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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Jasvinder S. Kandola

A drawback of many statistical modelling techniques, commonly used in machine learn-
ing, is that the resulting model is difficult to interpret. The principal focus of this thesis
is the development of advanced non-linear interpretable models. Interpretable modelling
offers us a powerful tool with which to understand the structure of a model constructed
from data, allowing model validation and assisting in model selection. Gibbs (1997)
observes the easiest way to introduce model interpretability is to use models where the
parameters and the related hyperparameters have clearly interpretable meanings. The
Bayesian methodology of Automatic Relevance Determination (ARD) (MacKay, 1994;
Neal, 1995) is one such approach. In this thesis Laplace approximations, variational
learning and Markov Chain Monte Carlo (MCMC) methods for hyperparameter deter-
mination are assessed within a Bayesian neural network. Empirical results highlight the
numerical instability of the Laplace and variational methods with convergence to a local
rather than global minima. Kernel methods have become a popular modelling approach
(Vapnik, 1998; Smola, 1998; Williams, 1998). In this thesis the constructed kernel mod-
els are equipped with hyperparameters that allow: the ability to select important input
variables, the ability to visualise the model structure and the ability to incorporate
prior or expert knowledge. Ideas from the Bayesian and the signal processing commu-
nities together with the representational advantage of a sparse ANOVA decomposition
have been merged. Interpretability is introduced by using two forms of regularisation:
a 1-norm based structural regulariser to enforce interpretability, and a 2-norm based
regulariser to control smoothness. The model structure can be visualised showing the
overall effects of different inputs, their interactions, and the strength of the interactions.
The performance of these interpretable learning algorithms is demonstrated on both
synthetic and “real” data, notably the AMPG dataset, the Boston house price dataset,
and the problem of predicting the mechanical property proof stress of a metal based
on its chemical composition. Results from these different approaches are compared in
terms of their interpretabilty by exploiting prior knowledge of the problem, and show
the potential of interpretable data models.
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Chapter 1

Introduction

“What’s the next number in the sequence: 2, 3, 5 . . .?”

To be able to forecast future events, science infers general laws and principles from
particular instances. Many recent approaches to developing models from data have
been inspired by the learning capabilities of biological systems and in particular, those
of humans. There has always been an appeal to build systems/learning algorithms
that imitate human (or animal) brains. In the mid 1980s this led to great enthusiasm
about the so called (artificial) neural networks. However, although many neural network
models and applications have little in common with biological systems, the biological
terminology still remains. The techniques that have been developed in this thesis for
learning from data are based on the principles of mathematics and statistics rather than
biology, hence the use of any biological analogy or terminology is avoided.

Broadly stated, the goal of research in machine learning is the understanding of complex
learning processes and the construction of effective computer based learning systems.
Traditionally, the main goal of data modelling systems has been to construct models for
accurate predictions of future outputs from the (known) input values. The construc-
tion of effective computer learning systems has proven to be exceedingly difficult. The
enormity of the task has compelled researchers to focus on developing complex learn-
ing algorithms (Rasmussen, 1996). Workers in the machine learning community have
embraced ever more complicated models and it is not unusual to find applications with
very computationally intensive models containing hundreds or thousands of parameters.

1.1 Problem Statement

Recent approaches to developing methods that learn from examples have been inspired
by the need to develop effective solutions that can discover the implicit and non-trivial
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relationships that exist in data. This thesis is concerned with the problem of model
interpretability. Whilst a predictive model is often the ultimate goal of modelling, it is
often desirable and often even essential to be able to interpret the final model structure.
This is especially true in medical domains, where black-box models (Ljung, 1987), for
example traditional neural networks and kernel based methods, are viewed with great
suspicion (Wyatt, 1995; Plate, 1999). The need for understanding large, complex, in-
formation rich datasets has become common to virtually all fields of business, science
and engineering. The mathematical formulation of the learning problem often gives the
impression that learning algorithms do not require modeller intervention. In practice
issues such as selection of the ’relevant’ input and output variables, data encoding/rep-
resentations, as well as incorporating a priori domain knowledge into the design of the
learning system must be considered.

In response to the lack of model interpretability, statisticians (who traditionally have
been great advocates of interpretable models) and other researchers often revert to us-
ing simpler, but more interpretable modelling methods, for example multivariate linear
regression or logistic regression (Plate, 1999). A notable disadvantage in using such sim-
ple models is that they typically suffer from the problem of model mismatch, and hence
they may fail to discover an important relationship in the data because they lack the
flexibility to model it. This thesis is concerned with trying to address this shortcoming
by deploying interpretable modelling methods in complex non-linear environments.

This thesis focuses on the construction of sparse data driven models that can be easily
interpreted. As observed by Gibbs (1997) the easiest way to introduce model inter-
pretability is to use models where the parameters and the related hyperparameters have
clearly interpretable meanings. In the case of regression models, the hyperparameters
quite often indicate more about the underlying physical mechanism that gave rise to the
data, than the parameters of the model. Given the recent interest in Bayesian methods
for learning, modelling with interpretable parameters and hyperparameters also simpli-
fies the expression of probability distributions. In response to the lack of model inter-
pretability the constructed models are equipped with hyperparameters that allow: the
ability to select important input variables via principled data driven approaches (these
are discussed in Chapter 3 and Chapter 5), the ability to visualise the model structure
and the ability to incorporate prior or expert knowledge.

1.2 Motivation and Challenges

Many of the flexible modelling approaches that exist in the literature have not been
designed with particular learning tasks in mind (Cherkassky and Mulier, 1998). This
then introduces the problem of how to choose the best technique for a particular task.
All of these general purpose methods rely on various assumptions and approximations,
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and in many cases it is difficult to know how well these are met in particular applications,
and how severe the consequences of breaking them are.

Empirical assessment of these modelling methods seems to be the most appealing way
of choosing between them. If one method has been shown to out perform another on
a series of learning problems that are deemed to be representative of the applications
we are interested in that should be enough to resolve the dispute (Rasmussen, 1996).
However, empirical assessment of different learning methods is usually only based on
predictive performance. Interpretable modelling algorithms are attractive from a number
of viewpoints. Incorporation of interpretability into a model provides an additional
means for model selection and model validation, allowing a model to be selected not
only on predictive performance but also through prior knowledge.

The problem under investigation can be stated as follows: given a dataset consisting
of inputs and an output, how can interpretable data models be developed that are
capable of recovering the underlying model structure. A number of researchers (MacKay,
1994; Neal, 1995; Plate, 1999) have tried to address this problem by determining which
inputs are relevant in predicting the output. In addition to determining relevant input
variables, this research takes a more general approach to model interpretability by trying
to visualise the underlying model structure with the aim of evaluating the predicted
model trends using prior knowledge. This information can then be used to provide
additional information useful for model validation and model selection. In contrast to
many other approaches, that are reviewed in Chapter 2, the approaches developed in
this thesis try to avoid problems with convergence to local minima.

When describing interpretable modelling methods, many researchers have been con-
cerned with the following performance criteria summarised below (Cherkassky and Mu-
lier, 1998):

• Robustness - Does the method tolerate a reasonable amount of noise in the dataset,
and how does interpretability degrade in high noise applications.

• Efficiency - Machine learning typically requires that an enormous space of alter-
natives be considered. How much time and memory are required to search this
space?

• Accuracy - Is the method capable of providing an accurate description of the un-
derlying system.

Introducing interpretability into a learning method is not a straightforward task. There
are a few basic problems which afflict every algorithm (Gunn and Kandola, 2000):

• False Recognition - Due to correlation effects, inputs which are in fact erroneous
to the output are selected as being relevant.
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• Over complex models - Even highly interpretable methods lose their interpretability
as the models become too complex. As a result model interpretation is inherently
limited by the models complexity regardless of the method used. As a consequence,
methods for penalising model complexity or methods for obtaining sparse models
are desirable.

• Incomplete Features - The dataset may not contain enough information for a mean-
ingful analysis to be made. This could be because many important attributes of
the problem cannot be measured or are not available.

This research develops interpretable learning methods that take these problems into
account. The problem of false recognition can be assessed by evaluating the stability with
which inputs are selected after multiple random parameter initialisations, and multiple
random dataset partitions are employed. Random parameter initialisations and data
partitions are desirable since they allows exploration of different regions of the model
space. The approach considered in this thesis attempts to resolve the second problem
by employing two different approaches. In the first two regularisers are used: a 1-norm
based structural regulariser to enforce interpretability, and a 2-norm based regulariser
to enforce smoothness. In the second approach, a Bayesian approach is developed in
which probability distributions are used to encode prior beliefs of model interpretability
and model sparsity. Unfortunately, other than collecting more data very little can be
done to resolve the missing features problem.

1.3 Relationship to Existing Approaches

Kernel based methods and Support Vector Machines (SVMs) (Vapnik, 1998; Smola,
1998) in particular are a class of learning methods that can be used for non-linear re-
gression estimation. They have often achieved state of the art performance in many areas
where they have been applied (Tipping, 2000b). The class of functions they choose from
is determined by a kernel function. The form of this function is of central importance to
kernel based methods. Its choice determines the class of functions the model can draw
its solution from, and hence the accuracy of the solution.

In this work we aim to develop a kernel based technique capable of providing inter-
pretable modelling. Moreover, the datasets considered can contain irrelevant features.
This study encompasses a particular ANalysis Of VAriance (ANOVA) decomposition
kernel and is applied to both artificial and real world datasets. Despite the growing
interest in SVM research, there has been little effort to explore the underlying model
structure.

A number of new concepts and algorithms have been introduced by researchers trying to
introduce interpretability into learning algorithms (Breiman et al., 1984; MacKay, 1994;
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Neal, 1995). Statisticians have often used an ANOVA kernel when needing to interpret
the interactions between attributes of the data (Allen, 1974; Wahba, 1985). Methods
for determining low order interactions are considered since they provide a less complex
description of the data.

In order to obtain sparse interpretable models it is difficult to rely on a single technology
to achieve our goals. This implies that an integration of techniques is required. The pro-
posed method exploits the merits of: (1) Multiple regularisers enforcing interpretability
and smoothness, (2) Bayesian learning for hyperparameter determination, (3) ANOVA
decomposition kernels, (4) deployment within a kernel based method.

ANOVA kernels have previously been deployed within an SVM with promising perfor-
mance (Stitson et al., 1999). However, the difference in this thesis has been to develop
a technique that will select a sparse ANOVA kernel producing strong interpretability.
Within the neural networks community, the method of Automatic Relevance Determi-
nation (ARD) (MacKay, 1994; Neal, 1995) for input selection has been introduced. The
proposed method uses an approach similar to ARD in an ANOVA kernel. A number of
other methods have been introduced where the parameters or the hyperparameters can
be given a physical meaning, for example the hierarchical mixtures of experts (Water-
house and Robinson, 1997), graphical models (Whittaker, 1990) as well as rule based
architectures (Brown and Harris, 1994).

Part of the work described in this thesis is dedicated to the empirical study of prior
work in model interpretability. The closely related method of ARD in a Bayesian neural
network and within a Gaussian process model were successfully implemented to scru-
tinise their performance with respect to the problem in hand. This exercise provided
insight and direction to the work described in this thesis. This is also useful in that
it then highlights similarities and differences between various algorithms to allow an
analytical comparison. Furthermore, it is important to benchmark the performance of
our algorithm against those of existing methods. Overall it is the aim of this thesis to
demonstrate the effectiveness of sparse interpretable learning methods in a wide variety
of situations.

1.4 Contributions

The main contributions of this work are to introduce interpretable modelling as a means
for model selection and model validation; the introduction of two novel algorithms re-
lying on kernel based learning, and a demonstration of the empirical assessment of
interpretable kernel based methods with other interpretable modelling methods. The
primary contribution of this research has been to sensibly combine existing ideas along
with new ones to provide a systematic paradigm for model interpretability and model
validation.
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• Detailed discussion of the use of interpretable data modelling for model under-
standing. Additive models are attractive for a number of reasons and their use in
interpretable data modelling is highlighted.

• Bayesian inference in learning algorithms has received a renewed research effort.
The Bayesian methodology of automatic relevance determination (ARD) is limited
in that high dimensional integrals are involved in the inference step. A number
of approximation methods have been proposed to overcome this. A discussion as
to their advantages and limitations are highlighted with reference to an artificial
problem.

• Using ideas from statistics, Bayesian inference and functional analysis, Chapter 4
provides a discussion of different aspects of approximation by kernel based methods
that are used for function approximation. Splines are attractive for data modelling
and these are discussed with reference to data modelling problems.

• Two popular methods that use multiple regularisers or hyperparameters, have
been proposed to obtain sparse solutions. Multiple regularisers have been used
extensively in the signal processing community, and their usefulness in obtaining
sparse interpretable modelling methods is investigated. Bayesian hyperparameter
based methods are also deployed resulting in new kernel based learning algorithms.

• Chapter 6 describes the results of applying the sparse interpretable methods that
have been developed to a range of datasets highlighting the potential of the de-
scribed methods. The sparse interpretable approaches developed in this thesis
were applied to a commercial dataset with great success, resulting in the company
modifying their process as a direct result of the structural information obtained
from interpretable modelling methods.

The work in this thesis has contributed in part or full to the following publications:

• Gunn S.R. and J.S. Kandola (2001). Structural Modelling with Sparse Kernels, Ma-
chine Learning: Special Issue on Model Selection and Model Combination. Eds: Y.
Bengio and D. Schuurmans. In Press.

• Gao J.B., S.R. Gunn and J.S. Kandola (2000). A Variational Approach for Adapt-
ing Kernels in Support Vector Regression, Advances in Neural Information Processing
Systems (NIPS13) Kernel Workshop. Denver, USA, December 2000.

• Kandola J.S. and S.R. Gunn (2000). Assessing the Stability of Advanced Transpar-
ent Modelling Techniques, CRM Workshop on Combining and Selecting Models using
Machine Learning Algorithms. Montreal Canada, April 2000.

• Kandola J.S. and S.R. Gunn (1999). Data Driven Knowledge Extraction of Materials
Properties, IEEE IPMM 99 USA, pp. 380-388.
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• Kandola J.S. and S.R. Gunn (1999). Understanding Complex Datasets, Young Statis-
ticians Meeting (YSM’99), Royal Statistical Society, University of Bristol, UK, March
1999.

• Kandola J.S. and M. Brown (1998). Statistical Modelling of Complex Processes, EC
Bayesian Signal Processing Summer School, Isaac Newton Institute for Mathematical
Sciences, University of Cambridge, UK, July 1998.

1.5 Outline of Thesis

This prelude has introduced the idea of interpretable modelling, and has highlighted
some of the difficulties before interpretable learning algorithms can be applied to a wide
variety of situations.

Chapter 2 provides the basic setting for regression analysis. It introduces the problem
of learning from data. This provides the motivation for much of the rest of the thesis.
The central theme behind all of the methods described in this thesis is that of knowl-
edge representation. The basic ideas behind converting ill-posed problems to well-posed
problems is introduced, and provides a reference point for the ideas described later in
this thesis. The remainder of the chapter motivates the necessity for being able to ex-
amine the model structure. This is considered to be an important part of the model
building process, both for model selection and for model validation. A review of other
interpretable modelling algorithms is provided and a description of their associated lim-
itations.

Chapter 3 introduces the concept of Bayesian inference. Bayesian learning for data mod-
elling has received much interest recently since this method provides a consistent theory
of learning at all levels. Penalisation of over-complex models can be given a natural
interpretation in a Bayesian framework using probability distributions. For regression
problems, error bars can be assigned to the predictions generated by a model, and in
the case of classification class conditional probabilities can be obtained. The Bayesian
learning approach also allows a large number of hyperparameters to be used in the infer-
ence step, and offers principled methods for their determination. This chapter provides
an introduction to the method. The applicability of Bayesian learning to neural net-
work models is introduced, paying considerable attention to the method of automatic
relevance determination for input selection, and hence model interpretability. A num-
ber of algorithms have been developed in the neural network community for evaluating
the typically high dimensional integrals that occur in the presence of the so-called hy-
perparameters. This chapter provides a comprehensive discussion as to the advantages
and disadvantages of these methods. Much of this discussion centres around the use of
Bayesian learning in a neural network to solve a well known artificial problem that has
been proposed in the literature.
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Chapter 4 describes the use of kernel based methods for learning. Kernel methods have
received an immense amount of interest recently due to a number of attractive features
and excellent empirical performance. In some applications they have been reported to
have given state of the art results. The Bayesian formalism described in Chapter 3 for
neural networks, is extended to kernel based learning methods. The idea of defining a
prior distribution over a set of functions is introduced and leads to the Gaussian Process
formulation. This is then related to the use of the structural risk minimisation principle
in the related Support Vector Machine method. Central to both of these methods
is the use of a kernel function. This chapter provides a description of the necessary
requirements for a function to be an acceptable kernel function. The selection of the
kernel function is non-trivial and a review of the current methods for selecting kernels
is provided. Spline kernels are extensively used throughout this thesis because they
are able to model a wide range of functions. Computational cost is also considered in
this chapter, which is a major issue in kernel based learning since evaluation typically
involves storage, evaluation and inversion of a kernel matrix, which for large datasets
can be prohibitive. However, there are methods to address this and they are discussed.

Chapter 5 describes how an alternative method of interpretability can be introduced into
a kernel based method using ANOVA kernels. The solution of a kernel based method is
given by a weighted sum of kernel functions, as a consequence the solution is opaque.
Within a Gaussian process method, Williams and Rasmussen (1996) have addressed
this problem by deploying an automatic relevance determination based kernel function
which is capable of selecting which inputs are relevant in predicting the output and
hence introducing interpretability into this method. This thesis considers an alternative
approach that is based on deploying ANOVA spline kernels within a kernel based method.
ANOVA decomposition is a statistical idea of analysing the variances between different
variables, and finding dependencies on subsets of the variables. This idea is converted to
kernels by ignoring the idea of analysing variances, and considering all possible subsets
of variables up to a certain size. This has the associated advantage that relationships
between different combinations of inputs can be assessed automatically without explicitly
forming additional data inputs. Every ANOVA subterm is a valid kernel in its own right,
and hence a sparse selection of terms allows the subsequent deployment in a kernel
machine. Each term can also be visualised providing structural information about the
underlying model structure. Two popular wavelet methods that can result in a sparse
representation are reviewed, and are used to obtain a sparse representation within the
proposed framework. Bayesian methods have been extensively used for hyperparameter
determination. These methods are also deployed within a kernel based method to allow
a sparse representation. The performance of these methods are illustrated on some toy
examples.

Chapter 6 is concerned with measuring and comparing the predictive performance of
sparse kernel methods on a number of real world datasets. These datasets are illustrative
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of the types of problems that are typically encountered when using commercial datasets,
viz. sparse data, highly correlated input variables and high noise variance. Rasmussen
(1996) has used the DELVE environment to rigorously compare many modelling methods
in a statistically meaningful sense. While several comparisons are made in this thesis
using specific datasets, these are done to illustrate how sparse interpretable models can
be useful, and are not meant as definitive comparisons between kernel methods and
other methods.

Chapter 7 provides a review of the overall contributions of this thesis, and provides some
ideas for future work.





Chapter 2

Function Approximation and

Interpretable Modelling

2.1 Learning from Data

Learning, like intelligence, is difficult to define precisely. A dictionary definition in-
cludes phrases such as ‘to gain knowledge or understanding of a subject by studying,
instruction or experience’, in addition to ‘modification of existing behavioural tendency
by experience’. The task of inductive inference is to find laws or regularities underlying
some given set of data. The aim of finding laws underlying the data is usually cast
in terms of finding a good model for the data. The process of finding such a model is
called statistical inference. Many machine learning algorithms deal with the problem of
predictive learning, i.e., estimating an unknown dependency from known observations.
In the case of noiseless observations we have the related problem of estimating the value
of an unknown function at a new point, given the values of this function at a set of
sample points. Statistical methods for dealing with these problems can be considered
instances of machine learning because the decision and estimation rules depend on a
corpus of samples drawn from the problem environment.

A number of new concepts and algorithms (Bengio et al., 1994; Cherkassky and Mu-
lier, 1998) have been introduced that depart from traditional statistical data analysis in
several ways: they use sophisticated models that can learn complicated nonlinear depen-
dencies from large datasets, and rather than using traditional statistical tests to evaluate
how “good” a model is, evaluation is instead based on predictive or generalisation per-
formance using new and independent test data. Before a model of the system can be
built, an understanding of the system must exist. The former is a learning problem, i.e.
the process of making deductions given a limited set of observations, whilst the latter is
an inference problem. All modelling tasks involve learning and inference. However, the
emphasis of both processes vary among learning algorithms which are tightly coupled to
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the problem domain. Many techniques for improving a models predictive ability have
been inspired by the well-known principle of Occam’s razor1, which is interpreted as
stating that the simplest possible model that accurately represents the data is the most
desirable. From this perspective, the data modelling problem should take into account
some measure of the sparsity of the solution in addition to predictive ability.

Bayesian learning is an example of a technique that has seen a renewed research in-
terest, particularly because of its use of probability to express all forms of uncertainty.
Chapter 3 provides a more indepth discussion of the advantages of Bayesian learning
and some of the limitations associated with this method.

Throughout this thesis, the problem of regression is considered. However, all of the ideas
and algorithms described can be applied to the classification scenario. The problem
of regression is to approximate an unknown function from the observation of a limited
sequence of (typically) noise corrupted input/output data pairs. More formally, consider
a dataset D = {xi, yi}Ni=1, drawn from an unknown probability distribution, where
xi ∈ RF represents a set of inputs, yi ∈ R represents a single output, and N represents
the number of training examples. The empirical modelling problem is to discover an
underlying mapping x→ y that is consistent with the dataset D. The regression function
is learnt from a training set, and its performance can be measured using an independent
test set.

The finite number of training samples in the dataset, D, implies that any estimate of
an unknown function is always inaccurate (biased). The problem of approximating a
function from sparse data is inherently ill-posed (Hadamard, 1923; Poggio and Girosi,
1989). The solution that minimises the empirical risk is not unique, since there are an
infinite number of functions, from the class of continuous functions, that can interpolate
the data points giving a local solution. This situation is illustrated in Figure 2.1.

x

f(x)

Figure 2.1: There are an infinite number models (given by the dashed lines) that can
fit the data (•) making the problem ill-posed.

1William of Occam (1285-1349): “Causes should not be multiplied beyond necessity”.
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Definition 2.1 (Well-posed Problems). The problem of determining the solution
y = S(x) in the space of Y from the initial data x ∈ X is said to be well posed on the
spaces (Y,X ) if the following conditions are satisfied:

1) For every element x ∈ X there exists a solution y in the space Y.

2) The solution y = S(x) is unique.

3) The solution varies continuously with the data.

A problem that is not well posed, i.e. it fails to satisfy one or more of the conditions (1-3)
is called ill-posed. Some examples of ill-posed problems include: numerical differentiation
of noisy and noiseless data, non-parametric smoothing of curves defined using sparse
data, image reconstruction, multivariate approximation by radial basis functions and
training of neural networks. The survey articles by Engl (1993) and Groetsch (1977)
contain many pertinent references. Hence, techniques that can convert ill-posed to well
posed problems are attractive.

2.1.1 Model Regularisation

Given the ill-posed nature of the learning problem, in order to choose one particular
solution some prior knowledge about the class of functions must be used. All learning
methods use a priori knowledge in the form of the (given) class of approximating func-
tions of a learning machine. For example, parametric methods use a very restricted set
of approximating functions of prespecified parametric form, so only a fixed number of
parameters have to be determined from the data. Adaptive methods however use a wide
set of functions capable of approximating any continuous mapping.

The most common form of prior knowledge consists in assuming that the function is
smooth. Smoothness is referred to as a measure of the ‘lack of oscillatory’ behaviour of
a function, i.e., two similar inputs will correspond to two similar outputs if a function
is smooth. Therefore, within a class of differentiable functions, one function will be
smoother than another if it oscillates less (Girosi and Poggio, 1990).

The imposition of a smoothness constraint as part of the learning process essentially
defines possible function behaviour in local neighbourhoods of the input space. For most
learning problems, the smoothness constraints describe how individual samples in the
training data are combined by the learning method in order to form a function estimate.
A consequence of this is that the accuracy of function estimation then depends on
having enough samples within the neighbourhood specified by smoothness constraints.
However, as the number of dimensions increase the number of samples required to give
the same density increases exponentially. This could be offset by increasing the number
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of data samples falling within the neighbourhood, but this is at the expense of imposing
stronger (and possibly incorrect) constraints. This problem is often referred to as the
curse of dimensionality (Cherkassky and Mulier, 1998).

Techniques that control the capacity of a model can result in an improvement in a
model’s generalisation performance by trying to convert the problem to one that is
well posed (Burges, 1998). To control the capacity the method of regularisation can
be incorporated in the learning process. In the case of neural networks, penalising
the number of adaptive parameters in a network can vary the model complexity. The
main idea underlying regularisation theory2 is that the solution of an ill-posed problem
can be obtained from a variational principle, which contains both the data and prior
smoothness information. Smoothness is taken into account by defining a smoothness
functional φ[f ] in such a way that the lower values of the functional correspond to the
smoother functions. Ideally, a solution that is simultaneously close to the data and also
smooth is sought, and hence a solution that minimises the following functional is desired,

H[f ] =
N∑

i=1

(yi − f(xi;w))2 + λφ[f ] (2.1)

where λ is a positive number that is referred to as the regularisation parameter, w are
the parameters of the model, and f(xi;w) is the regression function. Model selection
is the task of choosing a model of optimal complexity for the given (finite) data. Un-
der the above penalisation formulation, the best penalty functional φ[f ] should reflect
(known a priori) properties of a target function so that the penalty is small when the
predicted model is close to the target function, and large otherwise. The first term is
enforces proximity to the data, and the second term smoothness of the function, while
the regularisation parameter controls the balance between the two. To make the learning
machine more data driven and flexible, the observed data can be used to select the reg-
ularisation parameter via cross-validation techniques (Allen, 1974; Wahba, 1985), whilst
the penalty functional is user defined.

A simple method of regularisation is to use the squared norm of the parameter vector,

φ[f ] = ‖w‖22 =
W∑
i=1

w2
i (2.2)

where φ[f ] represents the regularisation functional, W represents the total number of
parameters, w, in the model. This technique is referred to as zeroth order regularisation,
or ridge regression. In a regularised cost minimisation problem, the use of zeroth order
regularisation favours models with low weights thereby controlling the capacity of the
network. The regularised cost minimisation problem (Bellman, 1961) is a trade-off

2In the probabilistic interpretation of regularisation, the different classes of basis functions correspond
to different classes of prior probabilities on the approximating function spaces, and therefore to different
types of smoothness assumptions.
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between a fit to the data, and constraining the model to stay in a small subset of
possible models. This can be seen by re-writing Equation 2.1 in the form,

min
N∑

i=1

(yi − f(xi;w))2 subject to φ[f ] <
1
λ

(2.3)

In the absence of any regularisation or model capacity control, the parameters of a
model result in poor generalisation by virtue of their high likelihood of taking on com-
pletely arbitrary values, or causing the model to overfit the data in order to produce a
slight reduction in the training error (Hush and Horne, 1993). The use of regularisation
encourages the excess parameters to assume values close to zero and thereby improve
generalisation performance.

More complicated forms of model regularisation than that described by Equation 2.2
have been proposed in the neural network literature. Weigend et al. (1991) proposed a
regulariser of the form,

φ[f ] =
W∑
i=1

(wi/w0)2

1 + (wi/w0)2
(2.4)

where w0 is a preassigned parameter. When |wi| � |w0|, the penalty for that weight
approaches unity. The implication of this condition is that the ith parameter of the
model is unreliable and should therefore be eliminated from the model. However, when
|wi| � |w0|, the penalty for that parameter approaches unity, and hence is important
for the learning process. Hence, the penalty term given in Equation 2.4 identifies the
parameters that are of significant influence.

Other approaches that have been proposed have used information from second order
derivatives of the error surface in order to implement a trade off between network com-
plexity and training error performance. The starting point in the construction of such
a model is the local approximation of the loss function using a Taylor series expansion
around an operating point,

S(w + ∆w) = S(w) + g(w)T ∆w +
1
2
∆wT A∆w (2.5)

where ∆w is a perturbation applied to the parameter w, and g(w), with Hessian matrix
A. A number of implementation issues arise when evaluation of the Hessian matrix,
and these are discussed at length in Chapter 3. The optimal brain damage procedure
(LeCun et al., 1990) simplifies the computations by making the assumption that the
Hessian matrix A is a diagonal matrix. However, in the optimal brain surgeon procedure
(Hassibi et al., 1992) no such assumption is made. The goal of this method is to set
the model parameters to zero by minimising the quadratic form, 1

2∆wT A∆w, with
respect to the incremental change in the parameter vector, ∆w, subject to the constraint
that 1T ∆w + wi is zero, and then minimise the result with respect to the index i. In
their paper, Hassibi et al. (1992) report that on some benchmark problems the optimal
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brain surgeon procedure resulted in smaller networks than those using the weight decay
regulariser, however the computational expense was much higher.

2.1.2 Structural Regularisation

The methods described above prevent model overfitting by imposing a penalty constraint
on the set of allowable functions which penalises the models parametric form or penalises
global smoothness properties. The smoothness constraints described essentially define
possible function behaviour in local neighbourhoods of the input space hence, the regu-
lariser can be seen as imposing an ordering on the hypothesis space. However, when no
prior knowledge is available about the data generating function, a large function space
needs to be chosen so as to ensure that the approximation error will be small. As a
consequence, imposing an order on this space is a difficult task.

In learning theory there is also a need for sparse models, in which the smallest number
of functions possible are used to approximate a function f(x). In addition to a term
that penalises the model parameters, an additional term to enforce sparseness of the
model solution is introduced to act as a regulariser on the model structure. Both of
these facets have been inspired by the well known principle of Occam’s razor. From this
formulation of the learning problem, this principle suggests that the design should take
into account some measure of the simplicity, or parsimony, of the solution in addition to
performance on the training set. A possible approach to obtaining a sparse model has
been to build a large model, overspecialised to the training set and attempt to reverse
some of the training by retaining only the vital model structure (Rao et al., Feb 1999).
This latter approach is adopted in methods such as optimal brain surgeon described
above. Sparsity of the model’s representation is discussed further in Chapter 5.

2.2 Knowledge Representation

The learning of a regression function can be posed as an optimisation problem, enabling
expert or prior knowledge to be incorporated into the modelling process. This knowl-
edge refers to information which might be used to supplement the training data that
developed the solution, and which is additional to that provided by the training data.
Examples of prior knowledge include information that is known about variable influence,
the data generating process as well as the data gathering process. Prior knowledge can
either be incorporated directly into the model structure itself, for example by aiding
in the position, number and shape of basis functions, or indirectly as an aid to model
interpretation and model validation.
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The ability to visualise complex nonlinear relationships has provided an important tool
for knowledge extraction (Plate, 1999; Gunn and Kandola, 2000). Expert or prior knowl-
edge can be used to increase the robustness of the modelling process. This knowledge
can be incorporated into the modelling process, for example by defining smoothness
constraints (described in Section 2.1.1), or by introducing a prior distribution over the
possible models (described in Chapter 3). Alternatively, expert knowledge can be in-
corporated as an aid to model interpretation and model validation. Model structure
can be interpreted by assessment of parameter or hyperparameter values, as well as by
assessing the trends between inputs and output.

Qualitative data visualisation algorithms have been proposed in the literature, see for
example (Bishop and Tipping, 1996). However, the majority of these techniques are
limited because they are based on a projection of the data onto a low-dimensional
visualisation space. Whilst such plots can reveal the structure of simple datasets, they
are severely limited for nonlinear datasets with a large numbers of variables. Projection
and visualisation techniques which are capable of revealing the underlying data structure
in these cases are in demand as complex interactions are commonplace in commercial
applications. To this end the use of graphical representations has started to play an
increasing role in data modelling (Whittaker, 1990).

A number of algorithms that utilise the idea of structural regularisation have been
proposed in the machine learning literature. Graphical models are a marriage between
probability theory and graph theory (Jordan, 1999). These models provide a powerful
tool for visualising the complex interactions and dependencies between different data
variables via a graphical representation. Let X be a k-dimensional vector of random
variables. A conditional independence graph, G = (V,E), describes the association
structure of X by means of a graph, specified by the vertex set V and the edge set E
(Whittaker, 1990). To construct a graphical Gaussian model it is necessary to test for
the presence or otherwise of dependencies between the variables. There is a directed
edge between vertices i and j if the set E contains the ordered pair (i, j); vertex i is a
parent of vertex j, and vertex j is a child of vertex i. An edge can be used to indicate
relevance or influence between data variables.

The notion of independence and conditional independence are a fundamental compo-
nent of probability theory. Detailed studies of conditional independence properties can
be found in (Dawid, 1979a,b) or (Lauritzen, 1995). Given an independence graph G, and
a k-dimensional random vector X, a graphical Gaussian model is a family of normal dis-
tributions for X constrained to satisfy the pairwise conditional independence restrictions
inherent in the independence graph. A graphical Gaussian model is obtained when only
continuous random variables are considered. The conditional independence constraints
are equivalent to specifying zeros in the inverse variance parameter corresponding to the
absence of an edge in G (Whittaker, 1990).
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The deviance statistic can be used to assess the overall goodness of fit of a graphical
model. A symmetric deviance matrix can be computed using,

dev(Xb ⊥⊥ Xc|Xa) = −N ln(1− corr2N (Xb, Xc|Xa) (2.6)

This test statistic has an asymptotic χ2 distribution with one degree of freedom. Ele-
ments in this deviance matrix, determine the significance of dependencies in the graphical
model.

Recent work on Bayesian networks (also known as belief networks) has allowed the mod-
elling of joint probability distributions in a number of systems. A Bayesian network is a
graphical model that can be used to encode expert knowledge amongst a set of variables
(Heckerman, 1999). A Bayesian network consists of two components. The first is a
directed acyclic graph (DAG) in which each vertex corresponds to a random variable.
In a manner similar to the graphical Gaussian model, this graph describes conditional
independence properties of the represented distribution. The second component is a col-
lection of conditional probability distributions that describe the conditional probability
of each variable given its parents in the graph. Together, these two components can be
shown to represent a unique probability distribution (Pearl, 1988). Bayesian networks
have the advantage that they can be built from prior knowledge alone, although as Heck-
erman (1999) observes this is only realistic for problems consisting of a few variables and
where definite prior knowledge exists. In recent years there has been a growing interest
in learning Bayesian networks from data; see for example the work of Buntine (1991)
and Heckerman et al. (1995). The majority of this research has focused on learning the
global structure, which corresponds to the edges of the DAG, of the network. Once a
Bayesian network has been constructed, to be able to determine various probabilities of
interest probabilistic inference is required. Although conditional independence is used
in a Bayesian network to simplify probabilistic inference, exact inference in an arbitrary
Bayesian network for discrete variables is NP-hard (Cooper1990). Even approximate
inference (for example by the use of Monte Carlo methods) is NP-hard (Dagum and
Luby, 1993).

The use of tree-based classification and regression has been widely used in the machine
learning community. Popular methods for decision-tree induction are ID3 (Quinlan,
1986), C4.5 and CART (Classification And Regression Trees) (Breiman et al., 1984). To
construct an appropriate decision tree, CART first grows a decision tree by determining
a succession of splits (decision boundaries) that partition the training data into disjoint
subsets. Starting from the root node that contains all the training data, an exhaustive
search is performed to find the split that best reduces some minimum cost-complexity
principle. The overall result of this continual process is a sequence of trees of various
sizes; the final tree selected is the tree that performs best when an independent test set
is presented. Thus, the CART algorithm can be considered to consist of two stages: tree
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growing and tree pruning. Interpretability can be introduced into this method simply
by reading off which inputs are incorporated into the final tree structure.

The Additive Spline Modelling of Observational Data (ASMOD) algorithm has been em-
ployed for finding interesting trends in data (Kavli and Weyer, 1995). In the ASMOD
approach a set of piecewise polynomial basis functions are defined by a series of knots.
The introduction of additional knots within the basis functions enables increasingly
complex functions to be approximated, whilst an increase in the order allows poten-
tially smoother functions to be obtained. The resulting model is a multidimensional
polynomial surface which can be decomposed as a series of local, low order polynomials,
which can be considered as a set of local kth order Taylor series approximation to the
system. The model is constructed using a forward selection, backwards elimination al-
gorithm that updates the model iteratively by selecting the best refinement from a set of
possible refinements. These refinements can include: knot insertion, knot deletion, sub-
network deletion, as well as decreasing or increasing the order of the B-spline. At each
stage in the model construction process an MSE based statistical significance measure
(Gunn et al., 1997) can be used to select the optimal model refinement. A limitation of
a number of these methods is their convergence to local rather than global minima.

Graphical models, Bayesian network and algorithms such as CART have been described
as space partitioning algorithms (Rao et al., Feb 1999). This approach is derived from
the observation that despite the large “volume” of the data input space, it is often the
case that the data is localised to a few relatively dense “clusters”. A natural extension of
this idea is to divide the input space into regions of different sizes and shapes and to use
suitable local regression models in each region. As observed by (Rao et al., Feb 1999)
this obviates the need to use the entire training data to obtain a regression estimate.
For example, in the case of the graphical model, the dependencies are evaluated on a
pairwise basis. This has the associated advantage that the computational complexity is
reduced. A limitation of this approach is the input space partition and the local models
must be designed carefully.

The CART algorithm divides the feature space into a sequence of nested regions, and
uses simple local averaging models in each of the regions. The ASMOD algorithm,
and the related Multivariate Adaptive Regression using Splines (MARS) approach of
Friedman (1991), are similar to CART but with local averaging based on splines which
makes the algorithm more flexible and also more complex. The use of splines is attractive
because it allows smoothness (as described earlier) of regression functions across region
boundaries.

An important drawback of the CART and MARS approaches is that the shapes of the
regions over which local averaging is performed are highly restrictive. In most CART
and MARS implementations, the regions are constrained to be hyper-rectangles with
sides parallel to the co-ordinate axes (Breiman et al., 1984; Friedman, 1991). This hence
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restricts the space of models that can be considered. Another serious drawback of these
approaches is the greedy nature of the learning algorithm. In the basic design approach,
the partitions of the input space are designed in a hierarchical fashion. However, the
upper levels in the hierarchy cannot be re-optimised as more regions are introduced
resulting in convergence to local rather than global minima.

2.3 Feature Extraction and Data Pre-processing

In real world concept learning problems, the representation of data often uses many
features, only a few of which may be related to the target variable. As a result, the
learning problem is compounded if the dataset contains a large quantity of redundant
information. In this situation feature selection is important both to speed up learning,
potentially improve a models predictive ability and to introduce model interpretability.
Feature selection can formally be defined as the problem of choosing a small subset
of features that ideally is necessary and sufficient to describe the target variable. The
notion of feature selection is inherently linked to the idea of structural regularisation
described earlier.

A large number of feature selection algorithms have been proposed in the neural net-
work literature. Many of the approaches described involve an exhaustive search over
all subsets of a given feature set. However, an exhaustive search of the feature space
is intractable. Devijver and Kittler (1982) review heuristic methods for reducing the
search space, but they are often found to be suboptimal. It is always possible for the
methods to miss relevant features since convergence is typically to a local rather than
global minimum.

Pre-processing of data can allow a more efficient and/or meaningful data analysis to be
performed by extracting and transforming features from a set of data. Preprocessing
typically involves transformation of the raw data to a new set of data, such that the
salient information within the dataset is retained or enhanced, and additionally the
conditioning of the following numerical process can often be improved.

Rather than representing the entire transformation from the set of input variables to
the set of output variables by a single function, there is often great benefit in breaking
down the mapping into an initial pre-processing stage. This is attractive because this
additional step can greatly improve the performance of a learning system (Bishop, 1995).

Feature selection in its basic form consists of eliminating as many features in a given
problem as possible, without sacrificing model accuracy. A model with fewer inputs has
fewer adaptive parameters to be determined, and these are more likely to be properly
constrained by a dataset of limited size. In addition, a model with fewer parameters
may be faster to train (Bishop, 1995).
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Having a minimal number of features often leads to better generalisation performance,
and simpler models which may be more easily interpreted (Bradley et al., 1998).

Any procedure for feature selection must be based on two criteria. Firstly, a criterion
must be defined by which it is possible to judge whether one subset of features is better
than another. Secondly, a systematic procedure must be found for searching through
candidate subsets of features. In a practical application, a non-exhaustive search proce-
dure is needed in order to limit the computational complexity of the search process.

A common problem encountered when using large datasets is the curse of dimensionality
(Bellman, 1961). This refers to an exponential growth in complexity, of the learning
problem, as a result of an increase in dimensionality of the inputs. Hence, one of the
most important forms of pre-processing may be a reduction in the dimensionality of the
input data. At the simplest level this could involve using prior knowledge to discard a
subset of the inputs or to form input combinations. This knowledge may then be used
to simplify the model’s representation, and improving the conditioning of the learning
problem. A model with fewer inputs typically has fewer adaptive parameters to be
determined, and these are more likely to be properly constrained by a dataset of limited
size, reducing the possibility of overfitting. However, an important consideration with all
pre-processing techniques is that care should be taken to ensure that salient information
is not lost from the dataset when they are used.

2.4 Additive Models and Interpretability

Additive models are well known within the statistics community (see for example Hastie
and Tibshirani (1990)), and can be considered as a generalisation of linear models. They
are appealing because being essentially a superposition of one-dimensional functions,
they have a low complexity and they share with linear models the feature that the
effects of the different variables can be examined separately. A simple additive model
has the form,

f(x) =
F∑

i=1

fi(xi) (2.7)

where xi is the i-th component of the F dimensional input vector x and fi are univariate
functions. There has been surprise at the relative success of additive modelling meth-
ods in the machine learning community (Rasmussen, 1996). Much of this interest has
centered around the predefined nature of the additive model and whether such models
can capture the fundamental properties of the physical world.

Girosi et al. (1995) have considered this question by considering the problem of object
recognition, or model control. We can recognise almost any object from any of many
smaller subsets of its features that are both visual and non-visual. We can perform
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many motor actions in several different ways. In most situations, our sensory and motor
worlds are redundant. In terms of generalised regularisation networks this means that
instead of high dimensional centres, any of the several lower dimensional centres are
often sufficient to perform a given task. Splitting the recognisable world into additive
parts may well be preferable to reconstructing it in its full multidimensionality, because
a system composed of several independently accessible parts is inherently more robust
than a whole simultaneously model dependent on each of its parts. The small loss in
uniqueness of recognition is easily offset by the gain against noise and occlusion. Girosi
et al. (1995) also propose the possible meta-argument that humans would not be able
to understand the world if it were not additive because of the very large number of
necessary examples, for example the high dimensionality of any sensory input such as
an image. As such we may be tempted to conjecture that our sensory world is biased
towards an additive structure. Additive models and interpretability are discussed further
in Chapters 4 and 5.

2.4.1 Interpretability as a means for Model Selection

Selecting a model from a large class of plausible models is an important problem in
machine learning and statistics. A classic example is the selection of variables problem
in linear regression analysis. Choosing suitable transformations of the predictor and/or
the response variable in linear regression is another major instance of model selection.
A standard definition involves good models being able to make predictions close to what
has been observed for an identical experiment.

Among the several criteria that have been proposed for model selection, the Akaike
information criterion (AIC) (Akaike, 1974) and Schwarz’s Bayes information criterion
(BIC) (Schwarz, 1978) are widely used, however they are not well-posed. An inherent
problem with these criteria is that they do not allow prior knowledge for model choice.
Moreover, their definitions rely on asymptotic considerations that may be inappropriate
for finite problems. However, the complete Bayesian approach to model selection requires
the specification of prior probabilities over the class of models under consideration, and
the specification of priors for the parameters of each model. In selecting between two
models, often we can reasonably carry out these specifications, and use Bayes factors
or posterior model probabilities to make the final model choice. With a large number
of models, the fully Bayesian solution is difficult to implement. In this thesis, model
interpretability is used to address the problem of model selection. Here, emphasis is
placed on interpreting the model structure rather than the model parameters. From a
Bayesian perspective this is a sensible strategy since the set of model parameters do not
contain very much physical meaning, and they are free of any asymptotic definitions
allowing the ready incorporation of prior knowledge.
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2.4.2 Interpretability and Model Validation

A number of questions arise when considering the model generated by a system: in
which situations can a particular model be justifiably applied? How well does the model
represent the underlying data generating distribution? What are the inherent limitations
in the model’s construction and how can they be controlled? For model validation to be
useful it must involve a broad range of activities, for example the theoretical analysis of
a models assumptions, empirical experiments on data, as well as comparisons between
model results and prior knowledge.

In data modelling, the term ‘validation’ is often associated with ‘establishing the agree-
ment between predictions and observations’, as opposed to ‘verification’ which tends to
be used in the sense of ‘checking the models implementation and construction’. Use of
this terminology is by no means consistent, nor is it accepted in other fields.

The ability to visualise, and hence assess the model structure, together with a theoretical
analysis of the modelling assumptions can be considered to be the key features of model
validation. It is necessary to explicitly identify model assumptions and approximations,
and to state the general conditions under which these are valid. Visualisation of the
trends discovered between inputs and outputs also enables assessment of model accuracy,
with respect to prior knowledge.

2.5 Comparison and Critique of Prior Work

A common problem in learning theory occurs when insufficient data exists for making
accurate inferences. Many modelling methods will as a result pick a model that is
‘too simple’. It is important to realise that this does not mean that ‘simpler models
are a priori more likely to be true’, or that ‘nature prefers simplicity’, but rather the
rationale behind picking only simple models when few data are available is rather that
the dataset is too small to identify a complex model with any certainty. The fact that
modelling methods may select an overly simple model, when only small datasets exist,
raises the question whether the overly simple model could be used to provisionally make
reasonable predictions. Once we acknowledge that our models always have a chance
of being partially wrong, a new difficulty arises. This raises the important question of
what can and what cannot be reliably inferred from a statistical model of the data: what
exactly does a model say about the modelled situation?

Recently there has been a renewed interest for kernel based methods to solve inference
problems. This has in part been due to the success of the Support Vector Machine (SVM)
approach (Cortes and Vapnik, 1995; Vapnik, 1998). Kernel based learning methods
represent the function value to be learned with a linear combination of terms of the
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form K(x,xi), where xi is generally the input vector associated with one of the training
examples and K is a symmetric positive definite kernel function (Aronszajn, 1950).

Sparsity of the representation is an important issue for both the computational efficiency,
and for its influence on model interpretability. However, the sparsity of the solutions
found by the SVM algorithm is difficult to control, and often the solutions found are
not very sparse.

For reasons that are typically associated with their architectures and their learning
algorithms, some learning systems are limited in their capability to handle large datasets
and, although not considered in this thesis, to perform online learning. This is in part
due to the computational cost associated with inverting matrices the size of the training
dataset, and where the number of basis functions grows proportionally to the amount
of training data, as such this makes sparse representations desirable. Within the kernel
community, a number of computational approaches have been developed that rely on
partitions of the large dataset into smaller subsets. Learning then takes place by training
algorithms on these smaller subsets and then combining the overall estimate. These
approaches are reviewed and discussed in Section 4.7.

A number of algorithms have been developed primarily in the signal processing commu-
nity that are capable of resulting in a sparse solution. There are many interesting links
with the research on kernel based learning algorithms developed in the machine learning
community. The wavelet algorithms, matching pursuit and basis pursuit denoising, and
their role in obtaining sparse solutions are reviewed extensively in Chapter 5. Con-
nections between wavelet algorithms and SVMs have already been reported in (Poggio
and Girosi, 1998). More recently, (Smola and Schölkopf, 2000) have shown connections
between matching pursuit, kernel-PCA (Scholkopf et al., 1998), sparse kernel feature
analysis, and how this greedy algorithm can be used to compress the kernel matrix in
kernel methods to allow the handling of large datasets.

In a large number of supervised learning problems feature selection is important for
a variety of reasons: generalisation performance, computational running time require-
ments, as well as interpretability issues imposed by the problem itself (Weston et al.,
2000). Previous work on feature selection for SVMs have been limited to linear kernels
or linear probabilistic models (Jebera and Jaakkola, 2000).

The feature selection problem as described in Section 2.3 can be addressed in the fol-
lowing two ways: (1) Find the smallest set of features that minimises the expected
generalisation error; or (2) Find the smallest set of features that gives an expected gen-
eralisation error not more than a constant factor worse than the minimum expected
generalisation error. In both of these problems the expected generalisation error is of
course unknown and must be estimated.
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In the machine learning literature it is necessary to distinguish between two types of
method to solve this problem, the so-called filter and wrapper methods (Weston et al.,
2000). Filter methods are defined as a preprocessing step to induction that can remove
irrelevant data attributes before induction occurs, and hence we wish them to be valid
for any set of functions. An example of a popular filter method is the use of Pearson
correlation coefficients. The wrapper method is defined as a search through the space of
feature subsets using the estimated accuracy from an induction algorithm as a measure
of goodness of a particular feature subset. Weston et al. (2000) propose that wrapper
methods can provide more accurate solutions than filter methods, but in general are
more computationally expensive since the induction algorithm must be evaluated over
each feature set considered, typically using cross validation techniques as a measure of
goodness of fit. In their work Weston et al. (2000) suggest a feature selection algo-
rithm for SVMs that takes advantage of the performance increase of wrapper methods
whilst avoiding their computational complexity. Their approach avoids the combina-
torial nature of the feature selection problem by using a greedy search method that
adds or removes features in a forwards regression/backwards elimination approach, sim-
ilar to that used in the ASMOD (Kavli and Weyer, 1995) training algorithm; however
convergence is to a local minima.

In kernel based methods, large datasets can pose significant problems since the number
of basis functions required for an optimal solution often equals the number of samples.
Smola and Schölkopf (2000) and Smola and Bartlett (2000) have proposed a sparse
greedy approximation method, in a manner similar to that of Weston et al. (2000), that
constructs a sparse compressed representation of the kernel matrix. Their approach is
based upon the minimisation of an L0 norm on a set of hyperparameters in a manner
similar to that deployed in the wavelet based method of matching pursuit. This algo-
rithm is discussed in more detail in Sections 4.7 and 5.1. An inherent limitation of such
greedy learning algorithms is their convergence to local rather than global minima.

As well as providing a good fit to the data and plausible predictions based on the data,
an important requirement is that our model gives us information about the underlying
probability distribution from whence the data came. A popular method for obtaining
sparse and interpretable solutions has centered on the introduction of hyperparame-
ters. For example, Automatic Relevance Determination (ARD) (MacKay, 1994; Neal,
1995), the process of determining whether individual inputs cause significant variation
in the outputs, can be performed by specifying different regularisation classes for weights
connected to each input. This allows a sparse representation of the model structure by
removing redundant input variables. The Relevance Vector Machine (RVM) has recently
been introduced by (Tipping, 2000b). In this model a separate regularisation parameter
is introduced for each parameter in the model, and the objective is to drive as many of
these parameters to zero reflecting a sparse representation. These methods are reviewed
in the context of sparse interpretable methods in Chapters 3 and 4.
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2.6 Summary

A central objective of machine learning research is to develop algorithms that learn
predictive relationships from data. This is a central component of data mining and
knowledge discovery tasks. However, this is a difficult task because inferring a predictive
function from data is in fact an ill-posed problem. To make this problem well-posed one
needs to somehow calibrate the complexity of the proposed function class to the amount
and quality of available sample data. A classical approach is to perform model selection
where one imposes a preference structure over function classes, and then optimises a
combined objective of class preference and data fit. In doing so, however, it would be
useful to have an accurate estimate of the expected generalization performance at each
preference level; one could then pick the function class that obtained the lowest expected
error, or combine functions from the functions classes with the lowest expected error,
and so on.

This chapter has surveyed the main ideas behind recent research in sparse interpretable
modelling methods. Many approaches have been proposed in the past for this pur-
pose, both in the statistics and the machine learning communities. Recently in machine
learning there has been significant interest in new techniques for evaluating generalisa-
tion error, for optimising generalisation error, and for combining and selecting models.
A number of methods are applicable only to a highly restricted class of datasets. In-
variably these overly restrictive representations embody strong assumptions about the
modelling scenario, and consequently they are only suitable for solving a restricted set
of modelling tasks that fit these assumptions.

Throughout this thesis, the main focus is on model interpretability, in which knowledge
of a model is provided by an explicit model of the underlying data generating mecha-
nism. Recognition is accomplished by finding a correspondence between certain features
of the data and comparable features of the model. The two most important issues that
a method must address are what constitutes important features, and how a correspon-
dence may be found between image and model features. These new approaches suggest
that better generalisation performance can be obtained using new, broadly applicable
procedures. Progress in this area has not only been important for improved understand-
ing of how machine learning algorithms generalise, it has already been demonstrated to
be very useful for practical applications of machine learning and data analysis.



Chapter 3

Bayesian Inference and Learning

Algorithms

3.1 The Advantages and Disadvantages of being Bayesian

Bayesian inference can be regarded as a powerful tool with which to tackle the problem
of data modelling. The Bayesian learning approach is based upon the expression of this
knowledge in terms of a probability. In general, these probabilities can be interpreted as
expression of our degrees of belief in the various possibilities (Neal, 1995). A model is
designed for a particular system and when the data arrives from the system the model
is adapted in light of the data. The model then provides a representation of our prior
beliefs about the system and the information derived from the data (Bishop, 1995).

The statistical methodology of Bayesian learning for inductive inference has been the
focus of an intensified research effort over the last decade. This has in part been due to
the work of MacKay (1991), Neal (1995) and Gull (1989). The concepts and methods
described by the framework are general and have been applied to many data modelling
problems (Sykacek et al., 2000). The practical benefits of the Bayesian approach include
principled methods for model regularisation, feature selection, hyperparameter determi-
nation, model selection, active learning and the calculation of error bars (Bishop, 1995;
Dybowski and Roberts, 2000).

Despite the apparent advantages surrounding the use of Bayesian methods, their ap-
plication is not always straightforward. Two principle areas of difficulty exist. The
first one centres around the mathematical complexity that often occurs in Bayesian
approaches. Approximations often have to be made to avoid the intractable high di-
mensional integrals that typically exist. This point is discussed further in Section 3.7.
Another potential problem with the Bayesian approach is the choice of prior probability
distribution that captures our degrees of belief. Classical statisticians (or frequentists)
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would argue that the Bayesian prior is subjective, and hence the Bayesian approach is of
questionable worth. In contrast the frequentist approach to statistical inference does not
have this problem, since the objective here is to only express the long-run frequencies
of the outcome of repeatable experiments. A frequentist strategy for learning takes the
form of a point estimator of unknown quantities. However, as Gibbs (1997) argues this is
not the case. Any prior placed on an event is determined by our prior knowledge of that
event. The only requirement for a prior to be objective is that two people having exactly
the same prior knowledge about an event choose the same prior probability distribution.

As observed by Gibbs (1997) and Jaynes (1994), the problem with priors lies not with
subjectivity but with the difficult process of assigning probabilities. How do we decide
which numbers truly reflect what we believe? Priors also cause problems when the prior
belief is very hard to express in terms of the models that are being used. The temptation
then arises to adapt the priors to fit the model, viz. choose mathematically convenient
priors for a given problem that may not accurately reflect our prior beliefs.

This debate over Bayesian versus frequentist statistics has been an ongoing argument
between both camps, see for example the work of Jaynes (1994). It is not the aim of
this thesis to contribute to this argument, which at its heart is a philosophical argument
about the meaning of a probability, but rather to show how the Bayesian approach can
be used to introduce interpretability into advanced nonlinear modelling methods.

3.2 Uncertainty and Probability Distributions

The problem of regression is to approximate an unknown function from the observation
of a limited sequence of (typically) noise corrupted input/output data pairs. Consider
a dataset D = {xi, yi}Ni=1, drawn from an unknown probability distribution, where
xi ∈ RF represents a set of inputs and yi ∈ R represents a single output. The empirical
modelling problem is to discover an underlying mapping x → y that is consistent with
the dataset D.

The Bayesian inference problems can be posed as follows. Consider a set of models
H1,H2, . . . ,HL competing to explain the data. Our initial beliefs about the plausibility
of these models are described by a set of probabilities p(H1), p(H2), . . . , p(HL). Each
model,Hi, makes predictions about how likely the different datasetsD are. These predic-
tions are described by a probability distribution P (D|H). When the data are observed,
Bayes’ theorem (Equation 3.1) can be used to describe how to infer the parameters, w,
of the model given the data

P (w|D,H) =
P (D|w,H)P (w|H)

P (D|H)
(3.1)
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The fundamental concept of Bayesian analysis is that the plausibilities of alternative
hypotheses are represented by probabilities, then the process of inference is performed
by evaluating these probabilities. The quantity P (w|H) represents a prior probability
for the parameters w of a model H. If there is no particular reason to prefer one model
over another, equal prior probabilities can be assigned to all of the models. Since the
denominator of Equation 3.1 does not depend upon the model, the different models,
H1,H2, . . . ,HL, can be compared by evaluating the likelihood term, p(Hi|D), which is
called the evidence for model Hi (MacKay, 1994).

3.3 Traditional Neural Networks

One of the most straightforward approaches to data modelling is to represent the un-
derlying model structure in parametric form. The values of the parameters can then be
optimised to give the best fit to the data. In contrast, non-parametric methods do not
assume a particular functional form, but allow the form of the model structure to be
determined entirely by the data. These methods typically suffer from the problem that
the number of parameters in the model grows with the dataset size.

Neural networks have received an immense research interest and have been applied in
many areas. The books by Bishop (1995) and Haykin (1999) provide good descriptions.
As Bishop (1995) observes neural networks can be seen as providing a framework for
representing non-linear functional mappings between a set of input variables and a set
of output variables. This is achieved by representing the non-linear function of many
variables in terms of compositions of non-linear functions of a single variable often re-
ferred to as activation functions. A number of neural network architectures have been
proposed, in this work we only consider a neural network with a single hidden layer,
with a single output node. The network output can be represented as,

f(x) =
∑

i

aiS

∑
j

wijxj

 (3.2)

where the ai denote weights between the hidden layer and the output node, wij are the
weights between the inputs and the hidden layer, S(z) = tanh(z) is the hidden node
activation function (i.e. bounded, smooth, and strictly monotonically increasing), and
the input vector x is taken to be augmented with a fixed input x0 = 1, to provide an
adjustable bias for the model; a similar augmentation is used in the hidden layer.

Neural networks have received an immense research interest and have been applied in
many areas. The books by Bishop (1995) and Haykin (1999) provide good descriptions.
Neural networks can be considered to be semi-parametric modelling methods, that allow
a very general class of models to be considered in which the number of parameters can be
controlled in a systematic way to build flexible models. The total number of parameters
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in the model can be varied independently from the size of the dataset. Neural networks
can be used to define probabilistic models for regression and classification tasks by
using the network outputs to define the conditional distribution for one or more target
variables given the various possible values for the input vector x. This is discussed
further in Section 3.4.

3.4 Bayesian Neural Networks

Bayesian techniques have been widely and successfully used in the neural networks and
statistics communities. In a neural network, the Bayesian framework can be used to learn
the parameters w of the network from the dataset. The Bayesian approach considers
a probability distribution function over parameter (or weight) space, representing the
relative degrees of belief in different values for the parameter vector. Since, in general
we have little idea of what the parameter values should be, the prior distribution may
express some rather general properties such as the smoothness of the network function.
Once the data has been observed, this prior distribution can be converted to a posterior
distribution using Bayes’ theorem given by Equation 3.1. As (Bishop, 1995) observes
the posterior distribution will be more compact, expressing the fact that we have learnt
something about the extent to which the different network parameter values are consis-
tent with the data. However, in order to evaluate the posterior; specific functional forms
for the prior distribution over weights, P (w), and for the likelihood P (D|w) need to be
chosen.

MacKay (1994) has considered the simple case of using a Gaussian distribution for both
the prior and likelihood. This can then be written as,

P (w) =
1

Zw(α)
exp {−αEw(w)} (3.3)

where Zw(α) is a normalisation factor given by,

Zw(α) =
∫

exp {−αEw(w)} dw (3.4)

where Ew is a model regularisation term used to enforce smoothness as described in
Chapter 2.

Since the parameter α controls the distribution of the neural network parameters it
is referred to as a hyperparameter (MacKay, 1994; Bishop, 1995; Neal, 1995). The
likelihood function can be written in the form (MacKay, 1994),

P (D|w) =
1

ZD(β)
exp {−βED(w)} (3.5)
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where ED is an error function, and β is a hyperparameter controlling the variance of the
noise present in the data. The function ZD is a normalisation factor given by,

ZD(β) =
∫

exp {−βED(w)} dD (3.6)

Assuming that the target data is generated from a smooth function with additive zero-
mean Gaussian noise, the probability of observing a data value y for a given input vector
x is,

P (y|x,w) ∝ exp
{
−β

2
(y − f(x;w))2

}
(3.7)

where f(x;w) is the output of the Bayesian neural network model. Provided that data
points are drawn independently from this distribution,

P (D|w) =
N∏

n=1

P (yn|xn,w)

=
1

ZD(β)
exp

{
−β

2

N∑
n=1

(yn − f(xn;w)2
}

(3.8)

Using the general expressions for the prior and likelihood Bayesian learning simplifies
to finding the parameter vector that minimises the costfunction,

S(w) =
β

2

N∑
n=1

(yn − f(xn;w))2 +
α

2

W∑
i=1

w2
i (3.9)

where N represents the number of data points in the dataset D, and W represents the
number of parameters in the neural network model. Apart from an overall multiplica-
tive term, this is a sum of squares error function with an L2 norm, or zeroth order
regularisation term (Bishop, 1995).

The Bayesian formalism for a neural network model is described in terms of the posterior
probability distribution of parameters. If a new input vector is presented to the network,
then as (Bishop, 1995) observes the distribution of parameters gives rise to a distribution
of network outputs. The distribution of outputs for a given input vector x can then be
written as,

P (y|x,D) =
∫
P (y|x,w)P (w|D) dw (3.10)

where P (w|D) is the posterior distribution of the model parameters. Making a Gaussian
approximation for the posterior distribution together with Equation 3.9 gives,

P (y|x,D) ∝
∫

exp
{
−β

2
(y − f(x;w)2)

}
exp

{
−1

2
∆wT A∆w

}
dw (3.11)

Approximating the network output y(x;w) by a linear expansion around the MAP esti-
mate of the parameter vector (MacKay, 1994; Bishop, 1995) gives a Gaussian distribution
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of the form,

P (y|x,D) =
1√

2πσy

exp
{
−(y − yMP)

2σ2
y

}
, (3.12)

which has a mean yMP and variance σ2
y = 1

β ∆wT A−1∆w.

3.5 Hyperparameters can Introduce Interpretability

A problem associated with a traditional neural network model is that learning is com-
pounded because learning often takes place in the presence of input variables that have
no effect on the output. As described in Section 2.3, feature selection methods are
attractive to speed up learning, improve a models predictive ability and to introduce
interpretability.

Bayesian learning within a neural network addresses this problem by introducing Auto-
matic Relevance Determination (ARD)(MacKay, 1994; Neal, 1995). This methodology
attempts to reject redundant inputs, thereby increasing generalisation performance, it
also has the added advantage of introducing interpretability allowing an expert to assess
the final model structure by looking at which inputs were selected as being relevant in
determining the output.

In an ARD model, each input variable has an associated hyperparameter that controls
the magnitudes of the weights on connections to the input unit. Figure 3.1 shows a
scematic diagram of a traditional neural network with hyperparameters. The figure
shows a network with three inputs (x1,x2,x3), and three associated hyperparameters
(α1, α2, α3) controlling the parameters (represented by three different dashed lines) from
the inputs to the hidden layer. If the hyperparameter associated with an input indicates
a small standard deviation for weights out of that input, these weights are likely to be
small, and that input will have little effect on the output; if the hyperparameter specifies
a large standard deviation the effect of that input will be significant (Neal, 1995). From
the work of MacKay (1991) and Neal (1995), together with the empirical evaluation of
the ARD hyperparameter determination methods in section 3.8 the ARD hyperparam-
eters for relevant inputs converge to a value of zero, whilst those for irrelevant inputs
converge to infinity. Interpretation of these hyperparameter values enables an inputs
influence on the network to be assessed, providing a method for knowledge extraction.
In addition to hyperparameters that control the input to hidden layer weights, there
are three additional hyperparameters in the network that control the hidden nodes bias,
output bias, and the hidden to output layer weights.
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Figure 3.1: Illustration of a Bayesian neural network with ARD hyperparameters.
The network consists of three inputs, three associated hyperparameters, two hidden
nodes and a single output. The different parameters connecting the different inputs to

the hidden nodes are represented by different dashed lines.

3.6 Prior Distributions for Parameters and Hyperparam-

eters

As Neal (1995) observes at first sight the Bayesian framework may not appear to be
suitable for use with neural networks. The first stage of Bayesian inference starts with
a prior distribution for the model parameters, which is supposed to embody our prior
beliefs about the problem. In a neural network, the parameters connect the input
variables to the hidden nodes, whose relationship to anything that we might know about
the problem seems obscure. MacKay (1991) has used a Gaussian prior distribution for
the weights and biases of the neural network. In this work the variance of the Gaussian
prior is a hyperparameter that allows the model to adapt to the degree of smoothness
indicated by the data. In a Bayesian model of this type, the role of the hyperparameters
controlling the priors for weights is roughly analogous to the role of a weight decay
constant in conventional training.

In their work Buntine (1991) discuss several possible schemes for prior distributions,
such as priors that favour networks that produce high or low entropy predictions, or
that compute smooth functions. The degree of preference imposed can be controlled by
a hyperparameter. This work links the choice of prior for the network weights to the
actual effects of these weights on the function computed by the network which is clearly
necessary if a prior is to be chosen that represents our beliefs about this function. A
limitation of this work however is that it can only be applied to simple network models.



34 Chapter 3 Bayesian Inference and Learning Algorithms

Likelihood Prior
Binomial Beta
Poisson Gamma
Normal Normal

Exponential Gamma

Table 3.1: Some common choices for conjugate priors.

3.6.1 The Notion of Conjugate Priors

The conditional distribution of the predicted target, y, given the dataset, D, involves
evaluating the following integral,

P (y|x,D) =
∫
P (D,w)P (w|D) dw (3.13)

Typically, the evaluation of such integrals over the entire parameter space is a very
complex undertaking given the high dimensionality of the parameter space. As observed
by (Bernardo and Smith, 1996) such evaluation is only analytically feasible for the class
of model functions for which the posterior distribution given by Equation 3.13 has the
same functional form as the prior. For a given choice of likelihood, a prior distribution
that gives rise to a posterior having the same functional form is said to be a conjugate
prior. An example of a conjugate prior analysis is an iterative Bayesian prior distribution
which is the update of the prior distribution for a set of parameters P (w) using a
succession of data points, with the resulting posterior at each stage that is used as the
prior in the next stage. This is a conjugate prior because the distribution would retain
the same functional form throughout. Duda et al. (2000) refer to such distributions
as reproducing densities, and include the Gaussian distribution as the most commonly
encountered example. Table 3.1 lists some common choices for conjugate prior given a
particular form of the likelihood.

3.7 Hyperparameter Determination Methods

In the Bayesian neural network method and ARD method described in Section 3.4, we
have assumed that the values of the hyperparameters α and β are known. However,
for most applications we will have little idea of suitable values for α, although we
may have an idea of the noise variance β. In a truly Bayesian framework, parameters
and hyperparameters whose values are unknown should be integrated out by a process
referred to as marginalisation. Three approaches to the treatment of hyperparameters
have been discussed in the literature. Two of these are based on approximations and
are discussed in Sections 3.7.1 and 3.7.8, whilst the last performs integrals over α and
β analytically and is discussed in Section 3.7.2.
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3.7.1 Laplace Approximations

A standard approach for parametric approximation is the Laplace approximation. A
variation of this approach has been introduced to the neural networks community by
MacKay (1994) under the title of the evidence framework. This is computationally
equivalent to the type-II maximum likelihood method of Gull (1989). This approach
thus finds values for the hyperparameters which maximise the posterior probability and
then perform the remaining calculations with the hyperparameters set to these values.

As MacKay (1994) observes, the posterior distribution of the network parameters is
given by,

P (w|D) =
∫∫

P (w|α, β,D)P (α, β|D) dα dβ (3.14)

where the dependency on the hyperparameters α and β on the posterior has been made
explicit. Assuming that the posterior probability distribution P (α, β|D) for the hyper-
parameters given in Equation 3.14 is sharply peaked around their most probable values
αMP and βMP . The maximum a posteriori (MAP) values for these hyperparameters can
then be found by maximising the likelihood P (D|α, β) a term called the evidence for α

and β (MacKay, 1994; Bishop, 1995).

Using a Gaussian approximation for the posterior distribution of the network parameters,
the log of the evidence can be given by,

logP (D|α, β) =
∑

i

−αi

2
wT

MPΛiwMP −
β

2
ED (wMP)− 1

2
log |A|

+
1TΛi1

2
logαi +

N

2
log β − N

2
log(2π) (3.15)

where Λi is a diagonal masking matrix which is used to extract the weights associated
with hyperparameter αi. In order to maximise the log evidence with respect to αi

requires evaluation the trace of the matrix A−1, where A = H +
∑

i αiΛi and H is the
Hessian matrix. Maximisation of the log evidence with respect to α and β then results
in the following re-estimation following formulae,

αnew
i =

γ

wT
MPΛiwMP

(3.16)

βnew =
N − γ

2ED(wMP)

where the quantity γ is defined by,

γ ≡
W∑
i=1

λi

λi + α
(3.17)
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To deal with the numerical instability of the hyperparameters discussed in Section 3.7.1.1,
a modified form of hyperparameter re-estimation formulae were obtained based on the
principle of gradient descent,

αnew
i = (1− η)αold

i + η
γ

wT
MPΛiwMP

η ∈ [0, 1] (3.18)

Setting η = 1 gives a solution that is equivalent to that described in Section 3.7.1, Other
values correspond to performing gradient descent on the hyperparameters with a step
size controlled by η.

The following pseudo-code outlines the implementation of a Bayesian neural network
using the evidence framework,

Algorithm 1: Bayesian Neural Network - Evidence Framework

Input Dataset D = (x1, y1), . . . , (xN , yN )

Create Construct Bayesian neural network with specified number of
inputs, hidden nodes, and outputs

Initialise Draw w from a Gaussian distribution
Initialise ARD values, e.g. α = (α1, α2, . . . , αd) = 0.01
Initialise noise variance, e.g. β = 100;
Set alphatol to a constant value e.g. 0.001

Algorithm Generate prior distributions for hyperparameters
do{

Use gradient descent algorithm to optimise wMP

Update hyperparameters using Equation 3.17
Generate Hessian Matrix
Get Predictions and Variances

}while( 1
F

∑F
i |

1
αi
− 1

αold
i
| > δ)

Output αMP , βMP , y.

3.7.1.1 Limitations

The evidence framework can be considered to be an attractive method. It shares some
very direct similarities with straight forward regularised regression, in the way it tries to
infer the optimal hyperparameter/regularisation level. Furthermore, the evidence allows
several levels of Bayesian inference to be performed. In the first level, among a number
of models, the best one is chosen by maximising the evidence of the model. Despite these
apparent benefits, Penny and Roberts (1998) observe that the evidence framework has
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only been applied to a small selection of problems; assessing the fat content of carcasses
(Thodberg, 1995), vowel recognition and classification of thyroid disease (Gutjahr and
Nautze, 1997), prediction of energy consumption (MacKay, 1994), classification of car
number plates (Oldfield, 1995), and the classification of EEG data (Sykacek et al., 1997).

A major cause for concern is that the evidence framework relies on a number of assump-
tions. The posterior distribution for the parameters of a neural network is typically very
complex. The Gaussian approximation to the posterior distribution, for given values
of the hyperparameters is central to MacKay’s Bayesian evidence framework (MacKay,
1994). Walker (1969) has shown that in the limit of an infinite training set the poste-
rior distribution does become Gaussian. However, with a finite number of samples the
assumption fails, hence the evidence cannot be computed accurately.

A number of the limitations inherent to MacKay’s evidence framework, can be attributed
to not evaluating the Hessian matrix explicitly, which is avoided because of its compu-
tational expense. Algorithms such as scaled conjugate gradient (which was used to
minimise the Bayesian costfunction) do not evaluate the Hessian matrix explicitly, but
instead compute it using a finite difference approximation to the dot product of the
Hessian and the search direction.

However, when computing the ARD hyperparameters the evidence framework is con-
structed using only the positive eigenvalues. This is because at a local minimum, some
eigenvalues of the Hessian may be negative implying that the posterior variance in some
directions of weight space is negative (Bishop, 1995; Kandola et al., 1999). This situation
is handled by ignoring these problematic directions and just considering the distribution
in the non-negative directions. In networks which have redundant weights, that occur
because they contain irrelevant features, it is possible that the Hessian matrix will be
singular or nearly singular. In these cases, eigenvalues will be of machine precision order,
hence the calculation of the determinant (which uses products of eigenvalues) will be
unreliable. Before the hyperparameters can be re-estimated they need to be set to some
initial values. The choice of initial starting values is entirely arbitrary and as shown in
Figure 3.2 an incorrect choice affects the quality of the approximation.

Two alternative approaches have been proposed to overcome this problem. The first
suggested by Nabney (1999), uses relatively small values of α since they correspond to a
small weight decay, allowing greater model flexibility during the early stages of training.
As shown in Figure 3.2, this is a sensible strategy. However, MacKay (1999b) has sug-
gested that this problem can be overcome by using Markov Chain Monte Carlo (MCMC)
methods (Geman et al., 1992; Neal, 1995) methods, which use correct Bayesian sampling
of the hyperparameters and parameters, and may result in more stable behaviour.
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Figure 3.2: Variation of approximation error with choice of starting ARD hyperpa-
rameter with using the evidence framework.

3.7.2 Markov Chain Monte Carlo Sampling

Bayesian learning results in integrals over multi-dimensional spaces. Many standard
numerical integration techniques, which can be used successfully for integration over a
small number of dimensions, are unsuitable for evaluating the complex integrals that
occur in Bayesian inference that typically involve integration over spaces of hundreds or
thousands of parameters.

MCMC methods have been used extensively to solve problems in statistical physics.
The Monte-Carlo method provides approximate solutions to a variety of mathematical
problems by performing statistical sampling experiments. Among all numerical methods
that rely on N -point evaluations in M -dimensional space to produce an approximate
solution, the Monte Carlo method has absolute error of estimate that decreases as N−1/2

whereas, in the absence of exploitable special structure all others have errors that de-
crease as N−1/M at best. An important advantage of MCMC methods is that they make
no assumptions concerning the form of the underlying distribution, such as whether it
can be approximated by a Gaussian, which is inherent to the evidence framework de-
scribed above.

Bayesian statistics often requires integration over possibly high dimensional probability
distributions to make inferences about model parameters or to make predictions. Monte
Carlo integration draws samples from the required distribution, and then forms sample
averages to approximate expectations. Markov Chain Monte Carlo (MCMC) sampling
draws these samples using a Markov chain over a substantial period of time. For tutorial
introductions see MacKay (1999a) and Besag (2000).
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Once the probability density functions are known, the Monte Carlo simulation can pro-
ceed by random sampling. Many simulations are then performed and the desired result is
taken as an average over the number of observations (which may be a single observation
or perhaps millions of observations). Assuming that the evolution of the physical system
can be described by probability density functions, then the Monte Carlo simulation can
proceed by sampling from these probability distribution functions, which necessitates a
fast and effective way to generate random numbers uniformly distributed on the interval
[0,1].

Formally, Monte-Carlo methods attempt to solve one or both of the following problems
(MacKay, 1999a):

Problem 1: to generate samples {xr}Rr=1 from a given probability distribution P (x).1

Problem 2: to estimate expectations of functions under this distribution,

Φ =
∫
φ(x) dP (x) (3.19)

Problem one is more general since the second can be solved by random samples to give
the estimator,

Φ̂ =
1
R

R∑
r=1

φ(xr) (3.20)

where {x1, . . . , xR} are generated by a process that results in each of them having a
distribution defined by the posterior probability density for the parameters. This is
one of the important properties of Monte Carlo methods. The accuracy of the estimate
(Equation 3.20) is independent of the dimensionality of the space sampled. In simple
Monte Carlo methods, the xr are independent. When the posterior distribution is a
complicated distribution generating such independent values is often infeasible. To use
the MCMC method to estimate an expectation with respect to some posterior distri-
bution a Markov chain which is ergodic must be constructed, which has the posterior
distribution as its equilibrium distribution to which it converges from any initial state.

3.7.3 Markov Chains

Suppose that a sequence of random variables, X0, X1, X2, . . . is generated, such that
at time t ≥ 0, the next state Xt+1 is sampled from a distribution P (Xt+1|Xt) which
depends only on the current state of the chain, Xt. That is, given Xt, the next state Xt+1

does not depend further on the history of the chain X0, X1, . . . , Xt−1. This sequence
is called a Markov chain, and P (·|·) is called the transition kernel of the chain (Gilks
et al., 1996). An important issue when using Markov chains is to understand how the
starting state X0 effects the current state Xt. This question concerns the distribution

1Here the term sample refers to a single realisation x whose probability distribution is P (x)
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of Xt given X0 which is denoted by P (t)(Xt|X0). Subject to regularity conditions, the
chain will gradually ‘forget’ its initial state and P (t)(·|X0) will eventually converge to
a unique stationary distribution, φ(·), which does not depend on t or X0. Thus as t
increases the sampled points Xt will look increasingly like dependent samples from φ(·).
Therefore after a sufficiently long burn in period of m iterations, points Xt; t = 1, . . . , R
will be samples drawn from φ(·). Therefore the output from the Markov chain can be
used to estimate the expectation E[f(X)], where X has a distribution given by φ(·).
Burn in samples are normally discarded for this calculation giving an estimator,

f =
1

R−m

R∑
t=m+1

f(Xt) (3.21)

3.7.4 The Metropolis-Hastings algorithm

The Metropolis algorithm has been widely used in optimisation theory and is the basis
for the widely used optimisation method of simulated annealing (Kirkpatrick et al., 1983;
Kandola et al., 1998). In the Markov chain defined by the Metropolis algorithm, a new
state θ(t+1) is generated from the previous state θ(t), by first generating a candidate
state using a specified proposal distribution, and then deciding whether or not to accept
the candidate state, based on its probability density relative to that of the old state. If
the candidate state is accepted, it becomes the next state of the Markov chain; if the
candidate state is instead rejected, the new state is the same as the old state, and is
included again in any averages to estimate expectations.

This algorithm only considers symmetric proposals, having the form P (Y |X) = P (X|Y )
for all X and Y. For example, when X is continuous, P (·|X) might be a Gaussian
distribution with mean X and constant covariance matrix. When choosing a proposal
distribution, its scale may need to be chosen carefully. A cautious proposal distribution
generating small steps (Y |Xt) will generally have a high acceptance rate. A bold proposal
distribution generating large steps will often propose moves from the body to the tails
of the distribution resulting in a low probability of acceptance. Ideally, the proposal
distribution should be scaled to avoid both of these extremes (Kandola et al., 1998).

3.7.5 Gibbs sampling

Gibbs sampling, also known as the heatbath method in the physics and chemistry lit-
erature, is a simple case of the Metropolis-Hastings algorithm. It is applicable when
sampling from a multi-dimensional parameter distribution. The posterior probability
distribution is defined in terms of conditional distributions of the joint distribution P (x).
It is assumed that whilst P (x) is too complex to draw samples from directly, its con-
ditional distributions is tractable to work with. For the Gibbs sampler, the proposal
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distribution for updating the ith component of X is,

Pi(Yi|Xi, X−i) = R(Yi|X−i) (3.22)

where R(Yi|X−i) is the full conditional distribution. Thus, Gibbs sampling consists
purely in sampling from full conditional distributions, i.e. Gibbs sampler candidates
will always be accepted. The usefulness of Gibbs sampling for Bayesian inference is
dependent on whether the posterior distribution of one parameter conditional on given
values for the other parameters can be easily sampled from.

3.7.6 Hybrid Monte Carlo for network parameters

The implementation of Bayesian learning used in this thesis is based on the hybrid Monte
Carlo algorithm of Duane et al. (1987) introduced to the neural networks community by
Neal (1995). The advantage of this method is that it avoids the random walk behaviour
of the Metropolis algorithm which typically increases sampling time. A Markov chain
that explores the entire posterior distribution can be obtained by alternating Gibbs
sampling updates for the hyperparameters, with hybrid Monte Carlo updates for the
network parameters.

The hybrid Monte Carlo algorithm is expressed in terms of sampling from a Boltzmann
distribution for the state of a fictitious physical system, which is defined in terms of an
energy function. However, the algorithm can be used to sample from any distribution
for a set of real valued variables for which the derivatives of the probability density can
be computed. The idea is to introduce conjugate variables pi and define the Hamiltonian
energy (the sum of potential and kinetic K(p)) energy),

H(w,p) = U(w) +K(p) = U(w) +
∑

i

p2
i

2mi
(3.23)

The parameters mi correspond to the masses of particles in a fictitious physical system,
the weights wi to their coordinates, and the conjugate variables pi to their momenta.
The masses are free parameters that can, in principle at least, be chosen arbitrarily. In
practice they control the step-widths of the numerical integration scheme and therefore
play a crucial role in preventing numerical instabilities. A heuristic algorithm for setting
their values is discussed in Neal (1995). The potential energy U(w) is derived from the
log of the prior and the log of the likelihood due to the training cases as follows,

U(w) = F (γ)− log p(w|γ)−
N∑

i=1

logP (yi|xi,w, γ) (3.24)
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where F (γ) is any function of the hyperparameters that is convenient (Neal, 1995).
The Boltzmann distribution for this energy function will then produce the posterior
probability density for w given γ.

Solving the Hamiltonian equations of motion,

∂wi

∂t
=
∂H

∂pi
,

∂pi

∂t
= − ∂H

∂wi
(3.25)

leads to a trajectory on a hypershell of constant energy. The algorithm for sampling
thus reduces to a numerical integration of the Hamiltonian equations of motion, and a
regular resampling of the momentum variables from a Boltzmann distribution. However,
inaccuracies in the numerical integration can lead to systematic errors in the sampling
process. This is avoided when simulating the movement of the energy hypershell (that
is between two consecutive resamplings of the momentum), the final configuration w2 is
compared with the initial configuration w1 and accepted only with the probability,

paccept(w2|w1) = min {1, exp[H(w1)−H(w2)]} (3.26)

It is seen that in this way unstable algorithms with H(w2) � H(w1) lead to high
rejection rates.

3.7.7 Gibbs sampling for the Hyperparameters

The network prediction is given by marginalisation.

P (y|x, D) =
∫∫

P (y,w,α|x, D) dw dα

=
∫∫

P (y|w,α,x, D)P (w,α|x, D) dw dα

=
∫∫

P (y|w,x)P (w,α|D) dw dα (3.27)

The last step follows from the fact that the prediction model is solely determined by
the network weights w and that learning is supervised Husmeier (1999). Sampling from
the posterior distribution P (w,α|D) now follows an iterative process known as Gibbs
sampling. In a first step, the hyperparameters α are kept constant and w is sampled from
P (w|α, D) using the hybrid Monte Carlo algorithm. In a second step, the parameters w

are kept constant and the hyperparameters are sampled from a conjugate prior. This can
be considered to be a generalisation of the Expectation-Maximization (EM) algorithm
(Ghahramani and Jordan, 1997). A natural choice for the conjugate prior is the gamma
distribution, the use of a gamma distribution for Bayesian learning is further discussed
in Chapters 4 and 5. Small values of the so-called shape parameter correspond to vague
prior distributions, whereas for larger values the distribution becomes more localised
and thus more informative.
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The following pseudo-code outlines the implementation of a Bayesian neural network
using MCMC sampling,

Algorithm 2: Bayesian Neural Network - MCMC Sampling

Input Dataset D = (x1, y1), . . . , (xN , yN )

Create Construct Bayesian neural network with specified number of
inputs, hidden nodes, and outputs

Initialise Draw w from a Gaussian distribution
Initialise ARD values, e.g. α = (α1, α2, . . . , αd) = 0.01
Initialise noise variance, e.g. β = 100;

Algorithm Generate prior distributions for hyperparameters
For k = 1 to M

Use hybrid Monte Carlo to optimise wMP

Optimise hyperparameters using Gibbs sampling
Get Predictions

end.

Output αMP , βMP , y.

3.7.7.1 Limitations

A number of issues arise when using MCMC sampling. An excellent description of these
issues is provided by Kass et al. (1999) and Gilks et al. (1996). A popular feature of
MCMC methods is that any proposal distribution will ultimately deliver samples from
the underlying target distribution. However, the rate of convergence to the underlying
stationary distribution will depend crucially on the relationship between the proposed
distribution and the target distribution. As the models become more complex, it be-
comes increasingly likely that the discrepancy between the distributions will result in
the Markov chain not moving rapidly throughout the support of the target distribution,
a phenomena referred to as mixing.

In high dimensional problems with little symmetry, it is often necessary to perform
exploratory analysis to determine approximately the shape and orientation of the un-
derlying distribution. As Gilks et al. (1996) observe such analysis often serves to help
choose the proposal distribution. However, even though such analysis is useful, often
the proposal distribution is chosen for computational efficiency so that it can be easily
sampled from and evaluated.

One of the practical problems associated with using MCMC methods is that to reduce
the possibility of inferential bias caused by the effect of starting values, iterations within
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an initial transient phase or burn in period are discarded. One of the most difficult
implementation problems is that of determining the length of the required burn in, since
rates of convergence of different algorithms on different target distributions may vary
considerably. Ideally, we would like to compute analytically, or to estimate, convergence
and then take sufficient iterations for any particular desired accuracy. For example,
given geometric ergodicity, in which case the t-step transition distribution P ′(x, ·) is
such that,

P ′(x, ·)−R(·) ≤M(x)ρ (3.28)

for some M,ρ ∈ R, we might stop the chain once P ′(x, ·) ≤ ε, for some ε ≥ 0 , in which
case the length of the burn in period is given by,

t∗ =
log(ε/M(x))

log(ρ)
(3.29)

However, in general, it is extremely difficult to prove even the existence of a geometric
rate of convergence to stationarity (Brooks, 1998), and there are many commonly used
algorithms which fail to converge geometrically at all. Roberts and Polson (1994) have
provided qualitative geometric convergence results for quite general target densities.
Although these results have theoretical importance in ensuring the existence of central
limit theorems, they do not offer explicit bounds on the rate of convergence, which could
be used to determine MCMC sample lengths. It is possible however to construct less
general bounds, applicable to only a small class of samplers.

Since in general, practical bounds on the convergence rate are rarely available, a large
amount of work has been performed on the statistical analysis of the sample output to
determine, either a posteriori or during run time, whether the chain converges during a
particular sample run. In practice, such diagnostics tend to be of limited use since, for
example, Asmussen et al. (1992) showed that no one diagnostic method will work for all
problems.

One of the most contentious issues associated with the implementation of MCMC algo-
rithms is in choosing whether to run one long chain or several shorter chains in parallel.
The argument for taking a single long run is that the chain will be ‘closer’ to the target
distribution at the end than it would be at the end of any number of shorter runs, and
that several shorter runs may be wasteful, in that the initial burn in periods for each
smaller chain will have to be discarded. In contrast, proponents of the ‘many replica-
tions’ approach argue that, although a single run will eventually cover the entire sample
space, by taking a number of parallel replications we can guard against a single chain
leaving a ‘significant proportion’ of the sample space unexplored. By taking several
chains, each started in different states, it is also possible to monitor the sample paths
to determine how well the chains have mixed, i.e. to what extent the outputs from the
different chains are indistinguishable. In effect, multiple replications protect against bias
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by attempting to ensure that the sampler output covers the entire sample space, whereas
one long run provides less variable estimates.

Another important issue is the determination of suitable starting points. Although,
any inference gained via MCMC sampling will be independent of the starting values,
since observations are only used after the chain has achieved equilibrium, and hence
lost all dependence on those values. However, the choice of starting values may affect
the performance of the chain, and in particular the speed and ease of detection of
convergence. Many users adopt ad hoc methods for selecting starting values. Approaches
include simplifying the model, by setting hyperparameters to fixed values, or ignoring
missing data, for example. Alternatively, maximum likelihood estimates may provide
starting points for the chain or, in the case where informative priors exist, the prior
might also be used to select suitable starting values (Neal, 1995).

3.7.8 Variational Learning

Variational learning (also known as ensemble learning) has been proposed by a number of
researchers as being a method of approximating high dimensional integrals. Variational
methods are an important technique for the approximation of complicated probability
distributions deriving originally from statistical physics. A well known method for ap-
proximating a complex distribution in a physical system is mean field theory. Mean
field theory is a special case of a variational free energy approach described by Feynman
(1972). Examples of these variational approximations can be found in (Saul et al., 1996;
Ghahramani, 1994; Jaakkola, 1997; Ghahramani and Jordan, 1997). The variational
method is often the technique of choice for studying complex physical systems such as
multi-electron atoms and molecules.

In statistical physics Ising models are important models of magnetism and other systems
that show phase transitions. An Ising model is an array of spins (e.g. atoms that take
on ±1 states) that are magnetically coupled to each other. If one spin is in the +1 state
then it is energetically favourable for its immediate neighbours to be in the same state,
in the case of a ferromagnetic model, and in the opposite state for an antiferromagnet.
Hence, probability distributions of the form,

P (x|β, J) =
1

Z(β, J)
exp[−βE(x;J)], (3.30)

are commonplace where for example the state vector is x ∈ [−1,+1]N , and E(x, J) is
some energy function such as,

E(x, J) = −1
2

∑
m,n

Jmnxmxn −
∑

n

hnxn (3.31)
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where m and n are neighbours, Jmn is a coupling constant between spins m and n,
and β = 1/kBT , where kB is the Boltzmann constant at some temperature T . The
normalisation constant (partition function) is,

Z(β, J) ≡
∑

x

exp[−βE(x;J)] (3.32)

An evaluation of the normalisation constant is desirable because then all of the thermo-
dynamic properties of the system can be derived. Variational free energy minimisation is
a method for approximating the complex distribution P (x) by a simpler ensembleQ(x; θ)
that is parameterised by adjustable parameters θ. A by-product of this approximation
is that a lower bound on Z(β, J) can be derived. The cost function chosen to measure
the quality of the approximation is the variational free energy originally introduced by
Feynman (1972),

βF̂ (θ) =
∑

x

Q(x; θ) log
Q(x; θ)

exp[−βE(x;J)]
(3.33)

Using the definition of p(x|β, J) (see Equation 3.30) the variational free energy can be
written as,

βF̂ (θ) =
∑

x

Q(x; θ) log
Q(x; θ)
p(x|β, J)

− logZ(β, J) (3.34)

= DKL(Q‖P ) + βF

where F is the true free energy defined by,

βF ≡ − logZ(β, J) (3.35)

and DKL(Q‖P ) is the Kullback-Leibler divergence measuring the (asymmetric) differ-
ence between the approximating distributionQ(x; θ) and the true distribution P (x|β, J).
Hence, by Jensens’ inequality the variational free energy F̂ is bounded from below by
F and only attains this value when Q(x; θ) = P (x|β, J). The strategy that is adopted
is to vary θ in such a way that βF̂ (θ) is minimised. The approximating distribution
then gives a simplified approximation to the true distribution that may be useful and
the value of βF̂ (θ) will be an upper bound for βF . The Kullback-Leibler divergence
satisfies DKL(Q‖P ) ≥ 0 (Jensens’ inequality) with equality only if Q = P . However, in
general DKL(Q‖P ) 6= DKL(P‖Q).

Given these ideas it is possible to work in terms of an approximating ensemble Q(w; θ),
which is a probability distribution over the parameters, and optimise the ensemble by
varying its own parameters θ so that it approximates the posterior distribution of the
parameters P (w|D,H) well. This approach was first proposed for use in a single hidden
layer neural network by Hinton and van Camp (1993) using the restriction that Q(w; θ)
is Gaussian. It has since been applied to various other models with hidden states and
no restrictions on the approximating distribution other than the assumption that they
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factor in some way (Waterhouse et al., 1995; MacKay, 1997; Bishop, 1999; Attias, 1999;
Ghahramani and Beal, 2000).

As Penny and Roberts (2000) observe variational learning may be considered as two
distinct steps,

1. Step 1: Approximate E-step With model parameters fixed at wt−1, update the
variational parameters θ to maximise F̂ (θ).

2. Step 2: M-step With variational parameters fixed at θt update the models param-
eters w to maximise F (θ).

These steps are iterated as necessary and are analogous to the Expectation (E) and
Maximisation (M) steps of the EM algorithm. In the approximate E-step the parameters
of the approximating density (the variational parameters) are updated and in the M-
step the parameters of the probabilistic model are updated. The M-steps are identical,
however in variational learning the exact E-step is replaced with an approximate E-step
where the Kullback-Leibler divergence is minimised.

A cost function which may be used to measure the quality of the approximation is the
variational free energy,

F̂ (θ) =
∫
Q(w; θ) log

Q(w; θ)
P (D|w,H)P (w|H)

dkw (3.36)

The denominator of Equation 3.36 is, to within a multiplicative constant, equal to the
posterior probability distribution P (w|D,H). Hence, the variational free energy F̂ (θ)
can be viewed as the sum of − logP (D|H) and the relative entropy between Q(w; θ)
and P (w|D,H). As (MacKay, 1995) observes for certain models and certain approxi-
mating distributions this free energy and its derivatives with respect to the ensemble’s
parameters can be evaluated.

The approximation of posterior probability distributions using variational free energy
minimization provides a useful approach to approximating Bayesian inference in a num-
ber of fields. The application of this approach may be characterised according to what
form of approximating distribution is used and what probabilistic model is involved
(Penny and Roberts, 2000). The choice of approximating distribution is of central im-
portance to the usefulness of the method; a distribution must be chosen which can make
a good approximation to the true posterior but which at the same time is sufficiently
simple to enable the variational free energy to be computed. This can be compared to the
MCMC approach where the choice of starting values can affect the rate of convergence
of the Markov chain.
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The use of separable probability distributions, for approximating the posterior distribu-
tion in machine learning, was first suggested by MacKay (1994). The following descrip-
tion is based on a simple extension of the ideas proposed in this paper to the case of
ARD with unknown noise variance. The statistical model H for the case of a Bayesian
neural network trained with a dataset D, with ARD can be described by,

P (D,w,α, β|H) = P (D|w, β,H)P (w|α,H)P (α, β|H) (3.37)

The likelihood function P (D|w, β,H) describes the assumed noise process, parameter-
ized by a noise variance term 1/β. The simplest representation of this is a Gaussian
given by,

P (D|w, β,H) =
1

ZD(β)
exp{−βED(w)} (3.38)

The prior probability of the parameters, P (w|α,H), embodies assumptions about the
spatial correlations and smoothness that the true function is expected to have, param-
eterised by a vector of hyperparameters α one for each input variable. This in the
simplest case is represented by a spherical Gaussian,

P (w|α,H) =
∏

i

1
Zw(αi)

exp(−αi
1
2
wTΛiw) (3.39)

A gamma distribution prior is assumed for the hyperparameters α and β. As described
in Section 3.6.1 the gamma distribution is also the distribution of choice since it is the
conjugate prior to the Gaussian distribution.

Γ(α; b, c) =
∏

i

1
Γ(ci)

αci−1
i

bci
i

exp
(
−αi

bi

)
(3.40)

A single assumption is made in the variational formulation which is that the approxi-
mate distribution, Q(w,α, β), to the posterior, P (w,α, β|D,H), is separable into the
form Q(w,α, β) = Qw(w)

∏
iQα(αi)Qβ(β). Importantly no functional form for these

distributions is assumed. The advantage of this separability is that the notion of a con-
jugate prior, described in Section 3.6.1, can be introduced for the parameters w and
hyperparameters α and β, allowing the evidence or marginal likelihood to be computed.
The variational free energy can then be written as, (where H has been dropped for
clarity),

F (Q) = −
∫∫∫

Qw(w)Qα(α)Qβ(β) log
P (D|w, β)P (w|α)P (α)P (β)

Qw(w)Qα(α)Qβ(β)
dβ dα dw (3.41)

The optimal separable distribution Q can be found by separate optimisation of Qw(w),
Qα(α), and Qβ(β).

Optimisation of Qw(w)
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As a functional of Qw(w), F can be written as (ignoring constant terms),

−
∫
Qw(w)

∫
Qα(α)

∫
Qβ(β)

(
logP (D|w, β) + logP (w|α)− logQw(w)

)
dβ dα dw.

Ignoring constant terms this can be rewritten as,∫
Qw(w)

∫
Qα(α)

∫
Qβ(β)

(
βED(w) + 1

2

∑
i

αiw
TΛiw + logQw(w)

)
dβ dα dw

=
∫
Qw(w)

∫
Qα(α)

(
β̄ED(w) + 1

2

∑
i

αiw
TΛiw + logQw(w)

)
dα dw

=
∫
Qw(w)

(
β̄ED(w) + 1

2

∑
i

ᾱiw
TΛiw + logQw(w)

)
dw.

(3.42)

As MacKay (1995) observes the w-dependent terms are the log of the posterior distri-
bution, and using the theorem that a divergence

∫
Q log(Q/P ) is minimised by setting

Q = P , the optimising distribution Qopt
w (w) is Gaussian and is identical to the posterior

distribution for a particular value of α,

Qopt
w (w) = P (w|D, ᾱ, β̄) = N (wMP|ᾱ,β̄ ,Σᾱ,β̄). (3.43)

Optimisation of Qα(α)

As a functional of Qα(α), F can be written as (ignoring constant terms),

−
∫
Qα(α)

∫
Qw(w)

∫
Qβ(β)

(
logP (w|α) + logP (α)− logQα(α)

)
dβ dw dα

=
∫
Qα(α)

∫
Qw(w)

(
− logP (w|α)− logP (α) + logQα(α)

)
dw dα

Ignoring constant terms this can be rewritten as,∫
Qα(α)

∑
i

(
αi

2

∫
Qw(w)wTΛiw dw −

(
1TΛi1

2
+ ci − 1

)
logαi +

αi

bi

)
+ logQα(α) dα

=
∫
Qα(α)

∑
i

[
αi

(
1
2wT

MP|ᾱ,β̄ΛiwMP|ᾱ,β̄ + 1
2traceΛiΣᾱ,β̄ +

1
bi

)
−
(

1TΛi1
2

+ ci − 1
)

logαi

]
+ logQα(α) dα

(3.44)

Again using the divergence theorem gives the following expression for the optimal dis-
tribution that minimises F for fixed Qw(w),

Qopt
α (α) = Γ(α; b, c), (3.45)
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where,

1
bnew
i

=
1
b

+ 1
2wT

MP|ᾱ,β̄ΛiwMP|ᾱ,β̄ + 1
2traceΛiΣᾱ,β̄

cnew
i =

1TΛi1
2

+ ci (3.46)

Due to numerical instability associated with the hyperparameter convergence rate, a
modified hyperparameter re-estimation formulae was used based on the principle of
gradient descent as used in the Laplace approximation.

Optimisation of Qβ(β)

As a functional of Qβ(β), F can be written as (ignoring constant terms),

−
∫
Qβ(β)

∫
Qw(w)

∫
Qα(α)

(
logP (D|w, β) + logP (β)− logQβ(β)

)
dα dw dβ

=
∫
Qβ(β)

∫
Qw(w)

(
− logP (D|w, β)− logP (β) + logQβ(β)

)
dw dβ

(3.47)

Ignoring constant terms this can be rewritten as,∫
Qβ(β)

(
β

∫
Qw(w)ED(w) dw − N

2
log β − (c− 1) log β +

β

b
+ logQβ(β)

)
dβ (3.48)

Again using the above theorem gives the following expression as the optimal distribution
that minimises F for fixed Qw(w),

Qopt
β (β) = Γ(β; b, c) (3.49)

where,

1
bnew

=
1
b

+
1
2

∫
Qw(w)ED(w) dw

cnew =
N

2
+ c (3.50)

Although the integral over Qw(w)ED(w) is analytically intractable, two alternative
approaches have been proposed in the literature to deal with this (MacKay, 1994; Barber
and Bishop, 1998). In the approach of MacKay (1994) the noise variance is set to
a constant value, and is not re-estimated, however Barber and Bishop (1998) propose
reduction of this integral to a one dimensional integration by transforming the parameter
system to a new isotropic basis and then differentiating with respect to the elements of
the covariance matrix. In this work, the approch of MacKay (1994) is adopted where
the noise variance is set to that value obtained from the Laplace approximation.

The following pseudo-code outlines the implementation of a Bayesian neural network
using variational learning,
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Algorithm 3: Bayesian Neural Network - Variational Learning

Input Dataset D = (x1, y1), . . . , (xN , yN )

Create Construct Bayesian neural network with specified number of
inputs, hidden nodes, and outputs

Initialise Draw w from a Gaussian distribution
α = (α1, α2, . . . , αd) = 0.01; (or some other constant value).
Fix noise variance e.g. β = 100;
Set alphatol to a constant value e.g. 0.001

Algorithm Generate prior distributions for hyperparameters
do{

Use gradient descent algorithm to optimise wMP

Optimise ARD hyperparameters using Equation 3.46
Get Predictions
}while( 1

F

∑F
i |

1
αi
− 1

αold
i
| > δ)

Output αMP , y.

Besides variational bounds, there are other integration techniques that are inspired by
mean-field statistical physics. As (Minka, 2001) observes most of these are extensions of
the TAP (Thouless et al., 1977) approach. Notable examples include the cavity method
(Opper and Winther, 2000), and Bethe approximations (Yedidia, 2000).

3.7.8.1 Limitations

For a Bayesian neural network with ARD, the posterior distribution is composed of both
parameters and hyperparameters, P (w,α|D). The only assumption made in the varia-
tional learning approach is based upon the factorisation of the posterior approximating
distribution Q(w,α|D). By factoring the approximating distribution into Q(w)Q(α),
the inherent assumption is that the parameters w and hyperparameters α are indepen-
dent. In the ARD formulation the hyperparameters act to control the magnitudes of the
weights out of each input, hence the assumption is clearly flawed. The Relevance Vector
Machine (RVM) has recently been proposed by (Tipping, 2000b). The model formulation
is identical to that of the Bayesian neural network but with a separate hyperparameter
for every parameter in the model. The aim then is to set as many of these parameters to
zero as possible. When performing variational inference on an RVM (Tipping, 2000a),
the invalidity of the factorisation assumption is even more pronounced. This could pro-
vide a possible explanation for the marginal improvement seen in the variational RVM
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compared to the original RVM which was optimised in a fashion similar to the evidence
framework.

Hinton (2000) has conjectured that the marginal improvement in performance of the
variational RVM is a result of the factorisation assumption limiting the class of allowable
models to only selecting the best model from the set of all bad models. The proposed
argument is illustrated in Figure 3.3. Consider a model hypothesis space, H, consisting
of two distinct sets of models representing the set of all good models (•) and bad models
(×).

Figure 3.3: Variational learning in a model hypothesis space.

Given that the factorisation assumption for a model consisting of parameters and hy-
perparameters is flawed, the class of allowable models is restricted to the bad set of
models where the factorisation assumption for these class of models is a good assump-
tion. However, given that the factorisation assumption allows you to define separate
prior distributions on both the parameters and the hyperparameters, allows the model
that can be obtained to be the best of the set of bad models, which is represented by the
dashed line in Figure 3.3.

3.8 Demonstration of Hyperparameter Re-estimation

To evaluate the performance of the different hyperparameter re-estimation approaches,
two artificial modelling problems proposed by (Bishop, 1995) and Friedman (1991) were
used. These datasets were considered because they are reflective of many real world
datasets in that learning takes place in the presence of highly correlated inputs variables,
and in the presence of irrelevant input variables. The objective is to evaluate how well
each of the Bayesian hyperparameter determination techniques deal with such data.
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The first is a synthetic dataset involving three input variables: x1 is sampled uniformly
from the range (0, 1) and has a low level of added Gaussian noise, x2 is a copy of x1 with
a higher level of added noise, and x3 is sampled randomly from a Gaussian distribution.
The single target variable is given by t = sin(2πx1) with additive Gaussian noise. Hence,
x1 is very relevant for determining the target value, x2 is of some relevance, while x3

should in principle be irrelevant. The second model is a ten input function, which
contains five redundant inputs given by,

f(x) = 10 sin(πx1x2) + 20
(
x3 −

1
2

)2

+ 10x4 + 5x5 + η (3.51)

where η is zero mean, unit variance, additive Gaussian noise, corresponding to approx-
imately 20% noise, and the inputs were generated independently and randomly from a
uniform Gaussian distribution in the interval [0,1]. The experiments were performed us-
ing 200 examples, 180 for training and 20 for estimating the generalisation performance.
To reduce the effects of data partitioning on the generalisation estimate, the modelling
algorithms were evaluated for ten different (random) partitions of the data. A single
hidden layer Bayesian neural network with a varying numbers of hidden nodes was used
to model the relationship between the inputs and the output. The network weights were
initially randomised from a Gaussian distribution. A linear activation function was used
on the output node.

3.8.1 Bishop’s Dataset: Evaluation of the evidence framework

A Bayesian neural network with ARD was trained using the evidence framework de-
scribed in Section 3.7.1. A hidden node network structure and 500 iterations of the
scaled conjugate gradient algorithm was used to optimise the network structure. These
values are in keeping with those used by (Bishop, 1995) in their evaluation. All of the
hyperparameters were set to an initial value of 0.01 before re-estimation. Table 3.3 gives
the mean and the associated standard deviation (std) for the hyperparameter associated
with each input variable across each of the ten data partitions, whilst Table 3.2 gives
the ranked importance of the input variables across the different data partitions.

x1 x2 x3

α−1 3.49 3.25× 10−5 1.67× 10−11

σα−1 0.065 3.08× 10−5 1.44× 10−11

Table 3.2: Bishop’s Dataset: Mean and associated standard deviation for the ARD
hyperparameter values for a two hidden node Bayesian neural network trained with the

evidence framework.

From 3.2 the evidence framework is able to distinguish between the relevant and irrel-
evant inputs with a high degree of accuracy. In all data partitions input x1 is chosen
as being the most important variable in predicting the output, a fact that is in keeping
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Datasets
1 2 3 4 5 6 7 8 9 10

x1 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st

x2 2rd 2nd 2rd 2nd 3rd 2nd 2nd 2nd 2nd 2nd

x3 3nd 3rd 3nd 3rd 2rd 3rd 3rd 3rd 3rd 3rd

Table 3.3: Bishop’s Dataset: Ranked Importance of the input variables using a Bay-
esian neural network trained with the evidence framework.

with our prior knowledge of the problem. The evidence framework gives less influence to
the irrelevant inputs, x2 and x3, however in some instances input x3, which is made up
entirely of random numbers, is given a higher relevance than input x2 which is actually a
copy of x1 only with a higher level of noise. This point is discussed further with reference
to Friedman’s toy problem 3.8.2 where a similar effect is observed.

3.8.2 Friedman’s Dataset: Evaluation of the evidence framework

A Bayesian neural network with ARD was trained using the evidence framework de-
scribed in Section 3.7.1. A plot of the mean MSE for both the training and the test data
sets is shown in Figure 3.4 for an increasing number of hidden nodes when using the
evidence framework. The optimal network structure was determined to be six hidden
nodes since this corresponds to the lowest error on the test set. The scaled conjugate
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Figure 3.4: Variation of mean training and test MSE for a Bayesian Neural Network
trained with varying numbers of hidden nodes using the evidence framework.

gradient training algorithm was run for 5000 iterations to optimise the parameters w

of the neural network, and the re-estimation formulae derived by (MacKay, 1995) given
in Equation 3.17 were used to optimise the values of the hyperparameters. All of the
hyperparameters were set to an initial value of 0.01 before re-estimation. Table 3.4 gives
the mean and the associated standard deviation (std) for the hyperparameter associated
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with each input variable across each of the ten data partitions, whilst Table 3.5 gives
the ranked importance of the input variables across the different data partitions.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

α−1 1.06 1.08 0.685 0.020 0.004 δ δ δ 0.009 δ

σα−1 0.20 0.30 0.11 0.009 0.0001 0.001 δ δ 0.008 δ

Table 3.4: Friedman’s Dataset: Mean and associated standard deviation for the ARD
hyperparameter values for a six hidden node Bayesian neural network trained with the

evidence framework. δ < 1× 10−5.

Input variables
Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 2nd 1st 3rd 4th 5th - - - - -
2 1st 3rd 2nd 4th 5th - - - - -
3 2nd 1st 3rd 4th 5th - - - - -
4 1st 2nd 3rd 4th 6th - - - 5th -
5 2nd 1st 3rd 4th 5th - - - - -
6 1st 2nd 3rd 4th 5th - - - - -
7 1st 2nd 3rd 6th - - - - 5th -
8 1st 2nd 3rd 4th 5th - - - 6th -
9 2nd 1st 3rd 4th 5th - - - - -
10 2nd 1st 3rd 4th 5th - - - - -

Table 3.5: Friedman’s Dataset: Ranked importance of input variables when using
evidence framework over the ten random data partitions.

Overall, the network does broadly appear to give the highest influence to the five relevant
input variables (x1 . . . x5), and place less influence on the irrelevant inputs. However, the
ranked importance of each input variable across each of the ten data partitions reveals
a number of interesting trends. Given that the first term of Friedman’s toy problem,
given in Equation 3.51, is a symmetric function of x1 and x2, there is no reason for
the network to favour one input variable over the other. The ranked importance for
these two input variables shows an even distribution of relevance. The importance of
the remaining input variables is somewhat variable. In 90% of the datasets, the network
gives a disproportionate amount of influence to the irrelevant inputs often at the expense
of the relevant inputs. This occurrence can be related back to the limitation of the
evidence framework described in Section 3.7.1.1.

Given that the solution to the inference problem is highly dependent upon the choice of
starting values, the non-convex nature of the error surface leads to the model converg-
ing to bad regions of the model space. Correlation effects between the different input
variables also plays a role in the false recognition of the input variables, and this may
be more pronounced in poor models of the data.

In a Hinton diagram the area of the shaded box is proportional to the magnitude of
the parameter vector. The colour of the shading indicates whether the parameter is
positive (grey) or negative (black). A Hinton diagram for the evidence framework is
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given in Figure 3.5, showing that the ARD hyperparameters typically reduce the size
of the network parameters for the irrelevant inputs and increase them for the relevant
input variables.
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Figure 3.5: Hinton diagram showing variation of network weights when using the
evidence framework for hyperparameter re-estimation.

3.8.3 Bishop’s Dataset: Evaluation of MCMC sampling

A Bayesian neural network was trained in a manner similar to that used in the evidence
framework. Hybrid Monte Carlo updates were used to optimise the parameters of the
network, and Gibb’s sampling for the hyperparameters. Table 3.6 gives the mean and
the associated standard deviation (std) for the hyperparameter associated with each
input variable across each of the ten data partitions, whilst Table 3.7 gives the ranked
importance of the input variables across the different data partitions.

x1 x2 x3

α−1 3.04 0.023 0.021
σα−1 2.56 0.01 0.02

Table 3.6: Bishop’s Dataset: Mean and associated standard deviation for the ARD
hyperparameter values for a two hidden node Bayesian neural network trained with

MCMC sampling.

Datasets
1 2 3 4 5 6 7 8 9 10

x1 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st

x2 3rd 2nd 3rd 2nd 2nd 2nd 2nd 2nd 2nd 2nd

x3 2nd 3rd 2nd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

Table 3.7: Bishop’s Dataset: Ranked Importance of the input variables using a Bay-
esian neural network trained with MCMC sampling.
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From Table 3.7 the MCMC sampling approach is able to distinguish between the relevant
and irrelevant inputs with a high degree of accuracy. In all data partitions input x1 is
chosen as being the most important variable in predicting the output. However, as with
the evidence framework the network gives some influence to the noisy input x3. This
could be a consequence of the network not having reached equilibrium, a point that
is discussed further with reference to Friedman’s toy problem where a similar effect is
observed.

3.8.4 Friedman’s Dataset: Evaluation of MCMC Sampling

The evaluation of the Bayesian ARD neural network with the MCMC algorithm was
undertaken in the same manner as for the evidence framework. Hybrid Monte Carlo
updates for the network parameters were alternated with Gibbs sampling updates for
the hyperparameters. Table 3.8 gives the mean and the associated standard deviation
values for the ARD hyperparameters associated with each input variable. In compar-

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

α−1 1.347 0.943 0.711 0.087 0.066 0.001 0.00 0.01 0.01 0.00
σα−1 0.57 0.39 0.26 0.06 0.05 0.01 0.00 0.01 0.01 0.01

Table 3.8: Friedman’s Dataset: Mean and associated standard deviation ARD hyper-
parameter values for six hidden nodes when using MCMC sampling.

Input variables
Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1st 2nd 3rd 4th 5th - - - - -
2 1st 2nd 3rd 4th 5th 6th - - - -
3 1st 2nd 3rd 4th 5th - - 6th - -
4 2nd 1st 3rd 4th 5th - - 6th - -
5 1st 2nd 3rd 4th 5th - - - -
6 1st 2nd 3rd 4th 6th - - - 5th

7 1st 3rd 2nd 5th 4th - - - - -
8 3rd 1st 2nd 4th 5th - - - - -
9 1st 2nd 3rd 4th 5th - - - 6th -
10 1st 2nd 3rd 4th 5th - - - - -

Table 3.9: Friedman’s Dataset: Ranked importance of input variables when using
MCMC resampling.

ison to the values associated with the evidence framework the hyperparameters for the
irrelevant inputs have been driven to much smaller values, and much higher values are
recovered for the relevant inputs, showing that the MCMC approach has been able to
distinguish between relevant and irrelevant inputs much more readily. Table 3.9 gives
the ranked importance of the input variables when using MCMC sampling. The network
gives noticeably less influence to the irrelevant inputs, and can distinguish the relevance
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of the important inputs more readily than the evidence framework approach. The Hin-
ton diagram, given in Figure 3.6, shows that the weights for the irrelevant inputs are
negligible.
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Figure 3.6: Hinton diagram showing variation of network weights when using the
MCMC sampling for hyperparameter re-estimation.

As described in Section 3.7.7.1, one of the major limitations of the MCMC sampling ap-
proach is that convergence cannot be guaranteed. This is illustrated by the convergence
plots, shown in Figure 3.7, in which distinct phase transitions are evident. Given that
the original MCMC problem is formulated in a statistical physics framework, the phase
transitions are indicative of movement from a high energy state to a low energy greater
stability state. From an inference perspective, this corresponds to the network with a
set of parameters and hyperparameters that are more consistent with the data. Using a
fewer training iterations could result in the network not converging to the best possible
solution, since the burn-in phase may not been passed.

3.8.5 Bishop’s Dataset: Evaluation of Variational Learning

A Bayesian neural network was trained in a manner similar to that used in the evidence
framework. The scaled conjugate gradient algorithm was used to optimise the network
parameters, whilst the variational re-estimation formulae given in Section 3.7.8 where
used to optimise the ARD hyperparameters. Table 3.10 gives the mean and the associ-
ated standard deviation (std) for the hyperparameter associated with each input variable
across each of the ten data partitions, whilst Table 3.11 gives the ranked importance of
the input variables across the different data partitions.

From the ranked importance of the input variables, given in Table 3.11, the variational
framework is able to distinguish between the relevant and irrelevant inputs variables
correctly. In contrast to both the evidence framework and MCMC sampling the ranked
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(c) Friedman’s Dataset 3
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(d) Friedman’s Dataset 4
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(f) Friedman’s Dataset 6
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(g) Friedman’s Dataset 7
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(h) Friedman’s Dataset 8
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(i) Friedman’s Dataset 9
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(j) Friedman’s Dataset 10

Figure 3.7: Friedman’s Dataset: Energy Convergence for a Bayesian Neural Network
trained using MCMC sampling on the randomly partitioned Friedman datasets.

importance of the influence of the network is in conjunction with our prior knowledge
of the problem. A consequence of this is that the factorisation assumption, which is
integral to the variational framework, is correct. This observation is discussed further
with reference to Friedman’s dataset in Section 3.8.6.

3.8.6 Friedman’s Dataset: Evaluation of Variational Learning

A Bayesian neural network was optimised using the variational learning parameter and
hyperparameter updates described in Section 3.7.8. Table 3.12 gives the mean and the
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x1 x2 x3

α−1 3.45 3.89× 10−4 1.70× 10−4

σα−1 0.04 2.62× 10−6 2.47× 10−7

Table 3.10: Bishop’s Dataset: Mean and associated standard deviation for the ARD
hyperparameter values for a two hidden node Bayesian neural network trained with

variational learning.

Datasets
1 2 3 4 5 6 7 8 9 10

x1 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st

x2 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd

x3 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

Table 3.11: Bishop’s Dataset: Ranked Importance of the input variables using a
Bayesian neural network trained with the variational learning framework.

associated standard deviations for each of the input variables, and Table 3.13 gives the
ranked importance of the input variables. Although the network gives less influence

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

α−1 0.692 0.704 0.334 0.006 0.002 δ δ δ δ δ

σα−1 0.02 0.01 0.01 0.003 0.001 0.003 0.001 0.003 0.004 0.001

Table 3.12: Friedman’s Dataset: Mean and associated standard deviation ARD
hyperparameter values for six hidden nodes when using variational learning, where

δ < 1× 10−4.

Input variables
Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1st 2nd 3rd 6th 5th - - - - -
2 1st 3rd 2nd 7th 6th - - - - -
3 2nd 1st 3rd 4th 5th - - - - -
4 2nd 1st 3rd 4th 5th - - - - -
5 1st 2nd 3rd 4th 5th - - - - -
6 1st 2nd 3rd 4th 5th - - - - -
7 2nd 1st 3rd 4th 5th - - - - -
8 1st 2nd 3rd 4th 5th - - - - -
9 2nd 1st 3rd 4th 5th - - - - -
10 2nd 1st 3rd 4th 5th - - - - -

Table 3.13: Ranked importance of input variables when using variational learning.

to the irrelevant inputs compared to the evidence framework, it does not achieve the
consistency of the MCMC approach. Variational learning has difficulties ranking the
importance of the input variables it selects, and often assigns higher importance to inputs
which are irrelevant rather than inputs which contribute to the target. This could be a
direct consequence of the limitations described in Section 3.7.8.1. The Hinton diagram
shown in Figure 3.8 shows the effect of the hyperparameters on the irrelevant inputs.
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The weights for these inputs are large and have not been reduced to reflect their lack of
influence on the target.
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Figure 3.8: Hinton diagram showing variation of network weights when using Varia-
tional Bayesian Learning.

3.9 Computational Complexity of Bayesian Inference

In Section 3.8, three Bayesian hyperparameter determination algorithms were evaluated
on an artificial problem. The main conclusion from these simulations is that the Bay-
esian learning approach can be applied to moderate size problems (with tens of inputs,
and hundreds of training patterns) with little computational expense. A discussion of
Bayesian learning would be incomplete without some consideration being given to com-
putational complexity. The computational cost of Bayesian learning is of paramount
interest for the technique to be widely applicable.

The principle disadvantage of the evidence framework is in the computational complex-
ity of the training phase. A key component to this framework is the evaluation and
storage of the Hessian matrix. The Hessian is required for the computation of error
bars on the network predictions, and also as part of the hyperparameter determination
approach. To repeatedly compute and invert the Hessian matrix requires O(N2) and
O(N3) complexity respectively. For large datasets this makes training considerably slow.
In such cases algorithms such as scaled conjugate gradient (which was used to minimise
the Bayesian costfunction) do not evaluate the Hessian matrix explicitly, but instead
compute it using a finite difference approximation to the dot product of the Hessian and
the search direction.

The MCMC approach consists of choosing N samples in an M -dimensional space result-
ing in an error term that decreases as N−1/2. However, as (MacKay, 1999a) observes the
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MCMC approach can be considered to be the most computationally demanding hyper-
parameter determination method. As part of an MCMC implementation, it is important
to determine how long the simulations should be run for, and to discard a number of
initial ’burn-in’ iterations (Gilks et al., 1996). Saving all simulations from an MCMC run
can consume a large amount of storage, especially when consecutive iterations are highly
correlated necessitating a long simulation. Raftery and Lewis (1996) have proposed an
alternative method whereby they only save every kth iteration (k > 1), a process they
refer to as thinning the chain. The advantage of this approach is that it reduces the
amount of data often saved from an MCMC run. However, a limitation of this approach
is that it requires the value of k to be chosen in advance, as such for chains that do
not ’mix’ well (see Section 3.7.7.1) this approach may not alleviate the computational
expense.

The computational complexity of variational learning can be considered to be a hybrid
of both the evidence and the MCMC framework. An analogy can be drawn between the
number of samples required to minimise the KL-divergence, and those needed to converge
to an acceptable solution in the MCMC framework. Minka (2001) and Lawrence (2000)
argue that the evaluation of Jensen’s inequality in variational Bayesian learning is also
computationally demanding.

For approximating an integral, we thus find ourselves in the following position. There
exist methods that work well for simple functions in low dimensions (evidence and
variational learning frameworks), and complex functions in high dimensions (MCMC),
methods that are simple and fast, although sometimes inaccurate exist(evidence), meth-
ods even exist that apply in special cases (TAP, Bethe approximations). Recent work
by (Minka, 2001) has tried to address this problem by developing an Expectation-
Propagation (EP) algorithm that unifies and generalises two previous techniques. The
EP algorithm exploits an extension of the Kalman filter (Harvey, 1989), and loopy be-
lief propagation (Murphy et al., 1999) an extension of belief propagation in Bayesian
networks (Heckerman et al., 1995). In this work Minka (2001) shows how both of these
algorithms can be viewed as approximating the true posterior distribution with a sim-
pler distribution which is close in the KL-divergence sense. This framework has been
demonstrated in a variety of statistical models using synthetic and real-world data, and
is shown to have good generalisation performance for equivalent or less computation.

3.10 Defining Priors over Functions

In Chapter 3, the uncertainty in the inference problem was described through a prob-
ability distribution over the weights. As a result of the work of (Neal, 1995) on prior
distributions for neural networks with an infinite number of hidden nodes, it is also pos-
sible to deal directly with uncertainty with respect to the function values at the points
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of interest. Williams (1998) refers to this as the stochastic process or function-space
view of the problem. Gaussian processes are a subset of stochastic processes that can
be specified by only giving the mean vector and covariance matrix for any finite subset
of points. This topic is discussed further in Chapter 4.

3.11 Summary

Bayesian learning can be considered to consist of two fundamental characteristics. Bay-
esian learning starts with a prior probability distribution for model parameters and
hyperparameters that represents prior beliefs about the problem. Typically these be-
liefs are derived from background or expert knowledge. Secondly, Bayesian predictions
are not based on a single estimate for the model parameters, but rather are found by
integrating the model’s predictions with respect to the posterior parameter distribution
that is obtained when the prior distribution is updated to take account of the data.

As Neal (1995) observes for neural network models, both of the aspects described above
present major difficulties, in particular, integration over the posterior distribution is
typically computationally intractable. A number of approximations have been sug-
gested, however these are often limited because their assumptions are inappropriate,
they converge to local minima, or they are computationally demanding. The use of
hyperparameters in addition to model parameters has allowed the technique of ARD to
be developed. This method allows the data to determine which inputs should influence
the model’s predictions, and as shown in this chapter can be successfully be used to
introduce interpretability into an otherwise non-interpretable model.





Chapter 4

Kernel Based Methods

4.1 Motivations from Neural Networks

Many neural network architectures, including those described in Chapter 3, deal with the
problem of predictive learning. One of the attractions of such models is their flexibility,
i.e. their ability to model a wide variety of functions. However, this flexibility comes
at a cost in that a large number of parameters may need to be determined from the
data. As described in Chapter 2, regularisation methods attempt to penalise a models
parametric and structural form, hence avoiding “overfitting” of the data and restoring
the well-posedness of the learning problem. As Cherkassky and Mulier (1998) observe,
no single universally accepted theoretical framework for predictive learning currently
exists.

One of the strengths of kernel based methods is that they are non-parametric modelling
techniques, where it is not necessary to specify for example the number of basis functions
beforehand. Whilst this is advantageous in general, parametric models are useful in
their own right. This is particularly so if prior knowledge about the problem exists, for
example it may be that the vast majority of the data’s properties are described by a
small set of linearly independent basis functions {φ1(·), . . . , φn(·)}. It also plays a part
when an interpretable model is required without sacrificing generalisation performance.
This may be some motivation for the construction of semi-parametric models (Smola
et al., 1998), which due to the parametric part are easily interpreted and perform well
due to the nonparametric term.

In the Bayesian interpretation of neural network modelling, a non-linear function y(x)
parameterised by parameters w is assumed to underline the dataset D = (x, y)N

n=1, and
the adaptation of the model to the data corresponds to an inference of the function
given the data. The Bayesian approach to neural networks can be considered to be
an example of the parameter or weight space approach to learning, viz. the learning

65
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machine is parameterised by a weight vector and the task of learning is to find optimal
values of these weights.

An alternative perspective on learning can be achieved by taking a function space ap-
proach. Instead of considering priors over weights, the Bayesian approach to neural net-
works can be shown to induce a prior distribution over functions (Neal, 1995; Williams
and Rasmussen, 1996). The basis of Gaussian process modelling is without parameteris-
ing y(x), to place a prior distribution, P (y(x)), directly on the space of functions. The
simplest type of prior over functions is called a Gaussian process (Williams and Ras-
mussen, 1996; Rasmussen, 1996; Gibbs, 1997). It can be thought of as a generalisation
of a Gaussian distribution over a finite vector space to a function space of potentially
infinite dimension (Rasmussen, 1996).

As (Gibbs, 1997) observes just as a Gaussian distribution is fully specified by its mean
and covariance matrix, a Gaussian process is fully specified by a mean and a covariance
function. Here, the mean is a function of x, which as (MacKay, 1995) observes is often
the zero function, and the covariance is a function C(x,x′) that expresses the expected
covariance between the function at the points x and x′.

An important property of the covariance function was given by (Lamperti, 1977) which
summarises the above description,

Theorem 4.1 (Lamperti’s Theorem). A function C defined on a parameter set X ,
C : X × X → R is the covariance of some process y(x) iff C is positive semi-definite.

An important corollary follows from Lamperti’s theorem,

Corollary 4.2 (Lamperti 1977). Assume that we have some function C that is positive
semi-definite. For each finite set x1, . . . ,xN ∈ X the matrix C(xi,xj) is then symmetric
and positive semi-definite. There is accordingly, a unique Gaussian distribution defined
on Rd with mean zero having C(xi,xj) for its covariance matrix. It can then be shown
that there is a real valued Gaussian process having mean zero and given function C for
its covariance.

The current interest in Gaussian processes as kernel based methods has been initiated
by the work of (Neal, 1995) on priors for infinite networks. This work showed that the
prior over functions defined by a neural network with one hidden layer converges to a
Gaussian process as the number of hidden nodes tends to infinity for certain priors on
the weights.

Having defined a Gaussian process, Williams and Rasmussen (1996) have shown how
this can be useful in making predictions with unseen data. Given the set of inputs x

with mean µx and covariance matrix C, the ijth element of C is given by the covariance
function C(xi,xj) which is dependent on the inputs associated with the ith and jth
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observations respectively. The predicted output y for some new test data x∗ allows the
definition of a new Gaussian process model based on the new data and the assumption
that the new predicted output has a mean µy. Following the work of Williams (1998)
the new Gaussian process will have mean µxµy and partitioned covariance matrix,

Σ =

[
C c

cT c

]

where c = c(x∗,x∗) and c = [c(x∗,x1), . . . , c(x∗,xN )]T . The random variables x and
y′ = y are statistically independent where the mean and variance of y′ are given by,

µy′ = µy − cT C−1µx and σ2
y = c− cT C−1c (4.1)

The study of Gaussian processes for regression is far from new. Within the geostatistics
field, Matheron (1963) proposed a framework for regression using optimal linear esti-
mators which he termed ’kriging’. This framework is identical to the Gaussian process
approach to regression. Kriging has been developed considerably over the past thirty
years (Cressie, 1993), including several Bayesian treatments (Omre, 1987; Kitanidis,
1986). However, the geostatistics approach to the Gaussian process model has concen-
trated mainly on low-dimensional input spaces, and has largely ignored any probabilistic
interpretation of the model, and any interpretation of the individual parameters of the
covariance function (Gibbs, 1997).

The Gaussian process framework encompasses a wide range of different regression mod-
els. O’Hagan (1978) introduced an approach that is essentially similar to Gaussian
processes. Generalised radial basis functions (Poggio and Girosi, 1989), autoregressive
moving average (ARMA) models (Wahba, 1990a), and variable metric kernel methods
(Lowe, 1995) are all closely related to Gaussian processes. The Bayesian interpretation
of Gaussian processes was extended in (Williams and Rasmussen, 1996) and (Williams
and Barber, 1998), and a comparison of Gaussian processes with other methods such as
neural networks and MARS was carried out by (Rasmussen, 1996).

Another class of kernel methods, namely Support Vector Machines (SVMs) have been
developed from a very different viewpoint (Vapnik, 1998). The proponents of SVMs
have been concerned with the question under what conditions the ill-posed learning
problem of determining the probabilistic dependence between an input and an output
can actually be solved uniquely. As well as what learning paradigm should be proposed
to construct learning algorithms for this task. This has given rise to the discipline of
statistical learning theory (SLT) (Cortes and Vapnik, 1995; Vapnik, 1998; Smola, 1998).
The basis of this approach is the structural risk minimisation (SRM) principle. This
problem can formally be defined by choosing a loss function and a model hypothesis
space, both choices are guided by our prior belief into the nature of the underlying data
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generating mechanism and noise model for the process to be learned. A function is then
sought that minimises the expected loss or expected risk.

Since the probability distribution, p(x, y), from which the data is draw is typically
unknown, the expected loss cannot be computed directly. Hence, a stochastic approx-
imation termed the empirical risk is introduced. The law of large numbers guaranteed
that the empirical risk converges to the expected risk, and as such a common approach
consists in minimising the empirical risk rather than the expected risk. The empirical
risk minimisation (ERM) principle states that if the empirical risk converges to the ex-
pected risk, then the minimum of the empirical risk may converge to the minimum of
the expected risk (Vapnik, 1998). If this principle does not hold the ERM principle does
not allow us to make any inference based on the dataset and is therefore inconsistent.

Central to the SLT principle is the notion of the VC-dimension (Cortes and Vapnik,
1995), however in terms of support vector regression the problem is that the VC-
dimension does not contain any scale information and is therefore too conservative in
most cases (Smola, 1998; Vapnik, 1998). Hence, it is essential to use scale dependent
quantities such as the (level) fat shattering VC dimension (fatF ) or quantities like en-
tropy or covering numbers. Definitions of these quantities can be found in Vapnik (1998),
Smola (1998) , or Cristianini and Shawe-Taylor (2000). A discussion of these quantities
is beyond the scope of this thesis.

4.2 Support Vector Regression

Regression is one of the most common data modelling problems, and numerous methods
exist for tackling it. An elegant feature of the support vector machine approach, and
other kernel based methods, derives from the fact the problem is reduced to a linear
setting. Consider the inference problem described in Chapter 3, of approximating a set
of data, D, consisting of inputs, x, and an output y, with a linear function f of the form,

f(x) = 〈w,x〉+ b with w ∈ Rd, b ∈ R (4.2)

The problem of minimising the empirical risk is generally an ill-posed problem (as defined
in Chapter 2) except in very restrained model classes and leads to model overfitting
(Vapnik, 1998). The problem can be converted to one that is well posed, by restricting
the set of functions from which f is chosen to some compact set F . As observed by Smola
(1998), restriction of a function to a compact set that is sufficiently well behaved, for
example it has a finite covering number, the empirical risk will converge to the expected
risk for increasing sample size. In practice this is achieved by imposing a convex penalty
term to the cost function that is being minimised.
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4.3 Loss Functions

In order to construct algorithms for minimising the empirical risk it is necessary to
specify which loss function to use. This thesis only considers convex loss functions,
the practical reason being that to solve the problems described above can be proven to
have a unique minimum (Smola, 1998). As Smola (1998) observes for many nonconvex
loss functions, the attempt to solve the corresponding risk minimisation problem results
in combinatorial optimisation settings that are NP-hard as they exhibit many local
minima. Although the original formulation for minimising the empirical risk was specific
to classification, in terms of a margin, to generalise the support vector algorithm to
regression estimation (Vapnik, 1998) an analogue of the margin is constructed in the
space of the target values t where t ∈ R.

For the conventional quadratic loss, the SVM framework can be written as,

max
α,α∗

W (α, α∗) = max
α,α∗


−1

2

∑N
i=1

∑N
j=1(αi − α∗i )(αj − α∗j )

〈xi,xj〉+
∑N

i=1(αi − α∗i )yi

− 1
2C

∑N
i=1(α

2
i + α∗2i )

(4.3)

As observed by Smola (1998), the corresponding optimisation problem can be simplified
by exploiting the Karush-Kuhn-Tucker conditions, and noting that these imply β∗i = |βi|.
The resultant optimisation problem is then given by,

min
β

1
2

N∑
i=1

N∑
j=1

βiβj〈xi,xj〉 −
N∑

i=1

βiyi +
1

2C

N∑
i=1

β2
i (4.4)

with the constraints,
N∑

i=1

βi = 0, (4.5)

where αi, βi are Lagrange multipliers and N is the number of samples in the dataset D.

In ε-insensitive support vector regression Vapnik (1995, 1998), the goal is to find a
function f(x) that has at most ε deviation from the target values of the training data,
and is as smooth as possible1. That is to say errors are acceptable provided they are
less than ε. It follows from the work of Huber (1981), that this loss function is robust in
the class of uniform densities. In cases where a function f does not exist or situations
where errors greater than ε need to be allowed, slack variables ξi, ξ∗i can be introduced
to cope with otherwise infeasible optimisation constraints (Cortes and Vapnik, 1995).

1Smoothness was defined in Chapter 2
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This then leads to the formulation stated in(Vapnik, 1998),

minimise
1
2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i )

subject to ((w · xi) + b)− yi ≤ ε+ ξi (4.6)

yi − ((w · xi) + b) ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

Constructing a Lagrange function from the objective function and the corresponding
constraints gives,

L =
1
2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i )−
N∑

i=1

αi(ε+ ξi − yi + 〈w, xi〉+ b)

−
N∑

i=1

α∗i (ε+ ξ∗i + yi − 〈w, xi〉 − b)−
N∑

i=1

(ηiξi + η∗i ξ
∗
i ) (4.7)

Given that the dual variables, αi, α
∗
i , ηi, η

∗
i need to satisfy positivity constraints the

solution is then given by,

maximise

{
−1

2

∑N
i,j=1(αi − α∗i )(αj − α∗j )〈xi, xj〉

−ε
∑N

i=1(αi + α∗i ) +
∑N

i=1(αi + α∗i )

subject to

{ ∑N
i=1(αi − α∗i ) = 0
αi, α

∗
i ∈ [0, C]

(4.8)

After some algebraic manipulation, the SVM solution is given by,

f(x) =
N∑

i=1

(αi − α∗i )〈xi,x〉+ b (4.9)

The computation of the constant b is obtained by exploiting the Karush-Kuhn-Tucker
(KKT) conditions (Smola, 1998),

b = yi − 〈w, xi〉 − ε for αi ∈ (0, C)

b = yi − 〈w, xi〉+ ε for α∗i ∈ (0, C) (4.10)

A number of other loss functions also exist. In the limit as ε→ 0 we get the Laplacian
loss function which leads to median type estimators. Quadratic loss which has been
shown to be optimal for Gaussian additive noise.

A cautionary remark is necessary regarding the use of loss functions other than the
ε-insensitive. Unless ε > 0 all the advantages associated with a sparse parameter de-
composition will be lost. This may be acceptable for small datasets, but will render
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the prediction step computationally expensive. As a result a trade off between the po-
tential loss in predictive accuracy and speed of predictions may have to be made. The
Laplace, Gaussian, Huber’s robust, and the ε-insensitive loss function lead to quadratic
programming problems, which can be solved using readily available quadratic program-
ming optimisers (Mészáros, 1998). Other loss function may lead to convex programming
problems that are more difficult to optimise.

4.4 Kernel Functions

SVMs make use of reproducing kernels which are functions that provide an elegant
approach to dealing with nonlinear algorithms by reducing them to linear ones in some
feature space F nonlinearly related to the input space. The only way in which the data
appears in the training problem is in the form of dot products, xi · xj . If the data is
mapped to some other (possibly infinite dimensional) Hilbert space H2.

Definition 4.3 (Kernel Function). A kernel is a function K such that for all x,x′ ∈
X , where X is a data input space,

K(x,x′) = 〈φ(x) · φ(x′)〉 (4.11)

where φ is a mapping from X to an (inner product) feature space F .

As observed by Vapnik (1998) and Smola (1998), an important consequence of the
SVM formulation is that the dimensionality of the feature space need not affect the
computation. Since the feature vectors are not represented explicitly, the number of
operations required to compute the inner product by evaluating the kernel function is
not necessarily proportional to the number of features. The computational complexity
of kernel based learners is discussed further in Section 4.7.

The use of a kernel function enables operations to be performed in the input space rather
than the potentially high dimensional feature space, by taking a dot product there,

K(xi,xj) = Φ(xi) · Φ(xj) (4.12)

The solution of SVMs is then a weighted linear summation of kernels,

f(x) =
N∑

i=1

βiK(xi,xj), (4.13)

where these kernels are centered on the data points. The elegance of using kernels lies in
the fact that one can deal explicitly with spaces f of arbitrary dimensionality without

2A Hilbert space is any linear space, with an inner product defined but which is also complete with
respect to the Euclidean norm
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having to compute the map Φ explicitly. Despite these attractive features, there is a
need to consider under which conditions a symmetric kernel K(x,x′) corresponds to a
dot product in some feature space.

4.4.1 Mercer’s Theorem

Theorem 4.4 (Mercer’s theorem). There exists a mapping Φ and an expansion,

K(x,x′) =
∑

i

Φ(xi)Φ(x′
i) (4.14)

and ∫
K(x, x′)g(x)g(x′)dxdx′ ≥ 0 (4.15)

if and only if, ∫
g(x)2dx <∞ (4.16)

A consequence of Mercer’s theorem is that any positive definite function in L2 can be
chosen and we have a valid kernel function without even having to construct Φ. However,
defining Φ implicitly through K also creates some serious problems. Mostly, this map
and many of its properties are unknown. Even worse, this method does not generate any
rule about which kernel should be used, or why mapping into a very high dimensional
space often provides good results, seemingly defying the curse of dimensionality Bellman
(1961). This dilemma can be resolved by showing that kernels K(x, x′) correspond to
regularisation operators Smola (1998). Prior knowledge can be incorporated in SVMs by
careful choice of kernel function. Particular kernels may be more appropriate in certain
circumstances given the data distribution.

A key issue in every learning problem concerns the input (and output) data represen-
tation (Fukunga, 1990). As Evgeniou and Pontil (1999) observe, in practical problems
the choice of the regressors is often much more important than the choice of learning
algorithms or technique. The choice of an appropriate input representation typically
depends on prior knowledge about the particular learning problem. Jaakkola and Haus-
sler (1999) have considered the case in which prior information is available in terms of
a parametric probabilistic model p(x, y) of the process generating the data.

A number of interesting observations can be made that are relevant to the kernel based
methods described above. As observed by Vapnik (1998), the choice of the kernel K is
equivalent to choosing features, φi(x), related to the original inputs x, where the basis
functions are defined by K(x,xi) ≡

∑N
i=1 φi(x)φi(xi). Following Smola (1998), if we

assume that K is given and that the input representation is changed through a vector
function h(x) mapping the original input x onto the new feature vector h, this can be
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considered to be equivalent to using a new kernel K
′
defined in terms of the composite

features φi(h(x)) as K
′
(x,xi) ≡

∑N
i=1 λiφi(h(x))φi(h(xi)).

The work of Aronszajn (1950) describes several ways to construct positive definite ker-
nels, and thereby the associated reproducing kernel Hilbert space3 (RKHS). This work
showed that there are several symmetric positive definite kernels and a number of ways
to construct new kernels from existing ones, by operating on them with operations such
as addition and convolution(Evgeniou and Pontil, 1999). For example, if K1 and K2

are Mercer kernels, then K1 +K2 is also a Mercer kernel, as is K1K2. These ideas are
exploited in the work on ANOVA spline kernels described in Section 5.2.1 and Chapter 5.

4.5 How do you choose the Kernel?

Whilst Mercer’s condition provides a formal definition for a kernel function, it gives no
information about how to construct Φ and hence what H is. The most popular strategy
to date, for choosing the kernel, has been based on prior knowledge (Schölkopf et al.,
1998; Burges, 1999), Cristianini and Shawe-Taylor (2000) have proposed an alternative
method for selecting a suitable kernel, and that is to start from the features and to then
evaluate the corresponding inner product. An advantage of this approach is that there
is no need to check whether the kernel satisfies Mercer’s condition, since this will follow
automatically from the definition of an inner product. As (Vapnik, 1998) observes, in
a classification scenario, the upper bound on the VC dimension is a potential avenue
to provide a means for comparing kernels. However, this requires the estimation of the
radius of the hyperplane enclosing the data in the nonlinear feature space. As a final
caution, even if a strong theoretical method for selecting a kernel is developed unless this
can be validated using an independent test set on a large number of problems, methods
such as bootstrapping and cross validation will remain the preferred method for kernel
selection.

Even though arguments about the choice of kernel function continues which at its heart
is data and problem dependent, work on the USPS dataset, that despite the choice of
kernel function similar sets of support vectors and similar classification results can be
obtained. Despite these proposed methods, the best choice of kernel for a given problem
still remains an active research problem.

4.6 Bayesian Learning in Kernel Methods

The Gaussian process model described in Section 4.1 can be considered to be inherently
Bayesian given its probabilistic derivation. The solution to an SVM has been shown to

3The basic ideas are outlined in Appendix A



74 Chapter 4 Kernel Based Methods

be a weighted sum of kernel functions however, as Tipping (2000b) observes the support
vector methodology does exhibit a number of disadvantages. In a regression scenario,
the predictions are not probabilistic, the SVM outputs a point estimate whereas ideally
the conditional distribution p(t|x) is needed to capture the uncertainty in the prediction.
In regression this may take the form of error bars, whilst in the classification class condi-
tional probabilities are required. It is also necessary to determine the hyperparameters
C (the capacity control term) and ε (the insensitivity parameter). Typical methods for
determining these are based on a cross validation procedure, that can be considered
to be both wasteful of data and computation. Although relatively sparse, SVMs make
liberal use of kernel functions, the requisite number of which grows linearly with the size
of the training set.

Recent work by (Sollich, 1999a,b, 2000) and (Gao et al., 2000) has addressed the non-
probabilistic nature of support vector classification (SVC) and support vector regression
(SVR) respectively. Sollich showed that SVC can be can be interpreted as a MAP
solution to the inference problem based on Gaussian process priors, and an appropri-
ate likelihood function based on a probabilistic interpretation. This has allowed class
conditional probabilities and error bars to be obtained.

Standard regularization theory formulates the learning problem as a functional varia-
tional problem of finding the function y(x) that minimises a functional of the form

Remp[y(x)] =
N∑

i=1

L(ti, y(xi)) +
λ

2
‖y(x)‖2K (4.17)

where L(·, ·) is a loss function and ‖ · ‖ is a norm in a Reproducing Kernel Hilbert Space
H with a kernel K, (Wahba, 1990a; Evgeniou et al., 2000). The solution to equation
(4.17) has the following representation

y(x) =
N∑

i=1

wiK(x,xi) + w0 (4.18)

where w0 can be assumed to be zero, for an explanation see (Evgeniou et al., 2000).

It is well known that a variational principle of the type of equation (4.17) can be derived
not only in the context of functional analysis, but also in a probabilistic framework
(Wahba, 1990a; Girosi et al., 1995; Evgeniou et al., 2000; Sollich, 1999b). Let D be the
training dataset as defined above, and define P (y(x)|λ) ∝ exp{−λ

2‖y(·)‖
2
K} as the prior

probability of the random field y(x) and P [D|y(·)] ∝ exp{−C
∑N

i=1 L(ti, y(xi))} as the
conditional probability of the data given the field y(x). i.e., the likelihood. Then the
posterior distribution P (y(x)|D) can now be computed by using Bayes’ rule as:

P (y(x)|D, λ) =
P (D|y(x))P (y(x)|λ)

P (D|λ)
∝ exp{−

N∑
i=1

L(ti, y(xi))−
λ

2
‖y(·)‖2K} (4.19)
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Hence the Maximum A Posterior (MAP) estimate of the probability distribution (4.19),
which maximizes the a posterior probability P (y(x)|D), is the minimiser of the functional
(4.17). The MAP estimate depends on the knowledge of λ and σ2

t . The above framework
is general enough to cover both the Gaussian Processes and the Support Vector Machines
as well as classification (Vapnik, 1998; Evgeniou et al., 2000)

Recently Tipping (2000b) has formulated the Relevance Vector Machine (RVM), which
is a probabilistic sparse kernel model identical in functional form to the SVM. However,
a Bayesian approach to the inference problem is adopted from the outset, where a prior
over the weights governed by a set of hyperparameters is introduced. In contrast to the
Bayesian neural network model described in Chapter 3, where a separate hyperparameter
was introduced for each input vector, the RVM uses a separate hyperparameter for
every weight in the network4. The most probable values for these hyperparameters are
iteratively estimated from the data in an evidence type framework (see Section 4.2).
Sparsity in an RVM is achieved because the posterior distributions of many of the
weights are sharply peaked around zero. The most compelling feature of the RVM is
that it achieves comparable generalisation performance to an equivalent SVM, and it
typically uses dramatically fewer kernel functions.

Given the problems associated with the evidence framework described in Section 3.7.1.1
Bishop and Tipping (2000) have extended the original RVM formulation to a more
rigourous Bayesian setting using variational learning as described in Section 3.7.8. This
has in part been motivated by the observation made by Tipping (2000b) that the prin-
cipal disadvantage of the RVM is in the complexity of the training phase, since it is
necessary to repeatedly compute and invert the Hessian matrix, requiring O(N)2 and
O(N)3 computations. For large datasets, this makes training considerably slower than
the SVM.

As observed by (Vapnik, 1998) in a classification setting the non-zero Lagrange multi-
pliers, or the so called support vectors are the data points that lie closest to the decision
boundary. However, for an RVM the non-zero weights are not associated with examples
close to the decision boundary, but appear to represent what Tipping (2000b) describes
as prototypical examples of the classes. However, it can be argued that in a classification
scenario the support vectors that are chosen inherently contain information about the
decision boundary. As such, if the data points not corresponding to the support vectors
are removed, and the SVM is again trained with the data points that are support vectors
the same decision boundary will be obtained. However, if this same procedure were to
be repeated using the relevance vectors a different decision boundary would be obtained.

As described in Section 4.3 support vector machine regression measures the goodness of
fit of a model not only by the usual quadratic loss function, but also by the ε-insensitive

4The introduction of multiple hyperparameters for the parameters of a model is exploited in the
algorithm described in Chapter 5
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loss function which is similar to the robust loss functions introduced by Huber (1981).
The quadratic loss function is well justified under the assumption of additive Gaussian
noise. However, the noise model underlying the ε-insensitive loss function is less clear.
Work by Pontil et al. (1998) has used Bayesian learning to show that the noise model
is equivalent to a model of additive Gaussian noise, where the mean and variance are
random variables. In this work the traditional assumption that noise variables all have
identical probability distributions is dropped. Different data points may have been
collected at different times, under different conditions, so it is more realistic to assume
that the noise variables δ(i) have probability distributions Pi which are not necessarily
identical. Hence.

P (g|f) =
N∏

i=1

Piδi (4.20)

Instead, assume that the noise distributions Pi are actually Gaussian but they do not
necessarily have zero mean.

Piδi ∝ exp−βi(δi−ti)
2

(4.21)

Hence, we can write,
Pi(δi|βi, ti) ∝ expβi(δi−ti)

2
(4.22)

and therefore the marginal distribution integrating over β and t gives,

P (f |g) ∝ P (g|f)P (f)

P (f |g, β, t) ∝
N∏

i=1

P (δi|βi, ti)P (f)

P (f |g) ∝
∫ ∫ N∏

i=1

Pi(δi|βi, ti)P (f)P (β, t)dβdt (4.23)

Since the values of β and t are not known we want to marginalise over them. The
function that minimises Equation 4.23 is the one that minimises,

H[f ] =
N∑

i=1

V (f(xi)− yi) + αΨ[f ]

where,

V (x) = − log
∫ ∞

0
dβ

∫ ∞

−∞
dt
√
β exp−β(x−t)2 P (β, t)

and
P (β, t) = µ(β)λ(t) (4.24)
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with the following priors on β and λ,

µ(β) = β−2 exp−
1
4β

λε(t) =
1

2(ε+ 2)
(
χ[−ε,ε](t) + δ(t− ε) + (t+ ε)

)
(4.25)

4.7 Computational Complexity when using Kernel Based

Learners

Computational cost is a major issue in learning methods. Kernel methods require the
evaluation of an N×N positive definite matrix, where N denotes the number of samples
in the dataset D. Gaussian processes, which were discussed in Section 4.1, allow exact
Bayesian analysis with simple matrix manipulations. However, obtaining the MAP es-
timate requires the computation, storage and inversion of the full covariance matrix
which is an O(N)3 process. Gibbs and MacKay (1997) have addressed this problem by
considering a matrix condensation method proposed by Gull (1989) which reduces the
computational cost of finding a solution to O(kN2) rather than O(N3), when the co-
variance matrix contains a significant number of small eigenvalues. Smola and Bartlett
(2000) have proposed a sparse greedy method that approximates the MAP solution of a
Gaussian process that involves a computational requirement of O(m2N), a matrix stor-
age requirement of O(mN), and a cost of m for prediction where m� N . Their method
exploits the ideas proposed in the context of wavelets, that are reviewed and utilised in
the algorithms described in Chapter 5. In addition to the traditional cost function that
is being minimised, an L0 penalty is imposed from which a greedy algorithm similar to
matching pursuit (5.1.2) is obtained. The algorithm starts from an empty structure to
which basis functions are added or deleted in a greedy fashion. The inherent limitation
of this approach is its convergence to local minima (see Chapter 7 for a further discussion
of this limitation).

Williams and Seeger (2000) have proposed an alternative method to speed up the com-
putation of kernel methods that is based on an approximation to the eigendecomposition
of the positive definite kernel matrix using the Nyström method. Given that the kernel,
K(x,x′), can be written in the form,

K(x,x′) =
N∑

i=1

λiφi(x)φi(x′) (4.26)

where N ≤ ∞, λ1,≥ λ2,≥ · · · ≥ 0 denote the eigenvalues, and φ1, φ2, . . . denote the
eigenfunctions of the kernel K. The Nyström approximation to the ith eigenfunction
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can then be computed as,

φi(x′) ≈
√
q

λ
(q)
i

q∑
k=1

K(x′,xk)U
(q)
k,i (4.27)

where q is the number of i.i.d samples drawn from the probability density of the input
vector x. The time required for this computation is of order O(m2N).

A different approach for dealing with large datasets has been suggested by Tresp (2000)
for Gaussian process regression. This method is based on splitting the dataset into
smaller subsets and training individual Gaussian process predictors on each of them.
The final prediction is obtained by a specific weighting of the individual predictors.

Within the SVM community, methods for reducing computation time have been pro-
posed that are based on active constraints (Cristianini and Shawe-Taylor, 2000). Given
that the solution to an SVM optimisation problem is based on inequality constraints, if
it were possible to know in advance which constraints were active, it would be possible
to discard all the inactive constraints and simplify the problem. The simplest itera-
tive heuristics that builds up an active dataset is known as chunking (Cristianini and
Shawe-Taylor, 2000). The algorithm starts with an arbitrary subset or ‘chunk’ of the
data, and trains an SVM on that portion of the data. The algorithm then retrains using
only the data points that are support vectors from the chunk whilst discarding the other
points, and then it uses the hypothesis found to test the points in the remaining part of
the data. The points that most violate the KKT conditions are added to the support
vectors of the previous system to form a new chunk. This procedure is iterated until
some stopping criteria is satisfied.

Despite the attractiveness of the chunking method, this approach can fail when the kernel
matrix for the set of support vectors does not fit into a computers memory, or when
the problem under consideration is not sparse. A further complication arises when the
dataset size is so large that the set of support vectors is still too large to be dealt with by
a generic optimisation routine (Cristianini and Shawe-Taylor, 2000). The decomposition
algorithm of Osuna et al. (1996) has been proposed to overcome these limitations by
only updating a fixed subset of multipliers whilst keeping the others constant. Hence,
each time a new point is added to the active set, another point has to be removed.
In this algorithm, the goal is not to identify all of the active constraints in order to
run the optimiser on all of them, but rather to optimise the global problem by only
acting on a small subset of data at a time. The sequential minimal optimisation (SMO)
algorithm of (Platt, 1998) is derived by taking the idea of the decomposition method to
its extreme and optimising a minimal subset of just two points at each iteration. Given
that the optimisation problem is based only on two data points, the solution can be
found analytically obviating the need for a quadratic programming routine.
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4.8 Summary

Kernel methods, that incorporate a number of attractive features, have become a pop-
ular method for regression estimation. Although the two principle methods, Gaussian
processes and support vector machines, have been developed in different ways their close
correspondence has led to considerable synergetic efforts. Work on Gaussian processes
stemmed from the observation by Neal (1995) that when an appropriate prior probabil-
ity distribution is used, it is not necessary to limit the complexity of a neural network
model based on the amount of training data available. The SVM approach (Vapnik,
1998) is an implementation of the structural risk minimisation principle. Kernel and
spline smoothing can be considered to be powerful non-parametric statistical models
that, while free from unreasonable parametric restrictions, allow the specification of
prior knowledge about an unknown relation between data variables in a simple and con-
venient way. From the work of Kimeldorf and Wahba (1971), it is easy to show how the
general spline smoothing model serves as a common basis for Gaussian processes and
support vector machines.

Given that both the Gaussian process and the support vector machine can be interpreted
probabilistically, the Bayesian probabilistic viewpoint results in a natural and elegant
to choose values for the free parameters or to integrate them out. The framework also
provides a clear interpretation of the kernel that may assist in its choice. Considering
the kernel learning problem as an optimisation within a reproducing kernel Hilbert space
(RKHS) allows the ideas and techniques from functional analysis, operator theory and
approximation theory to be used. Given that the solution to these kernel based methods
is a weighted sum of kernel functions the resulting solution is opaque. Methods for
constructing interpretable models are described in the next chapter, where the solution
is still given as the weighted sum of kernel functions but is not opaque.





Chapter 5

Interpretable Sparse Kernels

The interpretation of complex models has started to receive some attention within the
machine learning community (Plate, 1999; Gibbs, 1997). Given that the majority of
data modelling studies are performed in a particular application domain the ability to
understand a final model structure can be regarded as being an attractive feature of the
data modelling process. The ability to visualise the overall effects of different inputs,
their interactions, and the strength of their interactions can aid in the model under-
standing issue. The incorporation of interpretability into the model building process
can aid in model understanding, model validation and selection and indirectly model
performance.

Additive models as discussed in Section 2.4, are one framework that enables more ex-
tensive understanding of a model structure over simple input selection. Such models
are hence particularly attractive for model interpretability. Methods for enforcing or
formulating additivity in various families of flexible models have been investigated by a
number of researchers. Girosi et al. (1995), considering generalised functions only, show
that additive models can be formulated as regularisation networks, thereby allowing ad-
ditive regularisers to be constructed. Moody and Rögnvaldsson (1996) discuss various
smoothing terms for feedforward neural networks that penalise higher order derivatives
with respect to the inputs; incorporation of a regularisation term pushes the model to-
wards an additive structure Plate (1999). Other notable additive models include the
Smoothing-Spline ANOVA (SS-ANOVA) model of (Wahba et al., 1994). This method
is based on a Gaussian process model with a particular covariance function, and an
additive structure.

5.1 Methods for Sparse Approximation

A considerable focus of activity in the signal processing community has been on the
development of signal representations that use overcomplete and hence non-orthogonal

81
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bases. Linear superpositions of a small number of basis functions selected from a large,
redundant set of basis functions commonly referred to as a dictionary are being advo-
cated (Mallat and Zhang, 1993). Using the terminology introduced by Mallat and Zhang
(1993), a dictionary is a collection of parameterised waveforms, q = (φγ : γ ∈ Γ). In
the signal processing community, the waveforms, φγ , are discrete time signals of length
n called atoms. As Mallat and Zhang (1993) observe, dictionaries can be complete or
overcomplete, in which case they contain exactly n atoms or more than n atoms. For
the work described in this thesis the waveforms can be considered to correspond to
sets of basis functions, and it is the goal of this work to select a sparse basis from an
overcomplete set of basis functions.

Given a dictionary of J basis functions φ1(x), . . . , φJ(x), where J is very large or possibly
infinite, sparse approximation techniques seek a function f(x) of the form,

f(x) =
J∑

j=1

cjφj(x) (5.1)

That is a linear combination of the smallest number of elements of the dictionary, with
the smallest number of non-zero coefficients ci. Formally the problem can be formulated
as minimising the following cost function,

E[c] = L

f(x),
J∑

j=1

cjφj(x)

+ λ‖c‖0 (5.2)

where L is a loss function. The L0 norm of a vector counts the number of elements that
are different from zero (this is a technique referred to as atomic decomposition (Chen
et al., 1999)), and λ is a parameter that controls the trade off between sparsity and
approximation.

In order to minimise E[c] (given in Equation 5.2), values of the learning function f at
all points x needs to be evaluated. In the learning paradigm, in the particular case that,

L

f(x),
J∑

j=1

cjφj(xj)

 =

∥∥∥∥∥∥f(x)−
J∑

j=1

cjφj(x)

∥∥∥∥∥∥
2

2

(5.3)

the first term in Equation 5.2 is replaced by an empirical one giving,

1
N

N∑
i=1

yi −
J∑

j=1

cjφj(xi)

2

+ λ‖c‖0 (5.4)

Minimising Equation 5.4 can be used to find sparse approximations in the case that the
function f is generated by a function f0 corrupted by additive noise. In this case the
problem can be formulated as finding a solution c to, f = Φc + η, with the smallest



Chapter 5 Interpretable Sparse Kernels 83

number of non-zero elements, where Φ is the matrix with columns that correspond to
the elements of the dictionary, and η is the additive noise.

If a probabilistic approach to this learning problem is taken, and the additive noise is
assumed to be Gaussian, minimisation of the following function is required,

E[c] =

∥∥∥∥∥∥f(x)−
J∑

j=1

cjφj(x)

∥∥∥∥∥∥
2

2

+ λ‖c‖0 (5.5)

However, it can be shown that minimising Equation 5.2 and Equation 5.5 is NP-hard
because of the L0 norm (Chen, 1995). In order to overcome this shortcoming, approx-
imated versions of the loss function (Equation 5.5) have been proposed particularly
within the wavelet community.

5.1.1 Wavelet Based Methods

The method of frames (MOF) (or ridge regression)(Daubechies, 1992) selects among
all solutions one whose coefficients have minimum L2 norm. This method is has the
attractive feature that it is computationally very attractive. It leads to a quadratic
optimisation problem with linear equality constraints, and is the solution of a system
of linear equations. However, there are a number of problems with this approach, most
notably the method does not preserve sparsity. If the underlying probability distribution
has a very sparse representation in terms of the dictionary, then the co-efficients found
by the MOF are likely to be less sparse.

5.1.2 Matching Pursuit

The matching pursuit algorithm can be described as a general, greedy, sparse function
approximation scheme with the squared error loss, that iteratively adds new functions
(i.e. basis functions) to the model. Matching pursuit and its variants were developed
primarily in the signal processing and wavelets community, but there are many interest-
ing links with the research on kernel based learning algorithms developed in the machine
learning community. Connections between a related algorithm (basis pursuit de-noising
(Chen, 1995)), which is described in Section 5.1.3), and SVMs have already been re-
ported in Poggio and Girosi (1998). More recently Smola and Schölkopf (2000) have
shown connections between matching pursuit, kernel-PCA, sparse kernel feature analy-
sis, and how this type of greedy algorithm can be used to compress the kernel matrix in
SVMs thereby allowing modelling of extremely large datasets.

The original matching pursuit algorithm was introduced into the signal processing com-
munity as an algorithm that is capable of “decomposing any signal into a linear expansion
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of waveforms that are selected from a redundant dictionary of functions” (Mallat and
Zhang, 1993). In machine learning matching pursuit algorithms learn a function that is
a weighted sum of basis functions, by sequentially appending functions to an initially
empty basis, to approximate a target function in the least squares sense. From the def-
inition provided by Mallat and Zhang (1993) if the dictionary of functions is given by
functions of the form K(x, xi), then the expansion has the same form as a kernel based
method.

Given a dataset D, consisting of inputs x ∈ RF and output t ∈ R, and a finite dictio-
nary, Φ = {φ1, . . . , φM}, of functions in a Hilbert space H, we are interested in sparse
approximations that are of the following form,

f̂J =
J∑

i=1

αigi (5.6)

where {α1, . . . , αJ} ∈ RN , and {g1, . . . , gJ} ⊂ D are chosen to minimise the squared
norm of the error. The set {g1, . . . , gN} is referred to as the basis, and J the number
of basis functions in the expansion. In general, finding the optimal basis set for a given
number, J , of allowed basis functions is in general an NP-complete problem hence, the
matching pursuit algorithm proceeds in a greedy iterative manner.

In the signal processing literature, the algorithm is usually stopped when what is termed
the reconstruction error (‖R‖2) goes below a predefined given threshold. In the machine
learning community, the error estimated on an independent test set is used to decide
when to stop the algorithm. As Vincent and Bengio (2000) observe, J can be regarded
as the primary capacity control parameter of the algorithm. The pseudo-code for the
matching pursuit algorithm is given below,

As Vincent and Bengio (2000) observe in the basic version of the matching pursuit
algorithm, the set of basis functions that are obtained at every step of the iterative
procedure and the associated coefficients α1,...,J are suboptimal. This can often be
corrected in a step called back-fitting or back-projection, and the resulting algorithm is
known as Orthogonal Matching Pursuit (OMP) Pati et al. (1993); Mallat and Zhang
(1993). Whilst still choosing the optimal set of basis functions as in the basic matching
pursuit algorithm, the optimal set of coefficients are recomputed at each step using,

α∗ = arg min
α

∥∥∥∥∥
(

J+1∑
k=1

αkΦ·,γk

)
− f

∥∥∥∥∥
2

(5.7)

As (Vincent and Bengio, 2000) observe this can be interpreted as being similar to linear
regression with parameters α.
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Algorithm 4: Matching Pursuit

Input Dataset D = (x1, y1), . . . , (xN , yN )

Initialise Construct dictionary of functions Φ(x) = {φ1(x), . . . , φM (x)}

Initialise residue vector R and dictionary matrix Φ

R←

 y1
...
yN

 and Φ←

φ1(x1) · · · φM (x1)
...

. . .
...

φ1(xN ) · · · φM (xN )


Select either:

a) a desired number of basis functions, J , in the expansion
b) a test dataset to determine algorithm termination

Algorithm for j = 1 to J

γj ← arg maxk=1,...,N

∣∣∣ 〈Φ·,k,R〉
‖Φ·,k‖

∣∣∣
αj ←

〈Φ·,γj ,R〉
‖Φ·,γj ‖2

R← R− αjΦ·,γj

end

Output α, R, f̂N =
∑J

j=1 αjφγj (x)

5.1.3 Basis Pursuit Denoising

Mallat and Zhang (1993) have proposed a general method for approximate decomposi-
tion, that attempts to avoid the problems associated with the MOF, and addresses the
sparsity issue directly. The matching pursuit algorithm starts from an initial approxima-
tion, and build up a sequence of sparse approximations iteratively. A similar algorithm
has also been proposed by Qian and Chen (1994). An intrinsic feature of the algorithm
is that when stopped after a few steps, it yields an approximation using only a few basis
functions from the complete dictionary representation. Empirical work by Chen et al.
(1995) has shown that if the algorithm chooses an incorrect set of basis functions in the
early stages of training, it ends up spending the remaining iterations trying to correct
for these mistakes.

To overcome these problems, Chen et al. (1995) have used an L1 norm as an approxi-
mation to the L0 norm, obtaining an approximation scheme that they refer to as Basis
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Pursuit De-noising (BPDN) that consists of minimising the following loss function.

E[c] =

∥∥∥∥∥∥f(x)−
J∑

j=1

cjφj(x)

∥∥∥∥∥∥
2

2

+ λ‖c‖1 (5.8)

The principle of basis pursuit is to find a representation of the function whose co-efficients
have minimal L1 norm. (Poggio and Girosi, 1998) have recently drawn an interesting
parallel between basis pursuit and SVMs. Whereas, the MOF could be solved simply,
in contrast basis pursuit requires the solution of a convex optimisation problem, which
involves considerably more effort and sophistication.

The linear program can be described as a constrained optimisation problem defined in
terms of a variable x ∈ RM by,

min cT x subject to Ax = b,x ≥ 0 (5.9)

where cT x is the objective function, Ax = b is a collection of equality constraints and
x ≥ 0 is a set of bounds. A is an M ×N where typically M > N .

Chen (1995) observes that the basis pursuit problem can be equivalently reformulated
as a linear program consistent with Equation 5.9, by making the following translations.
Let u and v be N -dimensional vectors. Consider the constrained optimisation problem
defined in terms of u and v by,

min1T u + 1T v subject to Φ(u− v) = s,u,v ≥ 0 (5.10)

Equation 5.10 can be written as a linear program in the standard form by making the
following translations,

m⇔ 2N, x⇔ (u,v), c⇔ (1, 1), A⇔ (Φ,−Φ), b⇔ s (5.11)

The non-zero co-efficient of c are associated with N columns of A, and hence these
columns make up a basis of Rd. Once the basis is identified, the solution is uniquely
dictated by the basis. As a result, finding a solution to the linear program is identical
to finding the optimal basis.

The connection of basis pursuit with linear programming is useful in several ways (Chen,
1995). For a linear programming problem involving an M × N matrix, with M > N ,
in the nondegenerate case there will always be exactly N nonzeros. In this case, the
nonzero coefficients are associated with N columns of this matrix and these columns
make up a basis. The identity of the columns in this optimal basis is not, in general,
known in advance. Hence, finding a solution a solution to the linear program is identical
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to finding this basis, since once the basis is identified the solution is uniquely dictated
by the basis.

Despite the linear programming approach, a basis pursuit is computationally expen-
sive to perform because it minimises a global cost function over all dictionary vectors.
The matching pursuit algorithm, described in Section 5.1.2, reduces the computational
complexity with a greedy strategy.

5.2 Spline Kernels

The use of splines for non-parametric regression, has been a topic of intense research
interest within the statistics community for over three decades. Wegman and Wright
(1983) observe splines to be an evolution of classical parametric inference, and are seen
to bridge the gap between parametric and non-parametric modelling methods. Whilst
splines are not parametric in a function form, in many cases they can be written as
a linear combination of basis functions that usually have a polynomial representation.
The attractiveness of splines stems from their providing a natural and flexible approach
to density estimation which have been shown to cope well with data that is sparsely
represented.

Interpolating splines (Ahlbery et al., 1968; Amos and Slater, 1969; Anselone and Laurent,
1968) have received a large amount of interest for smoothing noise free data, as a result
they have a limited use in a “real world” statistical setting. A number of different
approaches to spline fitting methods exist corresponding to different perspectives on
how to deal with the noise inherently present in the data. The most popular method (of
recent times) parallels the approach described in Chapter 3, of minimising a criterion that
depends on a least squares like term plus a regularisation term enforcing smoothness.
As Silverman (1985) observes, a major conceptual problem to statisticians with curve
estimates like the spline smoother is that they are defined implicitly as the solution
to a minimisation problem rather than as an explicit formula involving data values.
This difficulty can be resolved, at least approximately, by considering how the estimate
behaves on large datasets.

As in the Bayesian case a parameter exists that controls the amount of smoothing.
Changing the smoothing parameter changes the amount of smoothing applied generally,
as such its correct determination is of central importance. Several methods have been
proposed for selecting the smoothing parameter in splines. The most notable perhaps
is the use of cross validation (Stone, 1974). The basic principle of cross validation is to
leave the data points out one at a time, and to choose that value of the regularisation
parameter under which the missing data points are best predicted by the remainder of the
data. Craven and Wahba (1979) suggest the use of a related criterion termed generalised
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cross validation which uses a weighted least squares cross validation function, where the
weights are chosen to reflect unequally spaced data and other data dependent effects.

The idea of viewing non-parametric density estimation in a Bayesian context has been
proposed by Whittle (1958) and Silverman (1982). It is perhaps natural to look at the
problem in a Bayesian framework, since the decision of how much to smooth corresponds
to some sort of prior information. Bayesian models previously suggested in connection
with non-parametric smoothing (Kimeldorf and Wahba, 1971; Good and Gaskins, 1971)
have involved inference in infinite dimensional spaces. Apart from causing conceptual
difficulties, the use of an infinite dimensional formulation leads to paradoxes such as the
one alluded to by Wahba (1983); although the intention is to choose among curves for
which the regularisation term is finite, the posterior distribution is entirely concentrated
outside the space of such smooth curves.

A natural extension of the spline smoothing approach, that is of central importance
to kernel based methods, is to devise a robust version of the procedure, by replacing
the least squares error criterion by a different function of the errors. The new function
would be a convex function which is less rapidly increasing than x2. Minimising this
loss function and associated regularisation term, would give a smoothing spline that is
robust against or resistant to outliers in the data. This idea has been discussed by Lenth
(1977), Huber (1981) and Cox (1983). Huber (1981) observes that minimising a convex
loss function may be carried out in practice by an iterative scheme, where a sequence of
functionals defined by a weighted sum of squares are minimised successively for weights
and data points which are modified at each stage. The basic ideas of iteratively weighted
linear regression (Green, 1984) carry over to the spline smoothing case and have been
explored and developed by O’Sullivan (1983).

An attractive property of kernel-based approaches is that many functions commonly em-
ployed within modelling have kernels that satisfy Mercer’s theorem (see Section 4.4.1).
Gaussian Radial Basis Function kernels have been successfully deployed in kernel meth-
ods. However, whilst they have some attractive properties from a regularisation per-
spective they are poor at modelling functions with different degrees of smoothness, and
require the determination of an additional smoothing parameter. Multi-Layer Percep-
tron (MLP) kernels, using a set of sigmoidal functions, have also been used. However,
the MLP kernel is only positive definite for particular values of its two controlling pa-
rameters, making deployment more difficult. Polynomial kernels have often been used
and are cheap to compute. Their disadvantage is that in an ANOVA framework a high
order polynomial will be required to model arbitrary functions. Splines are an attractive
choice for modelling (Wahba, 1990a) due to their ability to approximate arbitrary func-
tions. Many types of splines have kernel representations, such as odd order B-splines
and infinite splines. B-splines have been used in other modelling approaches and are
favourable when a rule-base interpretation is desired (Brown and Harris, 1994). How-
ever, whilst they can have some computational advantages, the regularisation operator
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corresponding to a B-spline kernel representation has some weaknesses (Smola, 1998).
This has been observed experimentally by the production of models with a tendency
to oscillation (Gunn, 1998). An infinite spline incorporates the flexibility of a spline
approach without the oscillation problem associated with B-splines, and this motivates
it use within an ANOVA framework. Another advantage of the infinite spline kernel is
that is has no scale, and therefore no associated scale parameter to determine. This is of
great advantage in any interpretable kernel technique, since the ANOVA decomposition
would introduce a multitude of such parameters which would need to be determined.
The first order infinite spline kernel, which passes through the origin, is defined on the
interval [0,∞) by,

kspline(u, v) =
∫ ∞

0
(u− τ)+(v − τ)+dτ , (5.12)

where (x)+ is equal to the positive part of x. The solution has the form of a piece-wise
cubic polynomial,

kspline(u, v) = uv + 1
2(u+ v) min(u, v)− 1

6(min(u, v))3, (5.13)

and therefore the form of the SVM solution is a piecewise cubic with knots located at a
subset of the data points. Multivariate spline kernels obtained from (5.13) will produce
a lattice of piecewise multi-cubic functions.

5.2.1 ANOVA Decomposition Kernels

A number of approximation and learning techniques can be studied in the framework
of regularisation theory and RKHS. For example, starting from a reproducing kernel,
kernels can be constructed that correspond to tensor products of the original RKHS.
It is also possible to construct the additive sum of several RKHS in terms of a Mercer
kernel.

Consider the case of tensor product splines, in which the form of the kernel is given by,

K(u,v) =
d∏

j=1

k(uj , vj) (5.14)

where xj is the jth co-ordinate of the vector x, and k is a positive definite function with
one dimensional input vectors. The solution to the learning problem then becomes,

f(x) =
∑

i

wi

d∏
j=1

k(xj
i , x

j) (5.15)



90 Chapter 5 Interpretable Sparse Kernels

Hence, tensor product splines can be obtained by choosing kernels of the form given by
Equation 5.14. In the particular case that the kernel is of an additive form given by,

K(u,v) =
d∑

j=1

k(uj , vj) (5.16)

as in the case for additive spline models, the solution to the learning problem then
becomes,

f(x) =
∑

i

wi

 d∑
j=1

k(xj
i , x

j)

 =
d∑

j=1

(∑
i

wik(x
j
i , x

j)

)
=

d∑
j=1

fj(xj) (5.17)

Hence, a set of additive approximations of the form,

f(x) =
d∑

j=1

fj(xj) (5.18)

can be obtained.

The motivation for an additive model representation was provided in Chapter 2, and
is stimulated by the work of Stone (1985) and Buja et al. (1989). The additive model
methodology models the N -dimensional regression function f as the sum of lower di-
mensional functions,

f(x) = g1(x) + g2(x) + · · ·+ gp(x) (5.19)

where the gj have dimensionality less than N . The aim of the additive model method-
ology is to bypass the difficulty associated with the curse of dimensionality (Bellman,
1961). The methodology achieves its goal by reducing the dimensionality of the regres-
sion function. The majority of attention has focused on the following special case of
model 5.19,

f(x1, . . . , xN ) = f0 + f1(x1) + · · ·+ fN (xN ) (5.20)

where f0 is a constant, and the fj are univariate functions satisfying,

fj(0) = 0 for 1 ≤ j ≤ N (5.21)

Although the above additive model, given by Equation 5.20, overcomes successfully the
difficulty caused by the curse of dimensionality, it suffers approximation errors in using
an additive function to model the N -dimensional function f . As Chen (1993) observes
it would seem that not enough attention has been directed to more general cases of
Equation 5.19, where the dimensionality of the terms in the sum is larger than one. As
such an interactive model can be considered.
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Consider f to be an arbitrary two-dimensional integrable function. Let,

f0 = f(0, 0)

f1(x1) =
∫
f(x1, x2)dx2 − f0

f2(x2) =
∫
f(x1, x2)dx1 − f0

f12(x1, x2) = f(x1, x2) −
∫
f(x1, x2)dx2 −

∫
f(x1, x2)dx1 + f0

then
f(x1, x2) = f0 + f1(x1) + f2(x2) + f12(x1, x2)

In general, a N -dimensional function f can be decomposed as,

f(x1, . . . , xN ) = f0 +
N∑

i=1

fi(xi) +
∑
i<j

fij(xi, xj) + · · ·+ f1,...,N (x1, . . . , xN ) (5.22)

where the term f0 is a constant and the other components are integrated to zero with
respect to any one of their arguments. The decomposition above can be viewed as a
functional version of the statistical methodology ANalysis Of VAriance (ANOVA). A
problem arises when the order of the interactions increases, the difficulty associated
with the curse of dimensionality resurfaces. As such models of lower order interactions
are desirable. Much of the recent work on ANOVA splines has focused on interactive
functions which are finite sums of products of appropriately smooth univariate functions
in a certain function space. In this thesis, ANOVA spline kernels are deployed since these
interactive models are considerably more flexible than traditional additive models whilst
retaining all the advantages of additive models, namely the ability to overcome the curse
of dimensionality and their interpretability. The extra feature also is that it has no scale,
and therefore no associated parameter to determine.

5.3 Interpretable Sparse Approximations

In this work we introduce interpretability, or transparency, by producing a parsimonious
model, which has a sparse structural representation, but is flexible enough to avoid
problems of model mismatch. The transparency is beneficial in that it enables the model
to be validated and interpreted. Features that aid transparency are input selection and
ways of decomposing the model into smaller more interpretable pieces that can be easily
visualised. To address this issue a modified kernel model of the form is introduced,

f(x) =
N∑

i=1

αi

∑
j

cjKj(xi, x), cj ≥ 0, (5.23)
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where the kernel is replaced by a weighted, cj , linear sum of kernels, Kj . Transparency
can then be introduced by a careful choice of the additive kernels, Kj and by making their
weighting coefficients, cj , sparse. In this thesis the integration of an ANOVA (ANalysis
Of Variance) representation to provide a transparent approach to modelling is focused
upon. ANOVA kernels (Stitson et al., 1999) have previously been used with SVMs,
with promising performance. However, the difference here is to develop a technique
that will select a sparse ANOVA kernel producing strong transparency. The ANOVA
representation is motivated by the decomposition of a function into additive components,
with the goal of representing the function by a subset of the terms from this expansion.
A function may be decomposed into

f(x) = f0 +
d∑
i

fi(xi) +
d∑

i<j

fi⊗j(xi, xj) + · · ·+ f1⊗2⊗...⊗d(x), (5.24)

where d is the number of inputs, f0 represents the bias and the other terms represent
the univariate, bivariate, etc., components. The notation xi denotes the scalar value of
input i. The basis functions are semi-local and are similar to the approaches used by
Friedman (Friedman, 1991) in the Multivariate Adaptive Regression Splines (MARS)
technique and in the Adaptive Spline Modelling of Observational Data (ASMOD) tech-
nique (Kavli and Weyer, 1995). The additive representation is advantageous when the
higher order terms can be ignored, so that the resulting model is represented by a small
subset of the ANOVA terms, which may be easily visualised. This produces a transpar-
ent model, in contrast to the majority of neural network models, providing the modeller
with structural knowledge that can be used for both validation and model interpreta-
tion. Due to the curse of dimensionality (Bellman, 1961), an exhaustive search of the
possible model structures is demanding. Even in the highly restrictive scenario, that
the solution is a weighted linear combination of fixed basis functions, the parameter
space has size 2d. Extension to flexible basis functions, which is required for typical
modelling, will only compound this dimension. Accordingly, greedy methods are typi-
cally used. ASMOD employs an evolutionary strategy to search the model space using
a forward selection/backward elimination algorithm to select suitable refinements to a
model. The MARS algorithm employs a recursive partitioning procedure to search the
model space for an appropriate model. The drawback with both approaches is that
they can become entrapped by local minima, due to the greedy nature of their search
algorithms. A problem with deploying additive models in advanced flexible non-linear
modelling methods is that they cannot provide a transparent model if the phenomenon
being modelled contains high dimensional interactions. One possibility is to enforce
transparency by constraining the order of possible interactions (e.g. restriction to uni-
variate and bivariate terms only), providing a coarse, but interpretable structure, at the
expense of structural integrity.

Using the ideas of sparse function approximation described above, the following section
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is concerned with describing their deployment in ANOVA spline kernels, within kernel
based methods to obtain sparse and interpretable solutions without sacrificing generali-
sation performance (Gunn and Kandola, 2000). This is achieved by combining the ideas
described in Section 2.1.1 and Section 2.1.2 to employ two forms of regularisation: a
L1-norm based structural regulariser as described in Section 5.7, and a L2 norm weight
decay regulariser to control smoothness. To address some of the difficulties associated
with the preceding methods, such as model mismatch, poor interpretability and poor
generalisation a new additive sparse kernel method is proposed. An additive sparse
kernel model extends a standard kernel model by replacing the kernel with a weighted
linear sum of kernels,

f(x) =
N∑

i=1

αi

m∑
j=1

cjKj(xi, x), cj ≥ 0, (5.25)

where Kj are positive definite functions and where the positivity constraints on the ker-
nel coefficients, cj , ensure that the complete kernel function is positive definite. Here,
the term sparse refers to sparseness in the kernel coefficients cj rather than the usual
sparseness in the multipliers, αi; sparseness in these multipliers can still be obtained by
employing an appropriate loss function. A conventional kernel model regulariser will
not enforce sparsity in the kernel coefficients and hence a more complex regulariser is
required. The goal in selecting a sparse representation is to minimise the number of
non-zero coefficients, ci. This can be achieved with a p-norm on the kernel coefficients.
As p increases the solution becomes less sparse and the computational complexity of
the resulting optimisation problem is relaxed. Ideally a value of p = 0, which counts
the number of terms in the expansion is attractive. This case is employed in the atomic
decomposition of (Chen, 1995), but it results in a computationally hard combinatorial
optimisation problem. Alternatively choosing a value of p = 2 produces a straightforward
optimisation problem. This case is referred to as the method of frames or ridge regres-
sion, but crucially the sparseness within the expansion is now lost. A good compromise
occurs when p = 1 producing a sparse solution, with a practical implementation. This
penalty function has successfully been used in basis-pursuit de-noising (Chen, 1995). To
enforce sparsity in the kernel expansion we consider a regularised cost functional of the
form

Φ(α, c) = L(y,K(c)α) + λα‖α‖2K(c) + λc‖c‖1, ci ≥ 0, λα, λc > 0 (5.26)

where L is the loss function, and λα, λc are regularisation parameters controlling the
smoothness and sparsity of the kernel expansion respectively.

The direct solution of this problem is non-trivial, so an iterative method is introduced,
whereby we solve two separate sub-problems: minα Φ with c fixed; minc Φ with α fixed.
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The solution for a quadratic loss, L(y, ŷ) = (y − ŷ)T (y − ŷ), is given by

Φ(α, c) =

∥∥∥∥∥y −∑
i

ciKiα

∥∥∥∥∥
2

2

+ λα

∑
i

ciα
T Kiα + λc

∑
i

ci, ∀p cp ≥ 0.

α∗ = arg min
α

αT (
∑

i

∑
j

cicjKiKj + λα

∑
k

ckKk)α

−(2yT
∑

l

clK l)α

c∗ = arg min
c

∑
i

∑
j

cicj(αT KiKjα)

+
∑

k

ck(λααT Kkα + λc − 2yT Kkα), ∀p cp ≥ 0,

where y and ŷ are vectors of target and predicted values respectively. The solution for
an ε-Insensitive Loss, L(y, ŷ) =

∑
i max(0, |yi − ŷi| − ε) by,

Φ(α, c) =

∥∥∥∥∥y −∑
i

ciKiα

∥∥∥∥∥
1,ε

+ λα

∑
i

ciα
T Kiα + λc

∑
i

ci, ∀p cp ≥ 0.

α∗ = arg min
α=α+−α−

(α+ −α−)T (λα

∑
k

ckKk)(α+ −α−)

−
∑

i

(α+ −α−)yi +
∑

i

(α+ + α−)ε,

∀i 0 ≤ α+
i ,α

−
i ≤

1
2λα

.

c∗ = arg min
c,ζ+,ζ−

∑
i

(ζ+
i + ζ−i ) +

∑
j

cj(λααT Kjα + λc),

∀i,j cj ≥ 0, ζ+
i , ζ

−
i ≥ 0,−ζ− − η ≤

∑
k

ckKkα ≤ ζ+ + η.

where ζ+
i and ζ−i are slack variables. An attraction of this iterative technique is that it

decomposes the problem into two simple convex optimisation problems. In the quadratic
loss case the solution for α∗ is given by simple matrix inversion, and for c∗ by a bound
constrained quadratic program. In the ε-insensitive case the solution for α∗ is given by
a box constrained quadratic program, and for c∗ by a bound constrained linear program
with linear constraints. Consequently, they can all be solved readily using a standard
quadratic programming optimiser (Mészáros, 1998). A similarity can be drawn between
this approach and Bayesian methods (MacKay, 1995) that employ a two stage iterative
procedure, a parameter update and ’hyperparameter’ update. However, unlike most
Bayesian methods, the update stages consist of convex optimisation problems.
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If λα and λc are known the solution can be obtained by,

Initialise: α∗
0 = arg min

α
Φ(α, c∗0), c∗0 = 1

Iteration:
(a) c∗i+1 = arg minc Φ(α∗

i , c)
(b) α∗

i+1 = arg minα Φ(α, c∗i+1).

In the quadratic case the second order partial derivatives with respect to α and c

are always positive ensuring that every slice is convex. This fact combined with the
knowledge that the solution is finite in α and c should ensure convergence to the global
minimum. A similar result should be obtainable for the ε-insensitive loss function. The
convergence properties of this algorithm will be studied in future work. In practice the
situation is more complicated since λα and λc will not be known but will need to be
estimated. Intuitively, both λc and λα should initially be set large and reduced gradually;
reducing λα too quickly will over smooth the space making the sparse selection harder;
reducing λc too quickly will tend to produce an over-sparse model. To provide a workable
solution the method used in this thesis uses an initialisation step and one iteration. In
the initilisation step and part (b) of the iteration, λc does not enter the optimisation and
as such does not need to be determined; λα can be determined using cross-validation.
The difficult part is determining the parameters in part (a) of the iteration. A possible
method could fix λα at the value used in the initialisation step and select λc to obtain
a comparable loss to that of the initialisation step. However, the method chosen, which
was based on the best empirical performance, was to set λα = 0 and to select λc such that
the loss was equal to that of the validation error in the initialisation step. Alternative
methods for determining these parameters will be investigated in future work. In the
next section a particular class of sparse additive kernel model is introduced with some
attractive transparency properties.

5.4 SUpport vector Parsimonious ANOVA (SUPANOVA)

Technique

The SUPANOVA technique is designed to select a parsimonious model representation
by selecting a small set of terms from the complete ANOVA representation (5.24). The
technique is an additive kernel model, (5.25) with a particular choice of ANOVA ker-
nel that can be employed in the sparse kernel method described in the previous section.
This section considers some possibilities for ANOVA kernel models. The following theory
is based upon Reproducing Kernel Hilbert Spaces (RKHS) (Aronszajn, 1950; Wahba,
1990b). If K is a symmetric positive definite function, which satisfies Mercer’s Condi-
tions, then the kernel represents a legitimate inner product in feature space and it may
be deployed within (5.25). The following two theorems (Aronszajn, 1950) are required
in proving that ANOVA kernels satisfy Mercer’s Conditions.
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Theorem 1: If k1 and k2 are both positive definite functions then so is k1 + k2

Theorem 2: If k1 and k2 are both positive definite functions then so is k1 ⊗ k2

It follows from theorem 2 that multidimensional kernels can be obtained by forming
tensor products of univariate kernels. A multivariate ANOVA kernel is given by the
tensor product of a univariate kernel plus a bias term,

KANOV A(u, v) =
d∏

i=1

(1 + k(ui, vi))

= 1 +
d∑
i

k(ui, vi) +
d∑

i<j

k(ui, vi)k(uj , vj) +

· · ·+
d∏

i=1

k(ui, vi). (5.27)

It follows from theorems 1 and 2 that if k is a valid kernel then so is KANOV A. Consid-
ering (5.27) it is evident that the tensor product produces the ANOVA terms of (5.30),
producing a flexible model. Another consequence of theorems 1 and 2 is that each of the
additive terms in the expansion (5.27) is also positive definite, and hence a valid kernel
in its own right. This enables partial forms of (5.27) to be used as valid kernels, and
this is the method employed within the SUPANOVA technique to produce parsimonious
kernels. The choice of univariate kernel, k, will control the form of the final model. For
simplicity, we shall restrict ourselves to the case where the same kernel is used for each
dimension, although different univariate kernels could be deployed.

Using a complete ANOVA kernel (5.27) has drawbacks when it comes to interpretation
of the model, due to the large number of terms within the expansion. To introduce
enhanced transparency we employ a parsimonious ANOVA kernel. Considering the
expansion of (5.27) an additional set of positive coefficients, ci, are introduced,

KANOV A(u, v) = c0 +
d∑
i

cik(ui, ui) +
d∑

i<j

ci,jk(ui, ui)k(uj , uj) +

· · ·+ c1,2,...,d

d∏
i=1

k(ui, ui). (5.28)

Consequently the resulting kernel is a weighted linear sum of kernels, and a parsimonious
model solution can be obtained by using the method of the previous section.

Since the univariate ANOVA term is constrained to pass through the origin, bivariate
and higher order terms will be constrained to be zero along their axes. Consequently
the parsimonious model will not simply consist of the single highest order ANOVA term,
but will favour low order terms in preference to high order terms. The ANOVA terms in
the parsimonious model can be recovered from the final SVM expansion. For example,
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the univariate terms are given by,

fg(x) = cg

N∑
i=1

αik(xi
g, xg), (5.29)

and the bivariate terms are given by,

fg⊗h(x) = cg,h

N∑
i=1

αik(xi
g, xg)k(xi

h, xh), (5.30)

where αi are the Lagrange multipliers obtained from the complete ANOVA kernel solu-
tion, and N is the number of data points in the dataset D. However, the computation
required to solve the optimisation problem is extremely demanding due to the combina-
torial nature of the problem and the curse of dimensionality (Bellman, 1961) associated
with the full ANOVA expansion. To overcome this problem the ANOVA expansion can
be truncated to simplify the problem, since if transparency is to be obtained the selected
terms should be of low order. This technique contrasts with other parsimonious tech-
niques, such as MARS and ASMOD, in that it aims to find a full model and sub-select
the significant terms. The drawback with the MARS and ASMOD approaches is that
they are local, and can suffer from entrapment in local minima within the construction
process. Additionally, they may not be strictly well-posed. A further attraction of the
SUPANOVA technique is that it decomposes the problem into three simple convex op-
timisation problems. An important issue is the form of solution produced when highly
correlated inputs exist. The combination of the regularisers, (5.26) will produce a model
that is distributed for two or more identical inputs; if a ‖c‖0 regulariser was used the
model would not be distributed. In the case when the inputs are only highly correlated,
the technique will produce a sparse model, and therefore a simple correlation test could
be employed to identify the limiting case.

5.4.1 Bishop’s Dataset: Evaluation of the SUPANOVA algorithm

To assess the performance of the SUPANOVA algorithm (Gunn and Kandola, 2000)
within a kernel based method, the algorithm was run on Bishop’s toy problem described
in Chapter 3. The selected inputs across the ten dataset partitions are represented in
Table 5.1.

From the selection of the input variables, the SUPANOVA algorithm is able to select
the most important input variable x1 across all ten data partitions. The irrelevant input
variables x2 and x3 are not selected with any consistency reflecting the potential of
the technique to select relevant inputs. Interestingly however, the SUPANOVA method
selects the bivariate ANOVA term x1x2 as being relevant for all datasets. This appears
surprising given that the output of Bishop’s toy problem is dependent on input x1.
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Dataset
Components 1 2 3 4 5 6 7 8 9 10

x1 × × × × × × × × × ×
x2 − − − − − × − − − ×
x3 − − − − − − − − − −

x1 ⊗ x2 × × × × × × × × × ×
x1 ⊗ x3 − − − − − − − − − −
x2 ⊗ x3 − − − − − − − − − −

x1 ⊗ x2 ⊗ x3 − − − − − − − − − −

Table 5.1: Input Selection via ANOVA decomposition in a Support Vector Machine
using Bishop’s dataset.

Loss Function Estimated Generalisation Error
Training Testing Stage I Stage III Linear Model

Quadratic Quadratic 4.84 (1.20) 2.22 (2.54) 6.53 (3.60)
ε-insensitive ε-insensitive 0.93 (0.04) 0.47 (0.11) 1.17 (0.08)
ε-insensitive Quadratic 4.88 (1.59) 2.32 (2.24) 6.61 (3.79)

Table 5.2: SUPANOVA Results for the Additive Data Set (ε = 1.0). Quoted values
are for the mean (and variance) of the estimated generalisation error.

5.4.2 Friedman’s Dataset: Evaluation of the SUPANOVA algorithm

To assess the performance of the SUPANOVA algorithm (Gunn and Kandola, 2000)
within a kernel based method, the algorithm was run on Friedman’s toy problem de-
scribed in Chapter 3. The results are presented in Table 5.2 for the random dataset
partitions.

From the selection of the input variables, the approach is able to distinguish between
the relevant and the irrelevant inputs with a high degree of accuracy across the ten
different data partitions. Given the unique representation of the ANOVA spline kernel
and in particular how it deals with combinations of inputs, it is able to select the x1x2

term that alluded the ARD covariance kernel that is used extensively in the Gaussian
process community and the Bayesian neural network ARD scheme. An added advantage
of the ANOVA spline representation is that the individual terms that are selected can
be visualised based on using all of the data.

Figure 5.1 illustrates one of the 100 models, obtained from the SUPANOVA technique.
It can be seen that it has selected 7 interaction terms (bias, five univariates, and one
bivariate) from a possible 1024 terms. Table 5.2 demonstrates that the difference in the
mean of the estimated generalisation error between a full ANOVA model is twice as high
as the error for the parsimonious ANOVA model. These results were corroborated by
the results using the ε−Insensitive function. Comparing the two different loss functions
shows that, for this particular data-set, there is very little performance difference. The
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Terms Quadratic ε-insensitive “Difference”
bias 50 50 0.00
x1 50 50 0.00
x2 50 50 0.00
x3 34 32 0.16
x4 50 50 0.00
x5 50 50 0.00

x1 ⊗ x2 49 50 0.02
x3 ⊗ x8 5 3 0.08
x3 ⊗ x9 4 5 0.10
x3 ⊗ x10 0 5 0.10
x4 ⊗ x5 1 0 0.02

Table 5.3: SUPANOVA terms selected for Friedman’s Additive Data Set. (ε = 1.0)

Dataset
Components 1 2 3 4 5 6 7 8 9 10

x1 × × × × × × × × × ×
x2 × × × × × × × × × ×
x3 × × − − − × × × × ×
x4 × × × × × × × × × ×
x5 × × × × × × × × × ×

x1 ⊗ x2 × × × × × × − × × ×

Table 5.4: Input Selection via ANOVA decomposition in a Support Vector Machine
using Friedman’s dataset.

ANOVA terms selected by the 100 models are shown in Table 5.3 showing a high consis-
tency, demonstrating the potential of the technique. One point of interest is brought out
by the results. The spline kernel employed will produce ANOVA terms which are zero
at the origin, and hence bivariate terms will be zero along both axes, which is illustrated
by the x1 ⊗ x2 term in Figure 5.1. Accordingly, the additive model should not require
the univariate terms x1, x2 to model the data generated by Friedman’s equation.

5.4.2.1 Simplified Additive Data Modelling

To investigate the inclusion of the two univariate terms x1, x2, further the generating
function was simplified to a two input function,

f(x) = 10 sin(πx1x2). (5.31)

A 15 by 15 grid of points on [0, 1] × [0, 1] were used to induce a new model. In this
experiment the regularisation parameter λα, was controlled manually, and varied over
a wide range. The result for a larger value of regularisation is shown in Figure 5.2. It
is evident that the technique has modelled the function using both the univariate and
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Figure 5.1: Visualisation of the selected ANOVA terms using a Quadratic additive
model (1 of 50) when applied to the Additive Dataset.

bivariate terms. This is in contrast to a technique that uses a small amount of regulari-
sation, in which the function is entirely modelled by the bivariate term. This behaviour
can be explained by considering the way the regularisation term penalises the spline
basis functions. The regularisation term is penalising the square of the amplitude of the
basis functions. Hence, as this term becomes more significant the optimisation problem
can attain a lower value by decomposing the single bivariate term into a combination of
bivariate and univariate ANOVA terms. In the initialisation stage where the ANOVA
model space is large, it will be necessary to employ a significant amount of regularisation
to control the capacity of the flexible model. Therefore, this behaviour will be common
when a ridge regression type regulariser is employed. This problem could be addressed
by considering alternative regularisation operators/kernels. It also explains the fact that
the quadratic term was extracted less consistently than the other terms, which is evident
from Table 5.3. However, its consequence will be to introduce ANOVA terms that are
factors of a main effect and as such this is not an overriding problem, since the main
effect terms typically have a low dimension. In the case when the main effect term has
a high dimension, transparency has already been lost.

5.5 Bayesian Interpretable Sparse Kernel Inference Tech-

nique (BISKIT)

Given that SVMs can be interpreted probabilistically (see Chapter 4), the methods
described in Chapter 3 can be used to determine the hyperparameters associated with
the kernel functions. In an alternative approach to the SUPANOVA algorithm, the
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Figure 5.2: Visualisation of ANOVA terms when deploying Regularisation effects
(C = 10).

problem of selecting the relevant subkernels of the ANOVA spline kernel expansion is cast
into a Bayesian learning framework. In an alternative approach, the inference problem is
placed in a Bayesian framework with the hyperparameters for the ANOVA expansion, ci,
being optimised using variational learning (Kandola et al., 2000). The method described
is closely related to the variational relevance vector machine (Bishop and Tipping, 2000)
reviewed in Section 3.7.8. Variational learning, despite the limitations described in
Chapter 3, has the advantage that the factorisation assumption allows separate priors
to be formulated over the parameters of the kernel model, and the hyperparameters
associated with each term of the kernel expansion.

The solution to the kernel based model has been shown to correspond to a weighted sum
of kernel functions (Vapnik, 1998; Smola, 1998)

y(x) =
N∑

j=1

wjKc(x,xj) (5.32)

where Kc is an ANOVA spline kernel defined by,

Kc(x,x′) =
J∑

d=1

cdKd(x,x′) (5.33)

where Kd are the sub-kernels associated with the univariate, bivariate and higher order
terms of the ANOVA expansion. Assuming that the inputs x of the dataset, D, are
independent and identically distributed, the model likelihood can be written as,

P (D|w, c, β) =
βN/2

(2π)N/2
exp

{
−β

2
(y −Kcw)T (y −Kcw)

}
(5.34)

with unknown noise variance β. The prior over the model weights w is defined by,

P (w|c, λ) =
λN/2

(2π)N/2|Kc|
1
2

exp
{
−λ

2
wT Kcw

}
(5.35)
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with model capacity control term λ. The hyperparameters β and λ are given a Gamma
prior distribution since this is the associated conjugate prior (see Section 3.6.1),

P (β) = Γ(β|aβ , bβ) and P (λ) = Γ(λ|aλ, bλ) (5.36)

where aβ, bβ , aλ, and bλ are parameters of the Gamma distribution. To ensure positivity
of the ANOVA kernel hyperparameters, ci, they are given a Gamma prior distribution
with mean md and variance m2

d,

P (c) =
J∏

d=1

1
md

exp
{
− cd
md

}
(5.37)

The joint distribution of parameters and hyperparameters is then given by,

P (w, c, β, λ|D) = P (w, c, β|D)P (w|c, λ)P (c)P (β)P (λ) (5.38)

To achieve a complete Bayesian treatment of this learning problem, the ideas relating
to variational methods described in Section 3.7.8 are exploited. A single assumption
is made in the variational formulation, and that is that the approximate distribution,
Q(w, c, β, λ|D), to the posterior, P (w, c, β, λ|D), is separable into the following form,

Q(θ) = Q(w, c, β, λ|D) = Qw(w)
J∏

j=1

Qc(cj)Qβ(β)Qλ(λ) (5.39)

In the work of MacKay (1995) and Bishop and Tipping (2000), the approximate dis-
tribution over the kernel hyperparameters is allowed to be a free form distribution,
and its optimal choice is determined by exploiting the divergence theorem (described in
Section 3.7.8. However, if this approach is adopted in the Bayesian ANOVA inference
problem, a difficult optimisation problem results (Kandola and Gunn, 2000). As such,
in the approach considered here, the approximating distribution, Qc(c), is restricted to
be a Gamma distribution with mean nd and variance n2

d,

Qc(c) =
J∏

d=1

1
nd

exp
{
− cd
nd

}
(5.40)

The variational inequality is given by,

F (Q) =
∫
Q(θ) log

P (D|w, c, β)P (w|c, λ)P (c)P (β)P (λ)
Q(θ)

dθ

=
∫
Q(θ)

[
N

2
log
(
β

2π

)
− β

2
(y −Kcw)T (y −Kcw) +

N

2
log
(
λ

2π

)
1
2

log |Kc|

− −λ
2
wT Kcw −

J∑
d=1

(
logmd +

cd
md

)
+ logP (β) + logP (λ)− logQ(θ)

]
dθ
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The variational problem is to minimise F with respect to Qw(w), Qc(c) Qβ(β), Qλ(λ).

Optimisation of Qw(w)

As a function of Qw(w), F can be written as,

F =
∫
Qw(w)

[
− β̄

2

∫
Qc(c)(y −Kcw)T (y −Kcw) dc

− λ̄

2
wT

∫
Qc(c)Kc dc w − logQw(w)

]
dw + const. (5.41)

where

β̄ =
∫
βQβ(β) dβ

λ̄ =
∫
λQλ(λ) dλ (5.42)

and we have∫
Qc(c)(y −Kcw)T (y −Kcw) dc

= yT y − 2yT

∫
Qc(c)Kc dc w + wT

∫
Qc(c)KT

c Kc dc w

= yT y − 2yT K̃1cw + wT K̃2cw

(5.43)

where K̃1c =
∑J

d=1 ndKd and K̃2c = 2
∑J

d=1 n
2
dK

T
d Kd +

∑J
d1 6=d2

nd1nd2K
T
d1

Kd2 . The
best Qw(w) will be given by

Qw(w) =
1

Z(K̃1c, K̃2c, β̄, λ̄)
exp

{
− 1

2
(w −wMP)TΣ−1

MP (w −wMP)
}

(5.44)

with

ΣMP = (λ̄K̃1c + β̄K̃2c)−1 wMP = ΣMPK̃
T

1cy (5.45)

Optimisation of Qc(c)
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As a function of Qc(c), F can be written as,

F =
∫
Qc(c)

[
− β̄

2

∫
Qw(w)(y −Kcw)T (y −Kcw) dw

− λ̄

2

∫
Qw(w)wT Kcw dw −

J∑
d=1

cd
md
− logQc(c)

]
dc + const

=
∫
Qc(c)

[
− β̄

2

(
(y −KcwMP)T (y −KcwMP) + tr(KT

c KcΣMP)
)

− λ̄

2

(
wT

MPKcwMP + tr(KcΣMP)
)

+
1
2

log |Kc|
]
dc−

J∑
d=1

nd

md
+

J∑
d=1

log nd

+ const. (5.46)

Using the relationship, 〈f(c)〉 ≈ f(〈c〉), which is extensively used in the mean field
learning community (Opper and Winther, 2000), allows us to write the determinant
term as,

1
2

∫
Qc(c) log |Kc| dc ≈ 1

2
log
(∫

Qc(c)|Kc| dc
)

=
1
2

log |K̃1c| (5.47)

We should notice that

Kc =
J∑

d=1

cdKd KT
c Kc =

J∑
d1=1

J∑
d2=1

cd1cd2K
T
d1

Kd2 (5.48)

From this we can obtain,

F = − β̄
2

J∑
d=1

n2
dw

T
MPKT

d KdwMP −
β̄

2

J∑
d1,d2=1

nd1nd2w
T
MPKT

d1
Kd2wMP

− λ̄

2

J∑
d=1

ndw
T
MPKdwMP −

β̄

2

J∑
d=1

n2
dtrace(KT

d KdΣMP)

− β̄

2

J∑
d1,d2=1

nd1nd2trace(KT
d1

Kd2ΣMP)− λ̄

2

J∑
d=1

ndtrace(KdΣMP)

−
J∑

d=1

nd

md
+

J∑
d=1

log nd + β̄yT K̃1cwMP + const (5.49)
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At the solution the partial derivative w.r.t nd is then zero and hence,

∂F

∂nd
= −β̄ndw

T
MPKT

d KdwMP − β̄
J∑

c1=1

nd1w
T
MPKT

d Kd1wMP −
λ̄

2
wT

MPKdwMP

− β̄ndtrace(KT
d KdΣMP)− β̄

J∑
d1=1

nd1trace(KT
d Kd1ΣMP)− λ̄

2
trace(KdΣMP)

+ β̄yT K̃1cwMP −
1
md

+
1
nd

+
1
2
∂

∂nd
log |K̃1c| = 0

A simplification can be made for the log |K̃1c| term by considering the associated partial
derivative,

1
2
∂

∂cd
log |K̃1c| =

1
2
trace

(
(K̃1c)−1∂K̃1c

∂nd

)
(5.50)

Using the result that,
∂K̃1c

∂nd
= Kd

allows the above term to be re-written as,

1
2
∂

∂nd
log |K̃1c| =

1
2
trace

(
(K̃1c)−1Kd

)
(5.51)

Optimisation of Qβ(β)

As a function of Qβ(β), F can be written as (ignoring constant terms),

F =
∫∫∫

Qβ(β)Qw(w)Qc(c)
[

logP (D|w, c, β) + logP (β)− logQβ(β)
]
dβ dw dc

=
∫
Qβ(β)

[
N

2
log β − β

2

∫∫
Qw(w)Qc(c)(y −Kcw)T (y −Kcw) dw dc

+ logP (β)− logQβ(β)
]
dβ + const

=
∫
Qβ(β)

[
N

2
log β − β

2

(
yT y − 2yT K̃1cwMP + wT

MPK̃2cwMP + trace(K̃2cΣMP)
)

+ (aβ − 1) log β − β

bβ
− logQβ(β)

]
dβ + const (5.52)

Hence the best Qβ(β) is a Gamma distribution with new parameters

ãβ =
N

2
+ aβ − 1

b̃β = bβ +
1
2
(yT y − 2yT K̃1cwMP + wT

MPK̃2cwMP + trace(K̃2cΣMP)) (5.53)

from which,

β̄ =
ãβ

b̃β
(5.54)
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Optimisation of Qλ(λ)

As a function of Qλ(λ), F can be written as (ignoring constant terms),

F =
∫∫∫

Qλ(λ)Qw(w)Qc(c)
[

logP (w|c, λ) + logP (λ)− logQλ(λ)
]
dw dc dλ

=
∫
Qλ(λ)

[
N

2
log λ− λ

2

∫∫
Q(w)Q(c)wT Kcw dw dc

+ logP (λ)− logQλ(λ)
]
dλ+ const

=
∫
Qλ(λ)

[
N

2
log λ− λ

2

(
wT

MPK̃1cwMP + trace(K̃1cΣMP)
)

+ (aλ − 1) log λ− λ

bλ
− logQλ(λ)

]
dλ+ const (5.55)

Hence the best Qλ(λ) is a Gamma distribution with new parameters,

ãλ =
N

2
+ aλ − 1

b̃λ = bλ + wT
MPK̃1cwMP + trace(K̃1cΣMP) (5.56)

from which,

λ̄ =
ãλ

b̃λ
(5.57)

As was the case for variational Bayesian learning for a neural network, described in
Section 3.7.8, hyperparameter re-estimation formulae can be obtained,

1
nd

=
1
md
− 1

2
trace

(
(K̃1c)−1Kd

)
+
λ̄

2
(
wT

MPKdwMP + trace(KdΣMP)
)

+ β̄
(
nd(wT

MPKT
d KdwMP + trace(KT

d KdΣMP)) + wT
MPKT

d K̃1cwMP

+ trace(KT
d K̃1cΣMP)− yT K̃1cwMP

)
(5.58)

The variational estimate for the ANOVA hyperparameters can be summarised by the
following pseudo-code,

5.5.1 Demonstration on Bishop’s Dataset

To evaluate whether the proposed method can reliably select relevant input variables
its performance was assessed on a toy problem proposed by Bishop (1995) which was
reviewed in Chapter 3. The experiments were performed using 100 examples. To reduce
the effects of data partitioning on the generalisation estimate, the modelling algorithms
were evaluated for ten different (random) generations of the data. Table 5.5 summarises
the ranked importance of the input variables that were deemed to be important.
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Algorithm 5: Variational Learning for BISKIT

Input Dataset D = (x1, y1), . . . , (xN , yN )

Initialise Initialise nd = (n1, n2, . . . , nJ) to a constant value (e.g. 0.01);

Algorithm Do{
Use a kernel method to optimise wMP

Update β̄ using Equation 5.54
Update λ̄ using Equation 5.57
Update each nd using Equation 5.58

}While( 1
J

∑J
i=1 |ni − nold

i | > δ)

Output n, β̄, λ̄,wMP .

Dataset
Components 1 2 3 4 5 6 7 8 9 10

x1 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st

x2 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd

x3 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

x1 ⊗ x2 4th 4th − 4th 4th 4th 4th 4th − −

Table 5.5: Bishop’s Dataset: Ranked importance of the input variables via variational
learning in a Support Vector Machine as part of the BISKIT algorithm.

x1 x2 x3 x1 ⊗ x2

n 0.0146 0.0117 0.0087 0.006
σn 0.001 0.0001 0.0001 0.0001

Table 5.6: Bishop’s Dataset: Mean and associated standard deviation hyperparameter
values using variational learning within a Support Vector Machine as part of the BISKIT

algorithm.

Given that derivative information also exists (see Equation 5.50), the alternative method-
ology of gradient descent was also tested. The update for the hyperparameters is carried
out in a manner similar to equation Equation 3.18. In the neural network community,
it is well known that the choice of the learning rate can affect the rate of convergence
of the algorithm as well as the quality of the final solution obtained.

x1 x2 x3 x1 ⊗ x2 x1 ⊗ x3

n 29.95 23.98 13.93 4.02 0.88
σn 3.02 2.78 2.52 1.60 0.41

Table 5.7: Bishop’s Dataset: Mean and associated standard deviation hyperparameter
values using gradient descent within a Support Vector Machine as part of the BISKIT

algorithm.
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Dataset
Components 1 2 3 4 5 6 7 8 9 10

x1 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st

x2 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd

x3 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

x1 ⊗ x2 4th 4th 4th 4th − 4th 4th 4th − 4th

x1 ⊗ x3 − 5th 5th − − − − − − −

Table 5.8: Bishop’s Dataset: Ranked importance of the input variables via gradient
descent in a Support Vector Machine as part of the BISKIT algorithm.

From the ranked importance of the input variables, the approach described in algorithm
5 is able to distinguish between the relevant and the irrelevant inputs with a high degree
of accuracy across the ten different data partitions using both the gradient descent
method and using the hyperparameter re-estimation formula given in Equation 5.58.
However, both approaches select the irrelevant term x1x2 as being important which
may be a consequence of the correlation between the data inputs.

5.5.2 Demonstration on Friedman’s Dataset

To demonstrate the performance of the BISKIT algorithm the method was run on Fried-
man’s dataset used in assessing the SUPANOVA algorithm (see Section 5.4.2) and used
in Chapter 3 to assess the effectiveness of Bayesian learning. The mean and associ-
ated standard deviation of the hyperparameters are given in Table 5.9. The ranked
importance of the input variables are given in Table 5.10.

x1 x2 x3 x4 x5 x1 ⊗ x2

n 0.017 0.011 0.008 0.006 0.0052 0.0274
σn(×10−4) 3.05 2.57 1.77 1.42 1.15 1.15

Table 5.9: Friedman’s Dataset: Mean and associated standard deviation hyperpa-
rameter values using the BISKIT algorithm.

Dataset
Components 1 2 3 4 5 6 7 8 9 10

x1 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd

x2 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

x3 4th 4th 4th 4th 4th 4th 4th 4th 4th 4th

x4 5th 5th 5th 5th 5th 5th 5th 5th 5th 5th

x5 6th 6th 6th 6th 6th 6th 6th 6th 6th 6th

x1 ⊗ x2 1st 1st 2nd 1st 1st 1st − 1st 1st 1st

Table 5.10: Friedman’s Dataset: Ranked importance of the input variables when
using the BISKIT algorithm on Friedman’s dataset.
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From the ranked importance of the inputs using Friedman’s dataset the BISKIT algo-
rithm is able to distinguish between the relevant and irrelevant input variables with a
high degree of certainty.

5.6 Monte-Carlo BISKIT (McBISKIT)

The approach taken here was similar in manner to that described by Neal (1995), and
reviewed in Section 3.7.2. A Gamma prior distribution was placed on the ANOVA kernel
hyperparameters. The method of rejection sampling was used to generate samples from
the prior distribution. Rejection sampling in general is discussed by Devroye (1986).
This method produces a sample of independent values from the posterior distribution
given the training data. These independent values from the posterior are obtained by
generating independent values from the prior and then rejecting some of these with
probability proportional to the likelihood due to the training data. However, as Neal
(1995) observes the rejection rate with this method can be extremely high. It can be
feasibly applied only to very small training sets, with priors carefully chosen to give a
high probability to parameter values that are well-matched to the data. As discussed in
Section 3.7.2 the initial choice of starting values can greatly affect the time it takes for
the system to reach equilibrium as well as the quality of the final approximation.

5.6.1 Demonstration on Bishop’s Dataset

To illustrate the performance of the McBISKIT problem, the problem was illustrated on
the same artificial datasets, proposed by (Bishop, 1995), as those used for the BISKIT al-
gorithm. The mean and the associated standard deviation values are given in Table 5.11,
whilst Table 5.12 provides a ranked importance of the input variables.

x1 x2 x3 x1 ⊗ x2 x1 ⊗ x3 x1 ⊗ x2 x1 ⊗ x2 ⊗ x3

n(×10−4) 2.14 1.63 74.5 1.92 1.43 92.5 1.18
σn(×10−4) 4.641 2.65 1.18 3.23 3.00 2.38 1.84

Table 5.11: Bishop’s Dataset: Mean and associated standard deviation hyperparam-
eter values within a Support Vector Machine as part of the McBISKIT algorithm.

From the ranked importance of the inputs using Friedman’s dataset the McBISKIT
algorithm is able to distinguish between the relevant and irrelevant input variables with
a high degree of certainty.
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Dataset
Components 1 2 3 4 5 6 7 8 9 10

x1 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st

x2 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd

x3 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

x1 ⊗ x2 4th 4th 4th 4th − 4th 4th 4th − 4th

x1 ⊗ x3 − 5th 5th − − − − − − −

Table 5.12: Bishop’s Dataset: Ranked importance of the input variables using the
McBISKIT algorithm (initial hyperparameter values α = 0.01).

5.6.2 Demonstration on Friedman’s Dataset

Given the large number of ANOVA terms that exist in a complete ANOVA expansion,
and the observations made by Neal (1995) regarding Gibbs sampling (described in Sec-
tion 5.6), the hyperparameter values obtained from the SUPANOVA approach are used
as starting values for the MCMC sampling algorithm. The mean and associated stan-
dard deviation of the hyperparameters are given in Table 5.13. The ranked importance
of the input variables are given in Table 5.14.

x1 x2 x3 x4 x5 x1 ⊗ x2

n 0.016 0.011 0.008 0.006 0.005 0.043
σn( ×10−4) 3.05 2.57 1.77 1.42 1.15 1.14

Table 5.13: Friedman’s Dataset: Mean and associated standard deviation hyperpa-
rameter values using the McBISKIT algorithm.

Dataset
Components 1 2 3 4 5 6 7 8 9 10

x1 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd

x2 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

x3 3rd 4th 4th 4th 4th 4th 4th 4th 4th 4th

x4 3rd 4th 5th 5th 5th 5th 5th 5th 5th 5th

x5 6th 6th 6th 6th 6th 6th 6th 6th 6th 6th

x1 ⊗ x2 1st 1st 2nd 1st 1st 1st − 1st 1st 1st

Table 5.14: Friedman’s Dataset: Ranked importance of the input variables when
using the BISKIT algorithm on Friedman’s dataset.

5.7 ARD Gaussian Processes

As described in Section 4.4, the function that is chosen must generate a positive definate
matrix for any set of input points. From a Bayesian inference perspective, the covariance
function should contain our prior beliefs about the structure of the function that is being
modelled.
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Williams and Rasmussen (1996) use an additive covariance function between the points
x(p) and x(q), p, q = 1, . . . , N of the form,

C(x(p), x(q)) = a0 + a1

m∑
i=1

x
(p)
i , x

(q)
i + υ0 exp

(
−1

2

m∑
i=1

αi(x
(p)
i − x

(q)
i )2

)
(5.59)

This additive covariance function is conceptually made up of two components. The
first part involving the a0 and a1 parameters controls the scale of the bias and linear
contributions to the covariance. The second part of the covariance function expresses
the idea that cases with nearby inputs should have highly correlated outputs. The αi

parameters are multiplied by the co-ordinate wise distances in input space and therefore
allow for different distance measures for each input dimension. For irrelevant inputs,
the corresponding αi should be small in order for the model to ignore these inputs. As
Rasmussen (1996) observes the “characteristic lengths” for input directions are given
by α−1/2

i . When a αi parameter becomes large, the resulting function will have a short
characteristic length indicating that this input is of high importance. This idea (Williams
and Rasmussen, 1996; Rasmussen, 1996) is closely related to the ARD method described
in Chapter 3. The MAP estimates for these hyperparameters can be determined using
a gradient descent based technique to locate a maximum of the posterior distribution.

5.7.1 Demonstration of Hyperparameter Re-estimation

In order to evaluate the performance of the hyperparameter re-estimation approach when
applied to a Gaussian process, the artificial modelling problem proposed by (Friedman,
1991) used in Chapter 3 was used. In order to main comparability between the previous
results the same datasets as those used to assess the Bayesian neural network were used.
The Gaussian process model was trained using the scaled conjugate gradient algorithm.

The mean and the associated standard deviation for the hyperparameters associated
with this covariance function are given in Table 5.15, and the ranked importance of the
input variables are given in Table 5.16. The stability with which the Gaussian process
model selects the relevant input variables is comparable to that of the Bayesian neural
network trained using MCMC described in Chapter 3. The spurious inputs are given
little influence showing that the ARD covariance function by its use of width scales is
able to set the hyperparameters associated with the irrelevant inputs to zero. However,
in common with the Bayesian neural network, the ARD covariance kernel in its standard
form is unable to select the combined influence of inputs x1 and x2.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

α 3.55 2.67 2.09 1.56 1.52 0.59 0.26 0.06 0.14 0.07
σα 1.88 1.63 1.44 1.24 1.32 0.77 0.51 0.24 0.38 0.28

Table 5.15: Mean ARD hyperparameter values for the Gaussian Process ARD covari-
ance function.
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Input variables
Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1st 2nd 3rd 4th 5th - - - - -
2 1st 2nd 3rd 4th 5th - - - - -
3 1st 2nd 3rd 4th 5th 6th - - 7th -
4 1st 2nd 3rd 4th 5th - - - - -
5 1st 2nd 3th 5th 6th 4th - - 7rd -
6 3rd 2nd 4th 5th 1st - 6th - - -
7 1st 5th 4th 2nd 3rd - 6th - - -
8 1st 2nd 3rd 4th 5th - - - - -
9 1st 2nd 3rd 4th 5th - - - - -
10 1st 2nd 3rd 4th 5th - - - - -

Table 5.16: Ranked importance of input variables when using the Gaussian Process
ARD covariance function.

5.8 Summary

The incorporation of interpretability can be achieved by exploiting the ideas of work
in different communities. The wavelet community have been concerned with sparse ap-
proximations and from the work of Chen (1995), sparse approximations can be achieved
be addition of a 1-norm penalty term to the cost function being minimised. Within the
Bayesian community, a number of hyperparameter determination methods have been
proposed and two have been exploited in the algorithms developed in this chapter. The
three interpretable learning algorithms that were developed, were illustrated on two toy
problems highlighting the potential of the approach. The next chapter is concerned
with illustrating the algorithms that have been developed in this thesis on a range of
“real-world” modelling problems.



Chapter 6

Data Analysis

Throughout the course of this thesis a number of different interpretable modelling meth-
ods have been developed. To illustrate the effectiveness of these methods, they have been
applied to synthetic artificial datasets where prior knowledge of their expected behaviour
exists. These studies were useful for algorithm development, highlighting algorithm defi-
ciencies and consequently aiding algorithm validation. To test these methods further, in
this chapter they are applied to a number of more realistic situations. Three examples
are considered; automobile miles per gallon prediction, prediction of house prices in the
Boston area, and using a commercial materials dataset for predicting the strength of a
metal used in the manufacture of aeroplane wings. The demonstrations on Friedman’s
artificial dataset, described in the previous sections, have helped to illustrate the dif-
ferent properties of the models. This knowledge should be of use when applying these
models to real problems.

When comparing learning procedures a key point of interest is how the models differ
in many respects. This includes the accuracy of the predictions made, the amount of
computation required to produce these predictions, the ease with which the problem
can be formulated in an appropriate form, and importantly for this thesis how the
construction of the predictive model increases our understanding of the nature of the
problem. As Neal (1995) observes, only in the context of a real application is it possible
to judge the relative importance of these aspects. Traditionally, neural networks and
other modelling methods have been compared primarily on the basis of their predictive
performance. In the results presented in this chapter model interpretability is also used
as a assessment measure of a models capability.

Learning procedures cannot be compared in complete absence of context. For the results
of a comparison to be meaningful, it is necessary to somehow distinguish between models
that just happen to do well on a particular problem, and those that not only do well,
but which also might have been chosen prior to our seeing the test results for various
procedures. Which procedures might reasonably have been chosen will depend upon

113
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the prior knowledge that is available for the particular problem. Multiple parameter
initialisations, multiple runs and multiple partitions of the data into training and test
set have been employed here. It may also be possible to choose between models by other
means, such as cross validation. Any of these methods may allow the effective model
used to be determined to a large degree by the data. If the chosen model performs well,
one can argue that such good performance could indeed have been achieved in a real
application of a similar nature. This point is discussed further in Chapter 7.

6.1 Automobile Miles Per Gallon Dataset

In this section the results of modelling the automobile miles per gallon of a car are
presented. The performance of the different modelling approaches is demonstrated by
application to the problem of modelling automobile miles per gallon data Blake and Merz
(1998). The AMPG data set contains the miles travelled, per gallon of fuel consumed,
for various different cars. The input variables measure six characteristics of a car; the
number of cylinders (discrete), displacement, horsepower, weight, acceleration and model
year (discrete). The goal is to discover a relationship between the AMPG and the cars’
characteristics. After removing a small number of entries with missing values from the
original data set, the experiments were performed using 392 examples, 352 for training
and validation and 40 for estimating the generalisation performance.

6.1.1 Bayesian Neural Network with Evidence Framework

A Bayesian neural network with ARD was trained using the evidence framework de-
scribed in Section 3.7.1. A single hidden layer Bayesian neural network with varying
numbers of hidden nodes was used to model the relationship between the inputs and the
output. The network weights were initially randomised from a Gaussian distribution.
A linear activation function was also used on the output node. The optimal network
structure was determined to be six hidden nodes since this corresponds to the lowest
error on the test set.

The evidence framework of (MacKay, 1994) described in Section 3.7.1 was used for
ARD hyperparameter determination. Table 6.1 gives the mean and associated standard
deviation for the ARD hyperparameters, whilst Table 6.2 gives the ranked importance
of the input variables.

C D H W A Y

α−1 7.29 9.97 20.51 1.24 0.69 3.25
σα−1 14.53 6.99 28.78 2.43 0.70 3.37

Table 6.1: AMPG Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values for six hidden nodes when using the evidence framework.



Chapter 6 Data Analysis 115

Dataset
Components 1 2 3 4 5 6 7 8 9 10

C 6th 6th 6th 6th 6th 6th 6th 6th 6th 6th

D 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st

H 5th 5th 5th 5th 5th 5th 5th 5th 5th 5th

W 4th 4th 4th 4th 4th 4th 4th 4th 4th 4th

A 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

Y 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd

Table 6.2: AMPG Dataset: Input Selection when using a Bayesian Neural Network
trained using the Evidence Framework. (C-No of Cylinders, D-Displacement, H-Horse

Power, W -Weight, A-Acceleration, Y -Year)

From these tables it is evident that the network is giving the most influence to the
weight, acceleration year and horsepower.

6.1.2 Bayesian Neural Network with Variational Learning

A Bayesian neural network with ARD was trained using the variational learning frame-
work described in Section 3.7.8. Table 6.3 gives the mean and associated standard
deviation for the ARD hyperparameters, whilst Table 6.4 gives the ranked importance
of the input variables.

C D H W A Y

α−1 δ 0.002 0.036 0.271 0.940 1.684
σα−1 δ δ 0.001 0.005 0.02 0.033

Table 6.3: AMPG Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values for six hidden nodes when using variational learning where δ < 1×10−4.

Dataset
Components 1 2 3 4 5 6 7 8 9 10

C 6th 6th 6th 6th 6th 6th 6th 6th 6th 6th

D 5th 5th 5th 5th 5th 5th 5th 5th 5th 5th

H 4th 4th 4th 4th 4th 4th 4th 4th 4th 4th

W 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

A 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd

Y 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st

Table 6.4: AMPG Dataset: Ranked importance of the AMPG input variables when
using a Bayesian Neural Network trained using variational learning. (C-No of Cylinders,

D-Displacement, H-Horse Power, W -Weight, A-Acceleration, Y -Year)

6.1.3 Bayesian Neural Network with MCMC Sampling

The evaluation of the Bayesian neural network with ARD was trained in a manner
similar to that used in the evidence framework. Hybrid Monte Carlo updates for the
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network parameters were alternated with Gibbs sampling updates for the hyperparame-
ters. Table 3.8 gives the mean and the associated standard deviation values for the ARD
hyperparameters associated with each input variable, whilst Table 6.4 gives the ranked
importance of the input variables. From these tables it is evident that the network is
giving the most influence to the horsepower, weight, year and displacement. Figure 6.1
shows the convergence of energy with increasing number of iterations.

C D H W A Y

α−1 0.44 1.16 2.85 2.57 0.34 1.78
σα−1 0.78 1.46 1.89 2.49 0.41 0.88

Table 6.5: AMPG Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values for six hidden nodes when using MCMC sampling.

Dataset
Components 1 2 3 4 5 6 7 8 9 10

C 3rd 6th − 4th − − − − − −
D 1st 3rd − − − 3rd 3rd − 3rd 3rd

H 2nd 1st 4th 1st 3rd 2nd 1st 1st 2nd 1st

W 6th 4th 1st 3rd 1st 1st − 2nd 4th 2nd

A 5th 5th 3rd − 4th − 4th − − −
Y 4th 2nd 2nd 2nd 2nd 4th 2nd 3rd 1st 4th

Table 6.6: AMPG Dataset: Input Selection when using a Bayesian Neural Network
trained using MCMC Sampling.(C-No of Cylinders,D-Displacement, H-Horse Power,

W -Weight, A-Acceleration, Y -Year)

In contrast to the behaviour of the Bayesian neural networks trained on Friedman’s addi-
tive dataset described in Chapter 3, the selection of input variables indicating relevance
is somewhat more variable. Looking at the ranked importance of the input variables
shown in tables 6.2 and 6.6 there is a significant degree of variation in the choice of
input variables chosen as being important. In fact, no clear input variable stands out
as being important, this could be a consequence of the limitations associated with each
of the hyperparameter determination methods described in Chapter 3. Given that the
evidence framework is based around a number of assumptions a possible explanation
is that they are particularly unrealistic for this dataset. It is highly likely that the er-
ror surface for this particular problem is highly non-convex and hence the approach is
particularly sensitive to the choice of starting values.

Given that the ARD approach only selects input variables, a useful feature to determine
which of the two hyperparameter determination methods is the more accurate visualisa-
tion of the trends predicted by each method would be useful. MacKay (MacKay, 1994)
has suggested that this could be achieved by constructing an artificial dataset in which
all but one input variable is held fixed to its mean value, whilst the one input is allowed
to vary between its maximum and minimum values. The predicted behaviour can then
be visualised. However, an inherent limitation of this approach is that it only considers
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(d) AMPG Dataset 4
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(e) AMPG Dataset 5
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(f) AMPG Dataset 6
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(i) AMPG Dataset 9
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(j) AMPG Dataset 10

Figure 6.1: AMPG Dataset: Energy Convergence for a Bayesian Neural Network
trained using MCMC sampling on the randomly partitioned AMPG datasets.

a slice of the input space and cannot be realistically expected to demonstrate the real
trend.

6.1.4 ARD Gaussian Process Model

A Gaussian process model was trained on the AMPG dataset, using the ARD covariance
function described in Chapter 4. Table 6.7 gives the mean and the associated standard
deviation values for the ARD hyperparameters associated with each input variable,
whilst Table 6.8 gives the ranked importance of the input variables. From these tables
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it is evident that the network is giving the most influence to displacement, number of
cylinders, acceleration and year.

C D H W A Y

α 5.92 18.18 1.67 1.00 5.55 4.54
σα 2.55 13.79 0.30 0.25 2.49 0.80

Table 6.7: AMPG Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values for an ARD Gaussian Process model.

Dataset
Components 1 2 3 4 5 6 7 8 9 10

C 1st 2nd 3rd 1st 2nd 2nd 2nd 6th 1st 2nd

D 2nd 1st 1st 2nd 1st 1st 1st 1st 2nd 1st

H 5th 5th 5th 5th 5th 5th 5th 4th 5th 5th

W 6th 6th 6th 6th 6th 6th 6th 5th 6th 6th

A 3rd 3rd 2nd 4th 4th 3rd 3rd 3rd 3rd 3rd

Y 4th 4th 4th 3rd 3rd 4th 4th 2nd 4th 4th

Table 6.8: AMPG Dataset: Ranked importance of the input variables when using
a Gaussian process trained using the ARD covariance function. (C-No of Cylinders,

D-Displacement, H-Horse Power, W -Weight, A-Acceleration, Y -Year)

6.1.5 Sparse Kernel Support Vector Machines

The kernel based SUPANOVA technique was applied to the miles per gallon dataset
using both quadratic and ε-insensitive loss functions. Table 6.10 shows that the method
has selected eight ANOVA terms from a possible 64 as being relevant in determining the
output. These are bias; 3 univariate corresponding to displacement, weight and year;
3 bivariate terms corresponding to a tensor product between displacement and weight,
number of cylinders and acceleration and acceleration and year; and one trivariate term
composed of a tensor product between horse power, acceleration and year.

Table 6.9 demonstrates that the difference in the mean of the estimated generalisation
error between a full ANOVA model and a parsimonious ANOVA model is negligible.
However, it also demonstrates that the parsimonious kernel has a lower variance and
hence suggests that it is more robust.

Loss Function Estimated Generalisation Error
Training Testing Stage I Stage III Linear Model

Quadratic Quadratic 6.97 (7.39) 7.08 (6.19) 11.4 (11.0)
ε-insensitive ε-insensitive 0.48 (0.04) 0.49 (0.03) 1.80 (0.11)
ε-insensitive Quadratic 7.07 (6.52) 7.13 (6.04) 11.72 (10.94)

Table 6.9: AMPG Dataset: SUPANOVA Results for the AMPG Data Set (ε = 1.0).
Quoted values are for the mean (and variance) of the estimated generalisation error.
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In the ARD approach the selection of the inputs corresponding to displacement, weight
and year is highly variable, and it cannot be said with any certainty that the model has
reliably selected any of these inputs as being important in predicting the output. Also
due to the restricted nature of the ARD approach, in that it cannot look at combinations
of inputs, no information can be gathered as to whether there are any higher order
interactions.

These results were corroborated by the results using the quadratic loss function. Com-
paring the two different loss functions shows that, for this particular data-set, there
is very little performance difference. Inspection of the ANOVA terms selected by the
100 models (Table 6.10) shows a high consistency, and confirms the robustness of the
technique.

Terms Quadratic ε-Insensitive ”Difference”
bias 50 50 0.00
C 3 1 0.08
D 35 8 0.66
H 2 20 0.44
W 50 50 0.00
Y 50 50 0.00

C ⊗D 9 26 0.54
C ⊗W 0 4 0.08
C ⊗A 1 11 0.24
C ⊗ Y 2 18 0.40
D ⊗W 35 44 0.38
C ⊗A 42 43 0.16
H ⊗ Y 10 5 0.18
W ⊗ Y 2 1 0.06
A⊗ Y 50 47 0.06

C ⊗D ⊗W 0 1 0.02
C ⊗W ⊗A 0 1 0.02
C ⊗W ⊗ Y 0 1 0.02
C ⊗A⊗ Y 0 7 0.14
D ⊗H ⊗W 1 2 0.06
H ⊗A⊗ Y 50 49 0.02
W ⊗A⊗ Y 0 4 0.08

C ⊗D ⊗W ⊗A 0 1 0.02
C ⊗D ⊗A⊗ Y 4 0 0.08

Table 6.10: AMPG Dataset: SUPANOVA terms for the AMPG Data Set. (ε = 2.5),
(C-No of Cylinders, D-Displacement, H-Horse Power, W -Weight, A-Acceleration, Y -

Year) (All remaining terms were zero)

The transparency of the terms is evident from Figure 6.2, although the trivariate is
harder to interpret. An example of model validation is demonstrated by the ability to
verify the trends in the interaction terms using prior knowledge. There is a decrease in
the miles per gallon of a car as both the horse power and the weight of the cars increase.
The univariate year term is of particular interest. It can be seen that before 1973 this
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Figure 6.2: AMPG Dataset: SUPANOVA model using ε-insensitive loss function (1
of 50).

term has no effect on the MPG, but after 1973 there is a sharp rise in MPG; this could
be a consequence of the oil crisis. This example has acted to show that visualisation of
the selected terms can greatly assist in model validation and model selection.

6.1.6 AMPG Dataset: BISKIT Evaluation

To assess the performance of the BISKIT algorithm on a real world modelling problem,
the algorithm was run on the AMPG problem described in Section 6.1.5. Given the high
computational cost associated with the BISKIT algorithm (in particular the inversion of
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the kernel matrix as part of the hyperparameter reestimation described in Chapter 5),
the final hyperparameter values from the SUPANOVA algorithm were used as starting
values for the BISKIT algorithm. Table 6.11 gives the mean and the associated standard
deviation for the chosen terms, whilst Table 6.12 gives the ranked importance of the
ANOVA terms.

C D H W A

n× 10−3 0.009 0.057 0.013 0.150 0.03
σn ×10−4 0.01 0.23 0.03 0.99 0.04

Table 6.11: AMPG Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values for a kernel method trained using the BISKIT algorithm.

Dataset
Components 1 2 3 4 5 6 7 8 9 10

D 5th 5th 5th 5th 5th 5th 5th 4th 5th 5th

W 3rd 1st 2nd 2nd 2nd 2nd 2nd 2nd 2nd 3rd

Y 4th 3rd 4th 4th 4th 4th 4th 5th 4th 4th

H ⊗A 1st 4th 1st 1st 1st 1st 1st 1st 1st 1st

W ⊗ Y 2nd 2nd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 2nd

Table 6.12: AMPG Dataset: Ranked importance of the input variables when using
the BISKIT algorithm for ANOVA hyperparameter determination. (C-No of Cylinders,

D-Displacement, H-Horse Power, W -Weight, A-Acceleration, Y -Year)

Across the ten random data partitions on which the BISKIT algorithm was run, the
algorithm is able to distinguish between irrelevant inputs and appears to give the most
influence to the bivariate term H ⊗ A corresponding to horsepower and acceleration,
the univariate term weight and then the bivariate term W ⊗A corresponding to weight
and year. These terms are also selected by the SUPANOVA algorithm, reflecting the
robustness of the BISKIT algorithm.

6.2 Boston Housing Data

In this section the results of modelling home prices in the Boston area are presented.
The Boston housing dataset originates from the work of Harrison and Rubinfield (1978)
who were interested in the effect of air pollution on housing prices. The data concerns
the median price in 1970 of owner-occupied houses in 506 census tracts within the
Boston metropolitan area. Twelve attributes pertaining to each census tract are available
for use in predicting the median price. The input variables are: Crime rate - per
capita crime rate by town, % Residential land - proportion of residential land zoned for
lots over 25,000 sq.ft., % Non-retail Business - proportion of non-retail business acres
per town, Nitric Oxides - Nitric oxides concentration (parts per 10 million), Mean no.
of rooms - Average number of rooms per dwelling, % built pre 1940 - Proportion of
owner-occupied units built prior to 1940, distance to job centre - weighted distance to
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five Boston employment centres, Access to Highways - index of accessibility to radial
highways, Property Tax - full value property tax per $10,000, Pupil:Teacher Ratio -
Pupil teacher ratio by town ,% Blacks - 1000(Blks−0.63)2 where Blks is the proportion
of blacks by town, and % low stat population which represents the percentage proportion
of the population living below the poverty line.

As Neal (1995) observes the data is messy is several regards. Some of the attributes
are not actually measured on a per-tract basis, but only for larger regions. The median
prices for the highest-priced tracts appear to be censored. Censoring is suggested by
the fact the highest median price of exactly $50,000 is reported for sixteen of the tracts,
while fifteen tracts are reported to have median prices. Considering these potential
problems, it appears unreasonable to expect that the distribution of the target variable,
given the input variables, to be Gaussian.

6.2.1 Bayesian Neural Network with Evidence Framework

A Bayesian neural network with ARD was trained using the evidence framework de-
scribed in Section 3.7.1. A single hidden layer Bayesian neural network with varying
numbers of hidden nodes was used to model the relationship between the inputs and the
output. The network weights were initially randomised from a Gaussian distribution.
A linear activation function was also used on the output node. The optimal network
structure was determined to be six hidden nodes since this corresponds to the lowest
error on the test set.

The evidence framework of (MacKay, 1994) described in Section 3.7.1 was used for
ARD hyperparameter determination. Table 6.13 gives the mean and associated standard
deviation for the ARD hyperparameters, whilst Table 6.14 gives the ranked importance
of the input variables.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

α−1 9.12 2.91 8.42 7.12 1.51 0.02 41.30 5.64 19.02 2.35 0.28 2.25
σα−1 12.57 6.93 12.77 8.22 1.29 0.03 23.65 6.56 22.02 4.00 0.73 1.39

Table 6.13: Boston Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values for six hidden nodes when using the evidence framework.

From these tables, it is evident that the network is giving the most influence to the input
variables concerned with: distance to job centre, mean number of rooms, property tax
and nitric oxides. Interestingly enough, the network does not give the variable crime a
high degree of relevance.
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Input variables
Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 4th 7th 2nd - 5th - 1st 8th 3rd - - 6th

2 5th 10th 3rd 4th 9th - 2nd 7th 1st 8th - 6th

3 7th - - - 5th 6th 1st 2nd 4th - 8th 3rd

4 6th 9th - 3rd 7th 8th 1st 4th 5th - - 2nd

5 6th - 8th 4th 5th 10th 1st 2nd 3rd - 9th 7th

6 4th 3rd 5th 6th - - 1st 8th 2nd 7th - -
7 2nd - - 3rd - 6th 1st 5th 4th - - 7th

8 3rd 6th - 4th 8th - 2nd 9th 1st 7th - 5th

9 6th 9th - 3rd 5th - 1st 2nd 4th - 8th 7th

10 7th - 5th 8th - 6th 1st 3rd 2nd 4th - -

Table 6.14: Boston Dataset: Ranked importance of input variables when using the
evidence framework on the Boston house price dataset.

6.2.2 Bayesian Neural Network with Variational Learning

A Bayesian neural network with ARD was trained using the variational learning frame-
work described in Section 3.7.8. Table 6.15 gives the mean and associated standard
deviation for the ARD hyperparameters, whilst Table 6.16 gives the ranked importance
of the input variables.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

α−1 1.18 0.005 0.03 2.04 1.44 0.04 44.53 0.95 1.59 0.24 0.36 8.86
σα−1 2.56 0.009 0.049 1.47 1.60 0.11 78.77 0.70 1.37 0.25 0.54 7.14

Table 6.15: Boston Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values for six hidden nodes when using variational learning. (Values are given

up to a constant: α−1 × 10−3, σα−1 × 10−7)

Input variables
Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 4th 7th 2nd 8th 5th - 1st - 3rd - - 6th

2 5th - 3rd 4rd 9th - 2nd 7th 1st 8th - 6th

3 7th - - 5th 6th - 1st 2nd 4th 8th 3rd -
4 6th - - 3rd - 7th 1st 4th 5th 8th - 2nd

5 - - 8th 5th 6th - 1st 2nd 3rd - 9th 7th

6 4th 3rd 5th 6th - - 1st 8th 2nd 7th - 9th

7 2nd - 4rd 3rd - - 1st 6th 5th 7th - 8th

8 3rd 6th - 4th 8th - 2nd - 1st 7th - 5th

9 6th 9th - 3rd 5th - 1st 2nd 4th - 8th 7th

10 7th - 5th 8th 6th - 1st 3rd 2nd 4th - 9th

Table 6.16: Boston Dataset: Ranked importance of input variables when using vari-
ational learning on the Boston house price dataset.
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6.2.3 Bayesian Neural Network with MCMC Sampling

The evaluation of the Bayesian neural network with ARD was trained in a manner
similar to that used in the evidence framework. Hybrid Monte Carlo updates for the
network parameters were alternated with Gibbs sampling updates for the hyperparam-
eters. Table 6.17 gives the mean and the associated standard deviation values for the
ARD hyperparameters associated with each input variable, whilst Table 6.18 gives the
ranked importance of the input variables. From these tables it is evident that the net-
work is giving the most influence to the horsepower, weight, year and displacement.
Figure 6.1 shows the convergence of energy with increasing number of iterations.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

α−1 2.93 1.10 2.76 2.93 1.94 0.69 14.7 3.67 3.36 2.04 0.74 2.72
σα−1 1.82 0.78 1.55 1.67 0.83 0.46 6.19 1.80 4.17 3.93 0.29 2.27

Table 6.17: Mean and associated standard deviation ARD hyperparameter values for
six hidden nodes when using MCMC sampling.

Input variables
Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 4th - - 5th 6th - 1st 3rd - - - 2nd

2 4th - - 5th 3rd - 1st 2nd - - - -
3 5th - 3rd 4th - - 1st - 2nd - - -
4 - - 3rd - 4th - 1st 2nd - - - 5th

5 4th - 5th - 3rd - 1st 2nd - - - -
6 2nd 5th 3rd 4th - - 1st - - - - 6th

7 - 6th 5th 3rd - - 1st 2nd 4th - - -
8 4th - 2nd 6th - - 1st 3rd - - - 5th

9 6th 3rd 2nd - - 1st 4th - - - - 5th

10 - - - 4th - 3rd 2nd 1st - - - -

Table 6.18: Ranked importance of input variables when using MCMC sampling on
the Boston house price dataset.

Work carried out by Husmeier (1999) on using an ensemble of Bayesian neural networks
trained using an Expectation-Maximisation (EM) algorithm and incorporating auto-
matic relevance determination (ARD) was able to select ”relevant” inputs. The input
variables rooms, distance to employment centres, access to radial highways, property
tax, and the percentage of lower status in the population were selected as being rele-
vant inputs. Husmeier (1999) observes, and this is confirmed in our approach, that the
variable crime seems to be an irrelevant input. The remaining input variables show an
ambiguous behaviour.
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Figure 6.3: Boston Dataset: Energy Convergence for a Bayesian Neural Network
trained using MCMC sampling on the randomly partitioned Boston datasets.

6.2.4 ARD Gaussian Process Model

A Gaussian process model was trained on the Boston dataset, using the ARD covariance
function described in Chapter 4. Table 6.19 gives the mean and the associated standard
deviation values for the ARD hyperparameters associated with each input variable,
whilst Table 6.20 gives the ranked importance of the input variables. From these tables
the input variables rooms, distance to employment centres, access to radial highways,
property tax, and the percentage of lower status in the population were selected as being
important inputs.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

α 7.66 0.05 0.82 14.7 6.22 0.69 30.5 4.40 7.76 0.40 1.82 16.1
σα 6.96 0.10 0.70 11.1 1.58 0.32 15.0 2.97 8.51 0.20 1.53 9.53

Table 6.19: Boston Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values when using a Gaussian Process.

Input variables
Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 4th - - 2nd 5th - 6th 7th 3rd - - 1st

2 - - 7th 2nd 4th - 1st 5th - - 6th 3rd

3 7th - - 4th 5th - 1st 3rd - - 6th 2nd

4 4th - - 3rd 5th - 1st 6th 7th - - 2nd

5 5th - - 1st 6th 8th 2nd 7th 4th - - 3rd

6 - - 7th 3rd 5th - 1st 2nd - - 6th 4th

7 - - - 3rd 4th - 1st 2nd - - 6th 5th

8 4th - - 5th 6th - 3rd - 1st - - 2nd

9 - - - 6th 4th - 1st 3rd - - 5th 2nd

10 3rd - - 1st 6th - 5th - 4th - - 2nd

Table 6.20: Boston Dataset: Ranked importance of input variables when using an
ARD Gaussian process model.

6.2.5 Sparse Kernel Support Vector Machines

The kernel based SUPANOVA technique was applied to the Boston housing dataset using
a quadratic loss function. Fourteen ANOVA terms were selected as being important.

Figure 6.4 illustrates the model obtained from the SUPANOVA technique. Fourteen
interaction terms (bias, 4 univariate, 9 bivariate) were selected as being important by
the SUPANOVA technique. Inspection of the ANOVA terms selected by the 100 models
shows a high consistency, and confirms the robustness of the technique. An example
of the terms chosen are shown in Figure 6.4. There is an increase in the house price
as the size of the house, as depicted by the mean number of rooms, increases, and
a corresponding increase exists with the percentage of homes built before 1940. The
bivariate terms given the nature of their surfaces are somewhat harder to interpret, but
trends such as an increase in property tax with an increase in the number of rooms can
be determined. Overall the trends depicted are broadly consistent with prior knowledge
about the problem.

6.2.6 Boston House Price Dataset: BISKIT Evaluation

To assess the performance of the BISKIT algorithm on another real world modelling
problem, the algorithm was run on the Boston house price problem described above.
As with the AMPG problem, given the high computational cost associated with the
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Figure 6.4: Visualisation of the ANOVA terms from the Boston House Price Data

BISKIT algorithm (in particular the inversion of the kernel matrix as part of the hyper-
parameter reestimation described in Chapter 5), the final hyperparameter values from
the SUPANOVA algorithm were used as starting values for the BISKIT algorithm. Ta-
ble 6.21 gives the mean and the associated standard deviation for the chosen terms,
whilst Table 6.24 gives the ranked importance of the ANOVA terms.

x5 x6 x7 x11 x5 ⊗ x6

n× 10−3 0.001 0.01 0.02 0.11 0.01
σn × 10−3 0.002 0.003 0.03 0.30 0.01

Table 6.21: Boston Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values for a kernel method trained using the BISKIT algorithm (Part I).
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x5 ⊗ x8 x5 ⊗ x9 x5 ⊗ x10 x5 × x12 x6 ⊗ x8

n× 10−3 0.008 0.008 0.001 0.004 0.015
σn × 10−3 0.04 0.001 0.004 0.007 0.02

Table 6.22: Boston Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values for a kernel method trained using the BISKIT algorithm (Part II).

x6 ⊗ x11 x8 ⊗ x9 x8 ⊗ x12 x9 ⊗ x12

α 0.03 0.04 0.06 0.009
σα 0.03 0.04 0.08 0.0002

Table 6.23: Boston Dataset: Mean and associated standard deviation ARD hyperpa-
rameter values when using a Gaussian Process.

Dataset
Components 1 2 3 4 5 6 7 8 9 10

x5 − 5 − − − − − − − −
x6 7th 5th 5th 3rd 6th 6th 3rd 6th 5th 9th

x7 1st 7th 7th 8th 3rd 7th 8th 2nd 3rd 8th

x11 5th 2nd 1st 4th 5th 1st 4th 3rd 2nd 6th

x5 ⊗ x6 10th − 9th 10th − 10th 9th 10th − −
x5 ⊗ x8 − − 3rd − 9th 9th 5th 9th 7th 5th

x5 ⊗ x9 3rd 8th − 6th 7th 8th 8th 7th 8th 7th

x5 ⊗ x10 − − − − − − − − − −
x5 ⊗ x12 8th − − − 10th − 10th − 10th 10th

x6 ⊗ x8 4th 6th 8th 7th 1st 3rd 6th 5th 9th 3rd

x6 ⊗ x11 9th 4th 4th 5th 2nd 5th 7th 4th 6th 4th

x8 ⊗ x9 6th 1st 2nd 2nd 8th 4th 1st 8th 1st 1st

x8 ⊗ x12 2nd 3rd 6th 1st 4th 2nd 2nd 1st 4th 2nd

x9 ⊗ x12 − 5th − − − − − − − −

Table 6.24: Boston Dataset: Ranked importance of the input variables when using
the BISKIT algorithm for ANOVA hyperparameter determination.

Across the ten random data partitions on which the BISKIT algorithm was run, the
algorithm appears to be able to distinguish between relevant and irrelevant inputs. Many
of the terms selected by the SUPANOVA algorithm are also selected by the BISKIT
algorithm reflecting the robustness of this approach.

6.3 Commercial Dataset

A commercial processing-properties dataset for DC cast aluminium plate, used exten-
sively in the manufacture of aircraft wings, is considered, concentrating on prediction of
the mechanical property 0.2% proof stress. Proof stress is a mechanical property that is
related to the strength of the metal. This dataset is illustrative of the problems and chal-
lenges that arise in real world modelling; sparsely distributed data and highly correlated
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inputs. The raw dataset consists of ten input variables and 290 data pairs covering al-
loy composition and thermomechanical processing information. The ten input variables
were; final gauge (FG), Cu, Fe, Mg, Mn, Si (all in weight percent), cast slab length (SL),
solution treatment time (STT), percentage stretch (%st.) and reduction-ratio (RR).

6.3.1 Bayesian Neural Network with Evidence Framework

The Bayesian MLP network was trained in the same manner as it was for the artificial
dataset. Figure 6.5 shows the variation of training and test set errors for increasing
numbers of hidden nodes. The optimal network structure was determined to have seven
hidden nodes since this corresponds to the lowest error on the test set.
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Figure 6.5: Variation of mean training and test MSE for a Bayesian MLP trained
with varying numbers of hidden nodes.

Table 6.25 shows the mean ARD hyperparameter values (and associated standard devi-
ation over the ten datasets) indicating the influence of each variable on the output for
the optimal model structure, and Table 6.26 shows the ranked selection of each input
variable for each of the ten models trained. From the values quoted final gauge (FG),
silicon (Si), percentage stretch (%st.) and slab length (SL) exhibit the largest values.

FG Cu Fe Mg Mn Si SL STT %st. RR
α−1 0.006 0.34 0.38 0.27 0.44 1.25 0.22 5.02 0.12 0.11
σα−1 0.009 0.37 0.32 0.79 0.85 0.86 0.48 6.15 0.15 0.18

Table 6.25: Commercial Dataset: Mean ARD Hyperparameter values for seven hidden
nodes using the evidence framework.

6.3.2 Bayesian Neural Network with Variational Learning

A Bayesian neural network with ARD was trained using the variational learning frame-
work described in Section 3.7.8. Table 6.27 gives the mean and associated standard
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Input variables
Dataset FG Cu Fe Mg Mn Si SL STT %st. RR

1 4th - - - - 1st 2nd - 3rd -
2 2nd - - - - 1st 4th 5th 3rd 6th

3 5th - - 3rd 6th 1st 2nd - 4th -
4 - - - 1st 4th 2nd 3rd - 5th 6th

5 - - 3rd - - 1st - - 2nd 4th

6 - - - - - 1st 2nd - 3rd 4th

7 5th - - 4th - 2nd 1st - 3rd -
8 3rd - - - - 2nd 1st - - -
9 5th - - 4th - 1st 2nd - 3rd -
10 2nd 5th 7th - - 1st 4th - 3rd 6th

Table 6.26: Commercial Dataset: Ranked importance of the input variables.

deviation for the ARD hyperparameters, whilst Table 6.28 gives the ranked importance
of the input variables.

FG Cu Fe Mg Mn Si SL STT %st. RR
α−1(×10−4) 1.63 0.99 0.98 0.96 0.09 4.43 0.001 0.001 0.04 0.009
σα−1(×10−3) 0.03 0.009 0.007 0.002 0.001 0.68 0.003 0.004 0.008 0.002

Table 6.27: Commercial Dataset: Mean and associated standard deviation ARD
Hyperparameter values for seven hidden nodes using variational leaning.

Input variables
Dataset FG Cu Fe Mg Mn Si SL STT %st. RR

1 1st - - - 5th 3rd - 4th 2nd -
2 2nd - 6th - - 3rd - 4th 1st 5th

3 2nd - - - - 3rd - 4th 1st 5th

4 2nd - 5th - 6th 3rd - 4th 1st -
5 1st - - - - 3rd - 4th 2th 5th

6 1st - 5th - 7th 3rd - 4th 2nd 6th

7 1st - 6th - - 3rd - 4th 2nd 5th

8 2nd - 5th - - 3rd - 4th 1st 6th

9 2nd - 5th - - 3rd - - 1st 4th

10 1st - 3rd - - - - 4th 2nd -

Table 6.28: Commercial Dataset: Ranked importance of the input variables.

6.3.3 Bayesian Neural Network with MCMC Sampling

The evaluation of the Bayesian neural network with ARD was trained in a manner
similar to that used in the evidence framework. Hybrid Monte Carlo updates for the
network parameters were alternated with Gibbs sampling updates for the hyperparam-
eters. Table 6.29 gives the mean and the associated standard deviation values for the
ARD hyperparameters associated with each input variable, whilst Table 6.30 gives the
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ranked importance of the input variables. From these tables it is evident that the net-
work is giving the most influence to silicon (Si) concentration, final gauge (FG) and
the iron (Fe) concentration. Figure 6.1 shows the convergence of energy with increasing
number of iterations.

FG Cu Fe Mg Mn Si SL STT %st. RR
α−1 34.07 1.28 25.74 10.78 11.80 26.81 0.26 0.52 6.80 2.55
σα−1 54.65 2.92 33.05 28.12 24.45 35.23 0.35 1.39 9.35 6.73

Table 6.29: Commercial Dataset: Mean and associated standard deviation ARD
Hyperparameter values for seven hidden nodes when using MCMC sampling.

Input variables
Dataset FG Cu Fe Mg Mn Si SL STT %st. RR

1 1st - - 2nd - 5th - 4th - 3rd

2 1st - 2nd - 3rd 5th - - 4th -
3 6th 5th 3rd - - 1st - - 4th 2nd

4 4th - 1st - - 2nd - - 3rd -
5 1st - 2nd 6th - - - 4th 3rd 5th

6 4th - 3rd - 2nd 1st - - 5th -
7 2nd - 1st - 4th - - - - 3rd

8 - 4th 5th 2nd 3rd 1st - - - 6th

9 3rd - - - 4th 1st - - 2nd -
10 2nd - - 4th - 1st - - 3rd -

Table 6.30: Commercial Dataset: Ranked importance of the input variables for a
Bayesian Neural Network trained using MCMC sampling on the randomly partitioned

commercial datasets.

6.3.4 ARD Gaussian Process Model

A Gaussian process model was trained on the commercial dataset, using the ARD co-
variance function described in Chapter 4. Table 6.31 gives the mean and the associated
standard deviation values for the ARD hyperparameters associated with each input vari-
able, whilst Table 6.32 gives the ranked importance of the input variables. From these
tables the input variables rooms, distance to employment centres, access to radial high-
ways, property tax, and the percentage of lower status in the population were selected
as being important inputs.

FG Cu Fe Mg Mn Si SL STT %st. RR
α 1.89 2.39 3.34 10.27 1.55 36.37 0.15 22.44 1.67 12.35
σα 0.88 2.79 1.95 6.80 1.07 12.43 0.14 15.80 0.42 5.41

Table 6.31: Commerical Dataset: Mean and associated standard deviation using ARD
Gaussian process model.
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(a) Commercial Dataset 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1020

1040

1060

1080

1100

1120

1140

Iterations

E
ne

rg
y
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(c) Commercial Dataset 3
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(d) Commercial Dataset 4
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(e) Commercial Dataset 5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
960

980

1000

1020

1040

1060

1080

1100

1120

1140

Iterations

E
ne

rg
y

(f) Commercial Dataset 6
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(g) Commercial Dataset 7
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(h) Commercial Dataset 8
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(i) Commercial Dataset 9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1020

1040

1060

1080

1100

1120

1140

Iterations

E
ne

rg
y

(j) Commercial Dataset 10

Figure 6.6: Commercial Dataset: Energy Convergence for a Bayesian Neural Network
trained using MCMC sampling on the randomly partitioned commercial datasets.

6.3.5 Sparse Kernel Support Vector Machines

The SVM based SUPANOVA technique was applied to the ten input materials dataset, of
the possible 1024 different terms in the full ANOVA expansion, only 12 terms were chosen
as being significant. The full selection of terms is given in Table 6.33. The univariate
terms selected were the bias, Mg, Si, STT, %st., the bivariate terms were FG⊗Mg,
FG⊗RR, Cu⊗Si, Fe⊗Si, Mn⊗SL, Si⊗RR, and the trivariates terms FG⊗Cu⊗Si and
Fe⊗Si⊗%.st. Examples of these are illustrated in Figure 6.7. Table 6.33 shows the
stability of these terms across the ten different data partitions.
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Input variables
Dataset FG Cu Fe Mg Mn Si SL STT %st. RR

1 - - 5th 3rd - 1st - 2nd - 4th

2 - - 5th 4th - 1st - 2nd 6th 3rd

3 - 4th - 2nd - 3rd - 1st - 5th

4 - - 5th 4th - 1st - 3rd - 2nd

5 7th 6th 5th 4th - 1st - 2nd - 3rd

6 - - 5th 4th - 1st 6th 3rd - 2nd

7 6th - 5th 4th - 1st - 3rd 7th 2nd

8 6th - 5th 4th - 1st - 3rd - 2nd

9 7th 6th 5th 4th - 1st - 2nd - 3rd

10 6th 5th - 4th - 2nd - 1st 7th 3rd

Table 6.32: Commercial Dataset: Ranked importance of the input variables when
using an ARD Gaussian process model.

Dataset
Components 1 2 3 4 5 6 7 8 9 10

Cu − × × − − − − − − ×
Mg × − − × × × × × × −
Si × × × × × × × × × ×

STT × × × × × × × × × ×
%st. × × − × × − × × × ×

FG⊗Mg × × × × × × × × × ×
FG⊗%st. − × × × × − × × × ×
FG⊗RR × × × × × × × × × ×
Cu⊗Si × × × × × × × × × ×
Fe⊗Si × × × × × × × × × −

Mn⊗SL × × − × × − × × × −
Si⊗RR × × − × × − × × × −

FG⊗Cu⊗Si × × × × × × × × × ×
FG⊗Mg⊗%st. − − − − − − − − × −
Cu⊗Mg⊗%st. − − − − − − − − × −
Fe⊗Si⊗%st. × × − × × − × × × ×
Fe⊗Si⊗RR − − × − × × − − − ×
Fe⊗SL⊗RR − × − − − − − − × −

Fe⊗Si⊗SL⊗RR − − − − − − × − − −

Table 6.33: Commercial Dataset: Input Selection via ANOVA decomposition in a
Support Vector Machine.

6.3.6 Commercial Dataset: BISKIT Evaluation

To assess the performance of the BISKIT algorithm on another real world modelling
problem, the algorithm was run on the commercial dataset. As with the AMPG and
Boston house price problems, given the high computational cost associated with the
BISKIT algorithm (in particular the inversion of the kernel matrix as part of the hyper-
parameter reestimation described in Chapter 5), the final hyperparameter values from
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(c) Trivariate interaction term

Figure 6.7: Commecial Dataset: Examples of univariate, bivariate and trivariate
interaction terms obtained from SUPANOVA applied to the commerical materials

dataset.

the SUPANOVA algorithm were used as starting values for the BISKIT algorithm. Ta-
ble 6.34 gives the mean and the associated standard deviation for the chosen terms,
whilst Table 6.35 gives the ranked importance of the ANOVA terms.

Si RR FG⊗Mg FG⊗ Si Cu⊗ Si Cu⊗ STT Si⊗RR
n 0.35 2.15 1.58 0.43 0.42 1.00 1.39
σn 0.15 2.31 1.51 0.09 0.08 0.007 0.73

Table 6.34: Commerical Dataset: Mean and associated standard deviation using the
BISKIT algorithm.

Across the ten random data partitions on which the BISKIT algorithm was run, the
algorithm is able to distinguish between relevant and irrelevant inputs.
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Dataset
Components 1 2 3 4 5 6 7 8 9 10

Si 7th 6th 7th 6th 7th − 6th 2nd 6th 2nd

RR 2nd 1st 1st 2nd 2nd 1st 1st 1st 2nd 1st

FG⊗Mg 3rd 3rd 3rd 5th 3rd 2nd 4th 3rd 4th 3rd

FG⊗ Si 5th 5th 6th 4th 5th 6th 7th 4th 7th 4th

Cu⊗ Si 6th 7th 5th 7th 6th 5th 5th 6th 3rd 6th

Cu⊗ STT 1st 2nd 2nd 3rd 3rd 3rd 3rd 5th 5th 5th

Si⊗RR 4th 4th 4th 1st 1st 4th 2nd 7th 1st 7th

Table 6.35: Commerical Dataset: Ranked importance of the input variables when
using the BISKIT algorithm for ANOVA hyperparameter determination.

6.4 Computational Complexity of Leaning Real Data

A number of interpretable learning algorithms have been applied to ”real-world” data-
sets. A discussion of the computational complexity of these methods is of paramount
interest for these techniques to be widely applicable. The principle disadvantage of the
evidence framework is in the computational complexity of the training phase. A key
component to this framework is the evaluation and storage of the Hessian matrix. The
Hessian is required for the computation of error bars on the network predictions, and
also as part of the hyperparameter determination approach. To repeatedly compute and
invert the Hessian matrix requires O(N2) and O(N3) complexity respectively. For the
largest “real-world” dataset considered in this chapter, the Boston house price dataset
(that consisted of twelve input variables), this makes training considerably slow. The
computational effort for the AMPG dataset, that only contained six input variables, was
lower.

The McBISKIT algorithm applies MCMC to determine the ARD hyperparameters in a
similar manner to that described in chapter 5. It consists of choosing N samples in an
M -dimensional space resulting in an error term that decreases as N−1/2. However, as
(MacKay, 1999a) observes the MCMC approach can be considered to be the most com-
putationally demanding hyperparameter determination method. As part of an MCMC
implementation, it is important to determine how long the simulations should be run
for, and to discard a number of initial ’burn-in’ iterations (Gilks et al., 1996). Saving all
simulations from an MCMC run can consume a large amount of storage, especially when
consecutive iterations are highly correlated necessitating a long simulation. Raftery and
Lewis (1996) have proposed an alternative method whereby they only save every kth

iteration (k > 1), a process they refer to as thinning the chain. The advantage of this
approach is that it reduces the amount of data often saved from an MCMC run. How-
ever, a limitation of this approach is that it requires the value of k to be chosen in
advance, as such for chains that do not ’mix’ well (see Section 3.7.7.1) this approach
may not alleviate the computational expense.
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The computational complexity of variational learning can be considered to be a hybrid
of both the evidence and the MCMC framework. The BISKIT algorithm developed
in chapter 5, has the additional disadvantage that in addition to running time, the
algorithm requires the inversion of a full kernel matrix which is an order N3 process.
An analogy can be drawn between the number of samples required to minimise the
KL-divergence, and those needed to converge to an acceptable solution in the MCMC
framework. Minka (2001) and Lawrence (2000) argue that the evaluation of Jensen’s
inequality in variational Bayesian learning is also computationally demanding. However,
for the SUPANOVA algorithm, in the quadratic loss case the solution for α∗ is given
by a matrix inversion, and for c∗ by a bound constrained quadratic program. In the ε-
insensitive case the solution for α∗ is given by a box constrained quadratic program, and
for c∗ by a bound constrained linear program with linear constraints. Consequently, they
can all be solved readily using a standard quadratic programming optimiser (Mészáros,
1998).
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Conclusions

Advanced inductive methods are increasingly being used for modelling tasks, however,
they often overlook the need to provide an interpretable solution. In the last few years
many researchers have tried to address this shortcoming from a number of different an-
gles, focusing primarily on selecting inputs which are relevant in predicting the output.
An alternative approach, which is advocated in this thesis, is to decompose the model
structure into smaller more interpretable portions. Transparent data modelling meth-
ods are in demand because they allow a model to be assessed not only on predictive
accuracy, but also to be validated and interpreted using expert knowledge. This the-
sis has developed an interpretable modelling algorithm based on an additive ANOVA
spline model capable of deployment within a kernel method. This concluding chapter
summarises the work presented in this thesis and suggests some future directions.

7.1 Summary of Work

The aim of this thesis has been to explore the construction of data driven models that are
mathematically well founded and yet have the flexibility to model complex phenomena.
An important component of this has been to provide an interpretable model allowing
structural information to be derived from the model assisting in model selection and
model validation. This work has been concerned with the parameterisation of the models
being able to perform a continuous search over a large area of the model hypothesis space,
and that the parameters of the model should be interpretable, both to facilitate the
incorporation of prior beliefs and to allow a deeper understanding of the data generating
mechanism. This thesis compares a number of interpretable modelling methods and
benchmarks them on artificial and ‘real world’ modelling problems. The question we are
now concerned with is, has interpretable data modelling lived up to our expectations?

In chapter 1 the interpretable data modelling problem was introduced, and its applica-
bility to a wide range of problems was motivated. We argued that interpretable data
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modelling algorithms are intuitively appealing because they provide a confidence mea-
sure in a model by allowing the model structure to be assessed using expert or prior
knowledge. They also provide a framework into which expert knowledge can be easily
integrated.

Having motivated the need for interpretable data models, chapter 2 introduced the
problem of learning from data. Since the learning problem is inherently ill-posed, the
concepts of model and structural regularisation were introduced which try to convert
the problem to one that is well posed. The features that aid in introducing model
interpretability were also reviewed. The limitations of a number of existing interpretable
modelling algorithms were also discussed most notably their convergence to local minima
and their ease of interpretation.

As Gibbs (1997) observes the easiest way of introducing interpretability into a learning
algorithm is to use learning algorithms where the parameters and the related hyper-
parameters have a clearly interpretable meaning. In chapter 3 Bayesian inference was
introduced. The Bayesian learning approach is based upon the expression of this knowl-
edge in terms of a probability distribution. In general, these probabilities can be inter-
preted as expression of our degrees of belief in the various possibilities. Interpretable
modelling is of particular interest in Bayesian learning since the knowledge derived from
a model structure can aid in the assignment of Bayesian prior distributions.

The Bayesian method of Automatic Relevance Determination (ARD) has been proposed
by MacKay (1994); Neal (1995) as a method of introducing interpretability into neural
network models which are regarded as being black-box models (Ljung, 1987). The use of
Bayesian methods, their application is not always straightforward. The problem centres
around the mathematical complexity that often occurs in Bayesian approaches. Ap-
proximations often have to be made to avoid the intractable high dimensional integrals
that typically exist. In chapter 3, the three current approximation methods for dealing
with such high-dimensional integrals are reviewed and their performance with respect
to model interpretability, via ARD, was illustrated on two synthetic problems. The
datasets which were chosen illustrate two typical problems that occur when modelling
“real world” data, i.e. learning in the presence of highly correlated input variables and
learning in the presence of irrelevant inputs. The performance of each of the approxima-
tion methods on the synthetic problems was evaluated, and discussed the applicability
of their inherent assumptions.

Kernel based methods have received a large amount of attention due to a number of
attractive features and promising empirical performance on a range of datasets. These
methods were reviewed in chapter 4. The solution to a kernel method is a weighted
sum of kernel functions. A consequence of this is that the resulting model structure is
opaque due to the large number of terms that typically exist in this expansion. This
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thesis has been concerned with addressing this issue by introducing interpretability into
kernel based methods. Chapter 5 highlighted the development of three novel algorithms.

ANOVA Splines are an attractive choice for modelling (Wahba, 1990a) due to their
ability to approximate arbitrary functions. In this work we motivate a sparse subset of
terms is selected by introducing a separate hyperparameter (or regularisation coefficient)
for every term of a complete ANOVA expansion. A number of approaches exist within
the signal processing community to develop a sparse model structure from a complex
model structure. In chapter 5 these methods are reviewed, and their applicability to
kernel methods is evaluated. A new algorithm is developed which combines the repre-
sentational advantage of a sparse ANOVA decomposition, with the good generalisation
ability of a kernel machine. It achieves this by employing two forms of regularisation: a
1-norm based structural regulariser to enforce transparency, and a 2-norm based regu-
lariser to control smoothness. The resulting model structure can be visualised showing
the overall effects of different inputs, their interactions, and the strength of the interac-
tions. Using the ideas of Bayesian hyperparameter determination described in chapter
3, ANOVA kernel re-estimation formulae are derived using variational learning giving
rise to a novel algorithm (Bayesian Interpretable Sparse Kernel Inference Technique
(BISKIT). A limitation of the variational learning approach is that the factorisation
assumption over parameters and hyperparameters is often incorrect. For the BISKIT
algorithm we show that since the parameters and hyperparameters are independent this
factorisation assumption holds and allows the formulation of separate prior distribu-
tions. Exact sampling using Monte Carlo sampling is also used to determine the hyper-
parameters associated with the ANOVA kernel giving rise to the Monte-Carlo BISKIT
(McBISKIT) algorithm. The algorithms were evaluted on the same datasets as the ARD
approach in chapter 3.

For model interpretability to be of use in a wider sense, in chapter 6 we demonstrated the
performance of all the advanced interpretable modelling techniques on three datasets.
In conclusion, this thesis has shown that interpretable modelling algorithms can be used
to provide structural information about a constructed model, exploiting prior knowledge
and assisting in model selection and model validation.

7.2 Future Work

A large part of this thesis has been concerned with the description and illustration of
alternative mathematical framework to allow incorporation of interpretability into data
models. Whilst some progress has been made in describing the theoretical and practical
aspects of interpretable modelling there is much scope for further investigation. In
this section some aspects of the current work which could form the basis for additional
investigation are discussed.
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7.2.1 Computational Requirements

The major limitations of classical modelling algorithms, such as neural networks, are
their convergence to local minima, sensitivity to parameter initialisation and lack of
parameter interpretability. An important component of any learning algorithm is its
computational complexity.

A limitation of the ANOVA spline approach used in this thesis is that there are a large
number of ANOVA components (2F , where F is the number of inputs) that need to be
estimated from the data. The examples in this thesis used datasets that are restricted
considerably in size. The largest dataset used for training was that for the Boston house
price with twelve inputs. In many real world applications, for example bioinformatics
problems, there can be many hundreds or thousands of input variables. This then makes
the interpretable modelling approaches developed in this thesis infeasible.

In the SUPANOVA approach a quadratic programming routine is employed to solve
optimisation problem. An interesting approach would be to use the Sequential Minimal
Optimisation (SMO) approach developed by (Platt, 1998) and compare performance.
The motivations for approximation strategies, such as SMO, was for application to very
large datasets and hence it will be an interesting avenue of further research to compare
the performance of this approach.

In the BISKIT algorithm a complete ANOVA matrix of dimensionality N × N (where
N is the number of data points), needs to be inverted many times. This is prohibitive
even for small datasets and hence methods such as the Nystroem method developed by
Williams and Seeger (2000) should be employed. In McBISKIT despite MCMC sampling
being independent of the dimensionality of the sample space, it does affect convergence.
Techniques such as reversible jump MCMC may be attractive and work by Brooks has
even established a convergence diagnostic and tells you what proposal distribution to
choose. Further developments on MCMC are being made in the statistics community
and these ideas can be exploited in machine learning.

7.2.2 Alternative Kernel Functions

Many of the ideas for model interpretability expressed in this thesis are drawn from
the work of splines. When dealing with interpretability within kernel methods only
two kernel functions (namely the ’ARD kernel’ used extensively in Gaussian processes)
and the ANOVA kernel used in this thesis have been proposed. An interesting area of
research would be to find other interpretable kernels. Much work has been done in the
statistics community on learning from data, and it is wholely possible that alternative
kernel functions have been proposed. An alternative approach which is being considered
by (Cristianini and Shawe-Taylor, 2000) is to develop kernels from the data that is
available.
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7.2.3 Further Applications

In this thesis we have illustrated the performance of interpretable modelling algorithms
with respect to some interesting applications. However, these were by no means ex-
haustive. An interesting avenue of further research would be to consider application of
the interpretable modelling algorithms to a wider range of problems. As the volume of
data available on the internet continues to increase, the ability to perform feature se-
lection and to develop interpretable models will become more attractive. As Cristianini
and Shawe-Taylor (2000) observe large collections of digital images are becoming freely
available over the internet, or in specialised databases. Furthermore, the generation
of images has become extremely cheap and is exploited in several applications. The
ability to extract information from medical images for use in medical diagnosis is an
attractive area of research. Given the vast quantity of medical information that exists,
collaborations with medical researchers will be needed to evaluate the performance of
the interpretable modelling approaches.

7.2.4 Committees of Interpretable Models

There has been considerable interest recently in voting methods for pattern recognition,
which predict the label of a particular example using a weighted vote over a set of base
classifiers. For example, AdaBoost (Freund and Schapire, 1997) and Bagging (Breiman,
1996) have been found to give significant performance improvements over algorithms for
the corresponding base classifiers (Freund and Schapire, 1996). Recent work by (Mason
et al., 2000) has extended some of these ideas to an SVM resulting in an algorithm they
term MarginBoost. An interesting avenue of further research would be to develop these
ideas in an interpretable modelling framework. Given a set of interpretable models an
AdaBoost or Bagging algorithm could be constructed from these models which results in
a model that has improved interpretability over the individual base interpretable models.
Such work would require expert prior knowledge to assess whether the AdaBoost or Bag-
ging generated interpretable model was more accurate than any of the base interpretable
models.

A related approach which could also be employed in a similar framework to that de-
scribed above is to use the Bayesian Committee Machine (BCM) of (Tresp, 2000). The
Bayesian committee machine (BCM) is a novel approach to combining estimators which
were trained on different data sets. The BCM can be applied to the combination of
Gaussian process regression and related systems such as regularization networks and
smoothing splines for which the degrees of freedom increase with the number of training
data. Combination of interpretable models within this framework may provide addi-
tional structural information.
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In this thesis, we have developed and evaluated a set of interpretable learning algo-
rithms that can be applied to many diverse problems. There still remain a number of
open problems relating to improving the convergence and computational requirements of
interpretable modelling algorithms that need to be addressed for interpretable modelling
to become more effective in a wide variety of applications.



Appendix A

Functional Analysis

The following definitions are used extensively in the kernel methods community and can
be found in any book on functional analysis. They are reviewed here for the sake of
completeness.

Definition A.1 (Positive Definiteness). A matrix A ∈ RN×N is positive definite if
the quadratic form xT Ax > 0.

Theorem A.2. If A ∈ RN×N is positive definite and X ∈ RN×k has rank k, then
B = XT AX ∈ Rk×k is also positive definite.

Corollary A.3. If A is positive definite then all its principal submatrices are positive
definite. In particular all the diagonal entries are positive.

Corollary A.4. If A is positive definite then the factorisation A = LDMT exists and
D = diag(d1, . . . , dN ) has positive diagonal entries.

Definition A.5 (lp-norms). If we assume X = RN the lp-norm can be defined as,

‖x‖lNp
def= ‖x‖p =


(∑N

i=1 |xi|p
)1/p

if 0 < p <∞
maxi=1,...,N |xi| if p =∞

Definition A.6 (Inner Product Space). Given a vector space X , an inner product
space X is defined by the tuple (X , 〈·, ·〉X ), where 〈·, ·〉X : X × X 7→ R is called an
inner product and satisfies the following properties: for all x,y,z ∈ X and c, d ∈ R the
following quantities are defined,

〈x,x〉X ≥ 0 and 〈x,x〉X = 0 ⇔ x = 0,

〈cx + dy,z〉X = c〈x,z〉X + d〈y,z〉X ,

〈x,y〉X = 〈y,x〉X . (A.1)

It therefore follows that each inner product space is a normed space by ‖x‖X =
√
〈x,x〉X .

If X = RN the Euclidean inner product can be defined by 〈x,y〉RN
def= xT y =

∑N
i=1 xiyi
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Definition A.7 (Hilbert Space). A Hilbert Space X is a complete separable inner
product space. A space is called separable if there exists a countable subset X ⊆ X ,
such that every element of X is the limit of a sequence of elements of X. A space is
called complete if each Cauchy sequence converges.

Definition A.8 (Reproducing Kernel Hilbert Space).

Consider a Mercer kernel k, and a probability space P. From Mercer’s theorem k can
be expanded into,

k(x,z) =
∞∑
i=1

λiψi(x)ψi(z) ∀i :
∫

x
|ψi(x)|2dµ(x) = 1 (A.2)

Suppose, we consider the space F of all linear functions over mapped input points from
X ,

fa ∈ F ⇔ fa(x) =
∞∑
i=1

aiψi(x) (A.3)

where the inner product in F shall be given by,

〈fa, fb〉F =
∞∑
i=1

aibi
λi

(A.4)

Let w = (λ1ψ1(z), . . . , λiψi(z))′ be the image of an input point z. Since,

fw(·) =
∞∑
i=1

λiψi(z)ψi(·) = k(z, ·) (A.5)

we see that k(z, ·) ∈ F . As a consequence, functions of the form,

f(x) =
m∑

i=1

αik(xi,x) m ∈ N,xi ∈ X ,α ∈ Rm (A.6)

are in the space F . If we take the inner product of a function fa ∈ F with k(z, ·),z ∈ X
the following can be obtained,

〈fa, k(z, ·)〉F =
∞∑
i=1

aiλiψi(z)
λi

=
∞∑
i=1

aiψi(z) = fa(z) (A.7)

known as the reproducing property of the kernel k. This also implies that,

F =

{
m∑

i=1

αik(xi, ·) : m ∈ N, (x1, . . . , xm) ∈ Xm, αi ∈ R

}
(A.8)

since f⊥F implies that for all z ∈ X , 〈f, k(z, ·)〉F = 0 = f(z) implying f = 0. For two
functions f(·) =

∑p
i=1 αik(xi, ·) and g(·) =

∑q
j=1 βjk(zj , ·) in F the inner product is
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given by,

〈f, g〉F =

〈
p∑

i=1

αik(xi, ·),
q∑

j=1

βjk(zj , ·)

〉
F

=
p∑

i=1

αi

q∑
j=1

βj〈k(xi, ·), k(zj , ·)〉F

=
p∑

i=1

αi

q∑
j=1

βjk(zj ,xi) =
q∑

j=1

βj

p∑
i=1

αik(xi,zj)

=
p∑

i=1

αig(xi) =
q∑

j=1

βjf(zj), (A.9)

showing that the definition of the inner product is independent of the particular repre-
sentation of the functions. By the reproducing property, Equation A.7, we know that
the evaluation functional Tx[f ] = 〈f, k(x, ·)〉F = f(x) is linear and bounded. These are
the defining properties of a reproducing kernel Hilbert space (RKHS).
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