Wireless Video Communications: Second to Third Generation Systems and Beyond

Contents

Part I: Transmission Issues

1      Information Theory 3
1.1      Issues in Information Theory 3
1.2      AWGN Channel 7
1.2.1      Background 7
1.2.2      Practical Gaussian Channels 8
1.2.3      Gaussian Noise 8
1.3      Information of a Source 11
1.4      Entropy 12
1.4.1      Maximum Entropy of a Binary Source 13
1.4.2      Maximum Entropy of a $q$-ary Source 15
1.5      Source Coding 15
1.5.1      Shannon-Fano Coding 16
1.5.2      Huffman Coding 18
1.6      Entropy of Sources Exhibiting Memory 22
1.6.1      Two-State Markov Model for Discrete Sources Exhibiting Memory 22
1.6.2      $N$-State Markov Model for Discrete Sources Exhibiting Memory 24
1.7      Examples 25
1.7.1      Two-State Markov Model Example 25
1.7.2      Four-State Markov Model for a 2-Bit Quantizer 27
1.8      Generating Model Sources 28
1.8.1      Autoregressive Model 28
1.8.2      AR Model Properties 29
1.8.3      First-Order Markov Model 30
1.9      Run-Length Coding 31
1.9.1      Run-Length Coding Principle 31
1.9.2      Run-Length Coding Compression Ratio 32
1.10      Transmission via Discrete Channels 34
1.10.1      Binary Symmetric Channel Example 34
1.10.2      Bayes' Rule 38
1.10.3      Mutual Information 39
1.10.4      Mutual Information Example 40
1.10.5      Information Loss via Imperfect Channels 42
1.10.6      Error Entropy via Imperfect Channels 43
1.11      Capacity of Discrete Channels 49
1.12      Shannon's Channe- Coding Theorem 53
1.13      Capacity of Continuous Channels 55
1.13.1      Practical Evaluation of the Shannon-Hartley Law 58
1.13.2      Ideal Communications System 62
1.14      Shannon's Message for Wireless Channels 62
1.15      Summary and Conclusions 65
2      The Propagation Environment 67
2.1      The Cellular Concept 67
2.2      Radio Wave Propagation 71
2.2.1      Background 71
2.2.2      Narrowband Fading Channels 73
2.2.3      Propagation Path-loss Law 73
2.2.4      Slow-Fading Statistics 76
2.2.5      Fast-Fading Statistics 77
2.2.6      Doppler Spectrum 83
2.2.7      Simulation of Narrowband Fading Channels 85
2.2.7.1      Frequency-Domain Fading Simulation 86
2.2.7.2      Time-Domain Fading Simulation 86
2.2.7.3      Box-M\"uller Algorithm of AWGN Generation 87
2.2.8      Wideband Channels 87
2.2.8.1      Modeling of Wideband Channels 87
2.3      Summary and Conclusions 92
3      Convolutional Channel Coding 93
3.1      Brief Channel Coding History 93
3.2      Convolutional Encoding 94
3.3      State and Trellis Transitions 96
3.4      The Viterbi Algorithm 98
3.4.1      Error-Free Hard-Decision Viterbi Decoding 98
3.4.2      Erroneous Hard-Decision Viterbi Decoding 101
3.4.3      Error-Free Soft-Decision Viterbi Decoding 104
3.5      Summary and Conclusions 106
4      Block-Based Channel Coding 107
4.1      Introduction 107
4.2      Finite Fields 108
4.2.1      Definitions 108
4.2.2      Galois Field Construction 111
4.2.3      Galois Field Arithmetic 113
4.3      RS and BCH Codes 114
4.3.1      Definitions 114
4.3.2      RS Encoding 116
4.3.3      RS Encoding Example 118
4.3.4      Circuits for Cyclic Encoders 122
4.3.4.1      Polynomial Multiplication 122
4.3.4.2      Shift-Register Encoding Example 123
4.3.5      RS Decoding 126
4.3.5.1      Formulation of the Key Equations 126
4.3.5.2      Peterson-Gorenstein-Zierler Decoder 130
4.3.5.3      PGZ Decoding Example 133
4.3.5.4      Berlekamp-Massey Algorithm 138
4.3.5.5      Berlekamp-Massey Decoding Example 144
4.3.5.6      Forney Algorithm 148
4.3.5.7      Forney Algorithm Example 151
4.3.5.8      Error Evaluator Polynomial Computation 153
4.4      RS and BCH Codec Performance 156
4.5      Summary and Conclusions 158
5      Modulation and Transmission 161
5.1      Modulation Issues 161
5.1.1      Introduction 161
5.1.2      Quadrature Amplitude Modulation 164
5.1.2.1      Background 164
5.1.2.2      Modem Schematic 164
5.1.2.2.1      Gray Mapping and Phasor Constellation 167
5.1.2.2.2      Nyquist Filtering 168
5.1.2.2.3      Modulation and Demodulation 170
5.1.2.2.4      Data Recovery 171
5.1.2.3      QAM Constellations 172
5.1.2.4      16QAM BER versus SNR Performance over AWGN Channels 175
5.1.2.4.1      Decision Theory 175
5.1.2.4.2      QAM Modulation and Transmission 177
5.1.2.4.3      16QAM Demodulation 178
5.1.2.5      Reference-Assisted Coherent QAM for Fading Channels 181
5.1.2.5.1      PSAM System Description 181
5.1.2.5.2      Channel Gain Estimation in PSAM 183
5.1.2.5.3      PSAM Performance 185
5.1.2.6      Differentially Detected QAM 186
5.1.3      Adaptive Modulation 190
5.1.3.1      Background to Adaptive Modulation 190
5.1.3.2      Optimization of Adaptive Modems 193
5.1.3.3      Adaptive Modulation Performance 195
5.1.3.4      Equalization Techniques 197
5.2      Orthogonal Frequency Division Multiplexing 197
5.3      Packet Reservation Multiple Access 201
5.4      Flexible Transceiver Architecture 202
5.5      Summary and Conclusions 204
6      Video Traffic Modeling and Multiple Access 205
6.1      Video Traffic Modeling 205
6.1.1      Motivation and Background 205
6.1.2      Markov Modeling of Video Sources 207
6.1.3      Reduced-Length Poisson Cycles 210
6.1.4      Video Model Matching 215
6.2      Multiple Access 223
6.2.1      Background 223
6.2.2      Classification of Multiple Access Techniques 225
6.2.3      Multiframe Packet Reservation Multiple Access 227
6.2.3.1      Performance of MF-PRMA\p@index {MF-PRMA 228
6.2.4      Statistical Packet Assignment Multiple Access 237
6.2.4.1      Statistical Packet Assignment Principles 237
6.2.4.2      Performance of the SPAMA Protocol 242
6.3      Summary and Conclusions 243
7      Co-Channel Interference 247
7.1      Introduction 247
7.2      Co-Channel Interference factors 248
7.2.1      Effect of Fading 248
7.2.2      Cell Shapes 249
7.2.3      Position of Users and Interferers 250
7.3      Theoretical Signal-to-Interference Ratio 252
7.4      Simulation Parameters 255
7.5      Results for Multiple Interferers 258
7.5.1      SIR Profile of a Cell 258
7.5.2      Signal-to-Noise-Plus-Interference Ratio (SINR) 262
7.5.3      Channel Capacity 263
7.6      Results for a Single Interferer 269
7.6.1      Simple Model for SINR in a Single Interferer Situation 270
7.6.2      Effect of SIR and SNR on Error Rates 272
7.6.3      Time-Varying Effects of SIR and SINR 275
7.6.4      Effect of Interference on the H.263 Videophone System 280
7.7      Summary and Conclusions 284
8      Channel Allocation 287
8.1      Introduction 287
8.2      Overview of Channel Allocation 288
8.2.1      Fixed Channel Allocation 289
8.2.1.1      Channel Borrowing 291
8.2.1.2      Flexible Channel Allocation 292
8.2.2      Dynamic Channel Allocation 292
8.2.2.1      Centrally Controlled DCA Algorithms 294
8.2.2.2      Distributed DCA Algorithms 295
8.2.2.3      Locally distributed DCA algorithms 296
8.2.3      Hybrid Channel Allocation 297
8.2.4      The Effect of Handovers 298
8.2.5      The Effect of Transmission Power Control 299
8.3      Channel Allocation Simulation 299
8.3.1      The Mobile Radio Network Simulator, ``Netsim'' 299
8.3.1.1      Physical Layer Model 302
8.3.1.2      Shadow Fading Model 302
8.3.2      Channel Allocation Algorithms Investigated 304
8.3.2.1      Fixed Channel Allocation Algorithm 304
8.3.2.2      Distributed Dynamic Channel Allocation Algorithms 304
8.3.2.3      Locally Distributed Dynamic Channel Allocation Algorithms 306
8.3.3      Performance Metrics 306
8.3.4      Nonuniform Traffic Model 309
8.4      Performance Comparisons 310
8.4.1      System Parameters 310
8.4.2      Carried Traffic with Quality Constraints 311
8.4.3      Comparing the LOLIA with FCA 312
8.4.4      Effect of the ``Reuse Distance'' Constraint on the LOLIA and LOMIA DCA Algorithms 314
8.4.5      Comparison of the LOLIA and LOMIA with the LIA 317
8.4.6      Interference Threshold-Based Distributed DCA Algorithms 318
8.4.7      Performance Comparison of Fixed and Dynamic Channel Allocation Algorithms Using nonuniform Traffic Distributions 321
8.4.8      Effect of Shadow Fading on the FCA, LOLIA, and LOMIA 324
8.4.9      Effect of Shadow Fading Frequency and Standard Deviation on the LOLIA 325
8.4.10      Effect of Shadow Fading Standard Deviation on FCA and LOLIA 327
8.4.11      SINR Profile across Cell Area 329
8.4.12      Overview of Results 332
8.5      Summary and Conclusions 335
9      Second-Generation Mobile Systems 339
9.1      The Wireless Communications Scene 339
9.2      Global System for Mobile Communications --- GSM 342
9.2.1      Introduction to GSM 342
9.2.2      Overview of GSM 345
9.2.3      Logical and Physical Channels in GSM 346
9.2.4      Speech and Data Transmission in GSM 347
9.2.5      Transmission of Control Signals in GSM 351
9.2.6      Synchronization Issues in GSM 357
9.2.7      Gaussian Minimum Shift Keying in GSM 358
9.2.8      Wideband Channel Models in GSM 359
9.2.9      Adaptive Link Control in GSM 360
9.2.10      Discontinuous Transmission in GSM 363
9.2.11      Summary and Conclusions 363
10      Third-Generation CDMA Systems 365
10.1      Introduction 365
10.2      Basic CDMA System 366
10.2.1      Spread Spectrum Fundamentals 366
10.2.1.1      Frequency Hopping 367
10.2.1.2      Direct Sequence 368
10.2.2      The Effect of Multipath Channels 371
10.2.3      RAKE Receiver 374
10.2.4      Multiple Access 378
10.2.4.1      Down-Link Interference 379
10.2.4.2      Up-Link Interference 380
10.2.4.3      Gaussian Approximation 383
10.2.5      Spreading Codes 385
10.2.5.1      $m$-sequences 385
10.2.5.2      Gold Sequences 386
10.2.5.3      Extended $m$-sequences 387
10.2.6      Channel Estimation 387
10.2.6.1      Down-Link Pilot-Assisted Channel Estimation 388
10.2.6.2      Up-Link Pilot Symbol-Assisted Channel Estimation 389
10.2.6.3      Pilot Symbol-Assisted Decision-Directed Channel Estimation 390
10.2.7      Summary 392
10.3      Third-Generation Systems 392
10.3.1      Introduction 392
10.3.2      UMTS Terrestrial Radio Access 395
10.3.2.1      Characteristics of UTRA 395
10.3.2.2      Transport Channels 399
10.3.2.3      Physical Channels 400
10.3.2.3.1      Dedicated Physical Channels 401
10.3.2.3.2      Common Physical Channels 404
10.3.2.3.2.1      Common Physical Channels of the FDD Mode \\ [12pt] 404
10.3.2.3.2.2      Common Physical Channels of the TDD Mode \\ [12pt] 408
10.3.2.4      Service Multiplexing and Channel Coding in UTRA 410
10.3.2.4.1      CRC Attachment 411
10.3.2.4.2      Transport Block Concatenation 411
10.3.2.4.3      Channel-Coding 411
10.3.2.4.4      Radio Frame Padding 414
10.3.2.4.5      First Interleaving 414
10.3.2.4.6      Radio Frame Segmentation 414
10.3.2.4.7      Rate Matching 414
10.3.2.4.8      Discontinuous Transmission Indication 415
10.3.2.4.9      Transport Channel Multiplexing 415
10.3.2.4.10      Physical Channel Segmentation 415
10.3.2.4.11      Second Interleaving 415
10.3.2.4.12      Physical Channel Mapping 415
10.3.2.4.13      Mapping Several Multirate Services to the UL Dedicated Physical Channels in FDD Mode 416
10.3.2.4.14      Mapping of a 4.1 Kbps Data Service to the DL DPDCH in FDD Mode 417
10.3.2.4.15      Mapping Several Multirate Services to the UL Dedicated Physical Channels in TDD Mode 420
10.3.2.5      Variable-Rate and Multicode Transmission in UTRA 420
10.3.2.6      Spreading and Modulation 422
10.3.2.6.1      Orthogonal Variable Spreading Factor Codes 423
10.3.2.6.2      Up-Link Scrambling Codes 426
10.3.2.6.3      Down-Link Scrambling Codes 426
10.3.2.6.4      Up-Link Spreading and Modulation 426
10.3.2.6.5      Down-Link Spreading and Modulation 428
10.3.2.7      Random Access 429
10.3.2.7.1      Mobile-Initiated Physical Random Access Procedures 429
10.3.2.7.2      Common Packet Channel Access Procedures 430
10.3.2.8      Power Control 430
10.3.2.8.1      Closed-Loop Power Control in UTRA 430
10.3.2.8.2      Open-Loop Power Control in TDD Mode 431
10.3.2.9      Cell Identification 432
10.3.2.9.1      Cell Identification in the FDD Mode 432
10.3.2.9.2      Cell Identification in the TDD Mode 434
10.3.2.10      Handover 436
10.3.2.10.1      Intra-Frequency Handover or Soft Handover 436
10.3.2.10.2      Inter-Frequency Handover or Hard Handover 436
10.3.2.11      Intercell Time Synchronization in the UTRA TDD Mode 438
10.3.3      The cdma2000 Terrestrial Radio Access 439
10.3.3.1      Characteristics of cdma2000 439
10.3.3.2      Physical Channels in cdma2000 441
10.3.3.3      Service Multiplexing and Channel Coding 443
10.3.3.4      Spreading and Modulation 445
10.3.3.4.1      Down-Link Spreading and Modulation 446
10.3.3.4.2      Up-link Spreading and Modulation 447
10.3.3.5      Random Access 447
10.3.3.6      Handover 450
10.3.4      Performance-Enhancement Features 452
10.3.4.1      Down-Link Transmit Diversity Techniques 452
10.3.4.1.1      Space Time Block Coding-Based Transmit Diversity 452
10.3.4.1.2      Time-Switched Transmit Diversity 452
10.3.4.1.3      Closed-Loop Transmit Diversity 452
10.3.4.2      Adaptive Antennas 453
10.3.4.3      Multi-User Detection/Interference Cancellation 453
10.3.5      Summary of 3G Systems 454
10.4      Summary and Conclusions 455

Part II: Video Systems Based on Proprietary Video Codecs

11      Fractal Image Codecs 459
11.1      Fractal Principles 459
11.2      One-Dimensional Fractal Coding 462
11.2.1      Fractal Codec Design 465
11.2.2      Fractal Codec Performance 467
11.3      Error Sensitivity and Complexity 471
11.4      Summary and Conclusions 473
12      Very Low Bit-Rate DCT Codecs 475
12.1      Video Codec Outline 475
12.2      The Principle of Motion Compensation 477
12.2.1      Distance Measures 481
12.2.2      Motion Search Algorithms 482
12.2.2.1      Full or Exhaustive Motion Search 483
12.2.2.2      Gradient-Based Motion Estimation 484
12.2.2.3      Hierarchical or Tree Search 485
12.2.2.4      Subsampling Search 486
12.2.2.5      Post-Processing of Motion Vectors 487
12.2.2.6      Gain-Cost-Controlled Motion Compensation 487
12.2.3      Other Motion Estimation Techniques 489
12.2.3.1      Pel-Recursive Displacement Estimation 490
12.2.3.2      Grid Interpolation Techniques 490
12.2.3.3      MC Using Higher Order Transformations 490
12.2.3.4      MC in the Transform Domain 491
12.2.4      Conclusion 491
12.3      Transform Coding 492
12.3.1      One-Dimensional Transform Coding 492
12.3.2      Two-Dimensional Transform Coding 493
12.3.3      Quantizer Training for Single-Class DCT 496
12.3.4      Quantizer Training for Multiclass DCT 497
12.4      The Codec Outline 499
12.5      Initial Intra-Frame Coding 502
12.6      Gain-Controlled Motion Compensation 502
12.7      The MCER Active/Passive Concept 503
12.8      Partial Forced Update 504
12.9      The Gain/Cost-Controlled Inter-Frame Codec 506
12.9.1      Complexity Considerations and Reduction Techniques 508
12.10      The Bit-Allocation Strategy 509
12.11      Results 510
12.12      DCT Codec Performance under Erroneous Conditions 512
12.12.1      Bit Sensitivity 513
12.12.2      Bit Sensitivity of Codec I and II 515
12.13      DCT-Based low-Rate Video Transceivers 516
12.13.1      Choice of Modem 516
12.13.2      Source-Matched Transceiver 517
12.13.2.1      System 1 517
12.13.2.1.1      System Concept 517
12.13.2.1.2      Sensitivity-Matched Modulation 518
12.13.2.1.3      Source Sensitivity 518
12.13.2.1.4      Forward Error Correction 518
12.13.2.1.5      Transmission Format 519
12.13.2.2      System 2 520
12.13.2.2.1      Automatic Repeat Request 522
12.13.2.3      Systems 3--5 523
12.14      System Performance 524
12.14.1      Performance of System 1 524
12.14.2      Performance of System 2 527
12.14.2.1      FER Performance 527
12.14.2.2      Slot Occupancy Performance 529
12.14.2.3      PSNR Performance 530
12.14.3      Performance of Systems 3--5 531
12.15      Summary and Conclusions 535
13      VQ Codecs and Multimode Video Transceivers 537
13.1      Introduction 537
13.2      The Codebook Design 537
13.3      The Vector Quantizer Design 541
13.3.1      Mean and Shape Gain Vector Quantization 544
13.3.2      Adaptive Vector Quantization 546
13.3.3      Classified Vector Quantization 548
13.3.4      Algorithmic Complexity 549
13.4      Performance under Erroneous Conditions 550
13.4.1      Bit-Allocation Strategy 550
13.4.2      Bit Sensitivity 552
13.5      VQ-Based Low-Rate Video Transceivers 554
13.5.1      Choice of Modulation 554
13.5.2      Forward Error Correction 554
13.5.3      Architecture of System 1 555
13.5.4      Architecture of System 2 557
13.5.5      Architecture of Systems 3--6 558
13.6      System Performance 558
13.6.1      Simulation Environment 558
13.6.2      Performance of Systems 1 and 3 560
13.6.3      Performance of Systems 4 and 5 561
13.6.4      Performance of Systems 2 and 6 563
13.7      Summary and Conclusions 564
14      QT Codecs and Multimode Video Transceivers 567
14.1      Introduction 567
14.2      Quad-Tree Decomposition 568
14.3      Quad-Tree Intensity Match 571
14.3.1      Zero-Order Intensity Match 571
14.3.2      First-Order Intensity Match 573
14.3.3      Decomposition Algorithmic Issues 573
14.4      Model-Based Parametric Enhancement 576
14.4.1      Eye and Mouth Detection 577
14.4.2      Parametric Codebook Training 580
14.4.3      Parametric Encoding 581
14.5      The Enhanced QT Codec 582
14.6      Performance under Erroneous Conditions 583
14.6.1      Bit-Allocation 584
14.6.2      Bit Sensitivity 586
14.7      QT-Codec-Based Video Transceivers 586
14.7.1      Channel Coding and Modulation 586
14.7.2      QT-Based Transceiver Architectures 588
14.8      QT-Based Video-Transceiver Performance 591
14.9      Summary of QT-Based Video Transceivers 595
14.10      Summary of Low-Rate Codecs/Transceivers 595

Part III: High-Resolution Image Coding

15      Low-Complexity Techniques 603
15.1      Introduction and Video Formats 603
15.2      Differential Pulse Code Modulation 608
15.2.1      Basic Differential Pulse Code Modulation 608
15.2.2      Intra/Inter-Frame Differential Pulse Code Modulation 610
15.2.3      Adaptive Differential Pulse Code Modulation 611
15.3      Block Truncation Coding 613
15.3.1      The Block Truncation Algorithm 613
15.3.2      Block Truncation Codec Implementations 614
15.3.3      Intra-Frame Block Truncation Coding 615
15.3.4      Inter-frame Block Truncation Coding 617
15.4      Subband Coding 618
15.4.1      Perfect Reconstruction Quadrature Mirror Filtering 620
15.4.1.1      Analysis Filtering 620
15.4.1.2      Synthesis Filtering 623
15.4.1.3      Practical QMF Design Constraints 624
15.4.2      Practical Quadrature Mirror Filters 627
15.5      Run-Length-Based Intra-Frame Subband Coding 630
15.5.1      Max-Lloyd-Based Subband Coding 633
15.6      Summary and Conclusions 637
16      High-Resolution DCT Coding 639
16.1      Introduction 639
16.2      Intra-Frame Quantizer Training 639
16.3      Motion Compensation for High-Quality Images 644
16.4      Inter-Frame DCT Coding 650
16.4.1      Properties of the DCT transformed MCER 650
16.4.2      Joint Motion Compensation and Residual Encoding 657
16.5      The Proposed Codec 658
16.5.1      Motion Compensation 660
16.5.2      The Inter/Intra-DCT Codec 661
16.5.3      Frame Alignment 662
16.5.4      Bit-Allocation 665
16.5.5      The Codec Performance 666
16.5.6      Error Sensitivity and Complexity 667
16.6      Summary and Conclusions 669

Part IV: Video Systems Based on Standard Video Codecs

17      H.261 reconfigurable videophone 675
17.1      Introduction 675
17.2      The H.261 Video Coding Standard 675
17.2.1      Overview 675
17.2.2      Source Encoder 676
17.2.3      Coding Control 679
17.2.4      Video Multiplex Coder 680
17.2.4.1      Picture Layer 680
17.2.4.2      Group of Blocks Layer 681
17.2.4.3      Macroblock Layer 683
17.2.4.4      Block Layer 684
17.2.5      Simulated Coding Statistics 686
17.2.5.1      Fixed-Quantizer Coding 687
17.2.5.2      Variable Quantizer Coding 689
17.3      Effect of Transmission Errors 692
17.3.1      Error Mechanisms 692
17.3.2      Error Control Mechanisms 693
17.3.2.1      Background 693
17.3.2.2      Intra-Frame Coding 693
17.3.2.3      Automatic Repeat Request 693
17.3.2.4      Reconfigurable Modulations Schemes 694
17.3.2.5      Combined Source/Channel Coding 694
17.3.3      Error Recovery 695
17.3.4      Effects of Errors 696
17.3.4.1      Qualitative Error Effects 696
17.3.4.2      Quantitative Error Effects 699
17.3.4.2.1      Errors in an Intra-Coded Frame 700
17.3.4.2.2      Errors in an Inter-Coded Frame 702
17.3.4.2.3      Errors in Quantizer Indices 705
17.3.4.2.4      Errors in an Inter-Coded Frame with Motion Vectors 705
17.3.4.2.5      Errors in an Inter-Coded Frame at Low Rate 708
17.4      A Wireless Reconfigurable Videophone 710
17.4.1      Introduction 710
17.4.2      Objectives 710
17.4.3      Bit-Rate Reduction of the H.261 Codec 711
17.4.4      Investigation of Macroblock Size 711
17.4.5      Error Correction Coding 715
17.4.6      Packetization Algorithm 715
17.4.6.1      Encoding History List 716
17.4.6.2      Macroblock Compounding 717
17.4.6.3      End of Frame Effect 719
17.4.6.4      Packet Transmission Feedback 720
17.4.6.5      Packet Truncation and Compounding Algorithms 720
17.5      H.261 Videophone System Performance 721
17.5.1      System Architecture 721
17.5.2      System Performance 725
17.6      Summary and Conclusions 731
18      Comparison of the H.261 and H.263 codecs 733
18.1      Introduction 733
18.2      The H.263 Coding Algorithms 735
18.2.1      Source Encoder 735
18.2.1.1      Prediction 735
18.2.1.2      Motion Compensation and Transform Coding 735
18.2.1.3      Quantization 736
18.2.2      Video Multiplex Coder 736
18.2.2.1      Picture Layer 738
18.2.2.2      Group of Blocks Layer 738
18.2.2.3      H.261 Macroblock Layer 739
18.2.2.4      H.263 Macroblock Layer 740
18.2.2.5      Block Layer 744
18.2.3      Motion Compensation 745
18.2.3.1      H.263 Motion Vector Predictor 745
18.2.3.2      H.263 Subpixel Interpolation 746
18.2.4      H.263 Negotiable Options 747
18.2.4.1      Unrestricted Motion Vector Mode 747
18.2.4.2      Syntax-Based Arithmetic Coding Mode 749
18.2.4.2.1      Arithmetic coding\p@index [cite]{article:arithmetic-coding 749
18.2.4.3      Advanced Prediction Mode 751
18.2.4.3.1      Four Motion Vectors per Macroblock 752
18.2.4.3.2      Overlapped Motion Compensation for Luminance 753
18.2.4.4      P-B Frames Mode 754
18.3      Performance Results 757
18.3.1      Introduction 757
18.3.2      H.261 Performance 758
18.3.3      H.261/H.263 Performance Comparison 761
18.3.4      H.263 Codec Performance 764
18.3.4.1      Gray-Scale versus Color Comparison 765
18.3.4.2      Comparison of QCIF Resolution Color Video 767
18.3.4.3      Coding Performance at Various Resolutions 768
18.4      Summary and Conclusions 776
19      H.263 mobile videophone system 777
19.1      Introduction 777
19.2      H.263 in a Mobile Environment 777
19.2.1      Problems of Using H.263 in a Mobile Environment 777
19.2.2      Possible Solutions for Using H.263 in a Mobile Environment 778
19.2.2.1      Coding Video Sequences Using Exclusively Intra-Coded Frames 779
19.2.2.2      Automatic Repeat Requests 779
19.2.2.3      Multimode Modulation Schemes 779
19.2.2.4      Combined Source/Channel Coding 780
19.3      Error resilient videophone design 781
19.3.1      Introduction 781
19.3.2      Controling the Bit-Rate 782
19.3.3      Employing FEC Codes in the Videophone System 784
19.3.4      Transmission Packet Structure 785
19.3.5      Coding Parameter History List 786
19.3.6      The Packetization Algorithm 787
19.3.6.1      Operational Scenarios of the Packetizing Algorithm 788
19.4      H.263-Based Video System Performance 790
19.4.1      System Environment 790
19.4.2      Performance Results 792
19.4.2.1      Error-Free Transmission Results 792
19.4.2.2      Effect of Packet Dropping on Image Quality 793
19.4.2.3      Image Quality versus Channel Quality without ARQ 795
19.4.2.4      Image Quality versus Channel Quality with ARQ 796
19.4.3      Comparison of H.263 and H.261-Based Systems 798
19.4.3.1      Performance with Antenna Diversity 800
19.4.3.2      Performance over DECT Channels 802
19.5      Transmission Feedback 806
19.5.1      ARQ Issues 811
19.5.2      Implementation of Transmission Feedback 811
19.5.2.1      Majority Logic Coding 812
19.6      Summary and Conclusions 816
20      Error-Rate Based Power Control 819
20.1      Background 819
20.2      Power Control Algorithm 819
20.3      Performance of the Power Control 824
20.3.1      Frame Error Rate Performance 824
20.3.2      Signal-to-Interference Ratio Performance 828
20.3.3      SINR performance 828
20.4      Multimode Performance 832
20.5      Average Transmission Power 834
20.6      Parameter Optimization 838
20.6.1      Joint Optimization of IPC and DPC Parameters 839
20.6.2      Joint Optimization of NEF and NFE 841
20.6.3      Joint Optimization of IPSS and DPSS 843
20.6.4      Conclusions from Optimizing the Power Control Algorithm Parameters 844
20.7      Performance at various speeds 845
20.7.1      Power Control Results for Pedestrians 845
20.7.2      Channel Fading 845
20.7.3      Tracking of Slow Fading 848
20.7.4      Power Control Error 851
20.8      Multiple Interferers 855
20.8.1      Frame Error Rate Performance 855
20.8.2      Further Effects of Power Control on System Performance 857
20.9      Summary and Conclusions 859
21      Adaptive Video Systems 861
21.1      Turbo-equalised H.263-based videophony for GSM/GPRS 861
21.1.1      Motivation and Background 861
21.1.2      System Parameters 862
21.1.3      Turbo Equalization 863
21.1.4      Turbo-equalization Performance 868
21.1.4.1      Video Performance 870
21.1.4.2      Bit Error Statistics 872
21.1.5      Summary and Conclusions 874
21.2      Adaptive QAM-based Wireless Videophony 875
21.2.1      Introduction 875
21.2.2      Adaptive Video Transceiver 877
21.2.3      Burst-by-Burst Adaptive Videophone Performance 880
21.2.4      Switching Thresholds 888
21.2.5      Turbo-coded Video Performance 890
21.2.6      Summary and Conclusions 893
21.3      UMTS-like Burst-by-burst Adaptive CDMA Videophony 894
21.3.1      Motivation and Video Transceiver Overview 894
21.3.2      Multimode Video System Performance 899
21.3.3      Burst-by-Burst Adaptive Videophone System 902
21.3.4      Summary and Conclusions 908
21.4      H.263/OFDM-Based Video Systems 908
21.4.1      Background 908
21.4.2      System Overview 909
21.4.2.1      The WATM System 913
21.4.2.2      The UMTS-type Framework 916
21.4.3      The Channel Model 917
21.4.4      Video-Related System Aspects 918
21.4.4.1      Video Parameters of the WATM System 918
21.4.4.2      Video parameters of the UMTS scheme 921
21.4.5      System Performance 922
21.4.6      Summary and Conclusions 926
21.5      Adaptive Turbo-coded OFDM-Based Videotelephony 927
21.5.1      Motivation and Background 927
21.5.2      AOFDM Modem Mode Adaptation and Signaling 929
21.5.3      AOFDM Subband BER Estimation 929
21.5.4      Video Compression and Transmission Aspects 930
21.5.5      Comparison of Subband-Adaptive OFDM and Fixed Mode OFDM Transceivers 930
21.5.6      Subband-Adaptive OFDM Transceivers Having Different Target Bit-Rates 936
21.5.7      Time-Variant Target Bit-Rate OFDM Transceivers 941
21.5.8      Summary and Conclusions 950
21.6      DVB-T for Mobile Receivers 950
21.6.1      Background and Motivation 950
21.6.2      MPEG-2 Bit Error Sensitivity 951
21.6.3      DVB Terrestrial Scheme 962
21.6.4      Terrestrial Broadcast Channel Model 965
21.6.5      Data Partitioning Scheme 966
21.6.6      Performance of the Data Partitioning Scheme 972
21.6.7      Nonhierarchical OFDM DVBP Performance 983
21.6.8      Hierarchical OFDM DVB Performance 990
21.6.9      Summary and Conclusions 993
21.7      Satellite-Based Video Broadcasting 996
21.7.1      Background and Motivation 996
21.7.2      DVB Satellite Scheme 997
21.7.3      Satellite Channel Model 999
21.7.4      The Blind Equalizers 999
21.7.5      Performance of the DVB Satellite Scheme 1003
21.7.5.1      Transmission over the Symbol-Spaced Two-Path Channel 1003
21.7.5.2      Transmission over the Two-Symbol Delay Two-Path Channel 1010
21.7.5.3      Performance Summary of the DVB-S System 1010
21.7.6      Summary and Conclusions 1017
21.8      Summary and Conclusions 1018
21.9      Wireless Video System Design Principles 1020
     Glossary 1023
     Bibliography 1033
     Subject Index 1065
     Author Index 1081