that it performs automatic “pure pixel” selection from a much larger database. In addition, extensions to the basic SVM algorithm allow the technique to be applied to data sets that exhibit spectral confusion (overlapping sets of pure pixels) and to data sets that have nonlinear mixture regions. Several illustrative examples, based on an area-labeled Landsat dataset, are used to demonstrate the potential of this approach.
0196-2892
2346-2360
Brown, M.
52cf4f52-6839-4658-8cc5-ec51da626049
Lewis, H.G.
e9048cd8-c188-49cb-8e2a-45f6b316336a
Gunn, S.R.
306af9b3-a7fa-4381-baf9-5d6a6ec89868
Brown, M.
52cf4f52-6839-4658-8cc5-ec51da626049
Lewis, H.G.
e9048cd8-c188-49cb-8e2a-45f6b316336a
Gunn, S.R.
306af9b3-a7fa-4381-baf9-5d6a6ec89868

Brown, M., Lewis, H.G. and Gunn, S.R. (2000) Linear spectral mixture models and support vector machines for remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 38 (5), 2346-2360. (doi:10.1109/36.868891).

Record type: Article

Abstract

Mixture modeling is becoming an increasingly important tool in the remote sensing community as researchers attempt to resolve subpixel, area information. This paper compares a well-established technique, linear spectral mixture models (LSMM), with a much newer idea based on data selection, support vector machines (SVM). It is shown that the constrained least squares LSMM is equivalent to the linear SVM, which relies on proving that the LSMM algorithm possesses the “maximum margin” property. This in turn shows that the LSMM algorithm can be derived from the same optimality conditions as the linear SVM, which provides important insights about the role of the bias term and rank deficiency in the pure pixel matrix within the LSMM algorithm. It also highlights one of the main advantages for using the linear SVM algorithm in that it performs automatic “pure pixel” selection from a much larger database. In addition, extensions to the basic SVM algorithm allow the technique to be applied to data sets that exhibit spectral confusion (overlapping sets of pure pixels) and to data sets that have nonlinear mixture regions. Several illustrative examples, based on an area-labeled Landsat dataset, are used to demonstrate the potential of this approach.

Full text not available from this repository.

More information

Published date: September 2000
Organisations: Electronic & Software Systems

Identifiers

Local EPrints ID: 256085
URI: https://eprints.soton.ac.uk/id/eprint/256085
ISSN: 0196-2892
PURE UUID: d2621f16-a1a8-4f4d-ab90-10521bd177f9

Catalogue record

Date deposited: 27 Mar 2002
Last modified: 16 Jul 2019 22:59

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×