Energy-Efficient Mapping and Scheduling for DVS Enabled
Distributed Embedded Systems

Marcus T. Schmitz and Bashir M. Al-Hashimi Petru Eles
Dept. of Electronics and Computer Science Dept. of Computer and Information Science
University of Southampton Linkdping University
Southampton, SO17 1BJ, United Kingdom S-58183 Linkping, Sweden
{m.schmitz,bmap@ecs.soton.ac.uk petel@ida.liu.se
Abstract times. Hence, the power consumption depends on the function

carried out, resulting in non-uniform PE power profiles; this

In this paper, we present an efficient two-step iterative synthe-holds also for DVS-PEs [5]. It was shown in [14, 19, 23] that
sis approach for distributed embedded systems containing dythe consideration of the PE power profile during the voltage
namic voltage scalable processing elements (DVS-PESs), basedelection leads to further energy savings.
on genetic algorithms. The approach partitions, schedules, and System level co-design is a methodology aiming to aid the
voltage scales multi-rate specifications given as task graphssystem designers/architects to solve the difficult problem of
with multiple deadlines. A distinguishing feature of the pro- finding the "best” suitable implementation for a system spec-
posed synthesis is the utilisation of a generalised DVS methodification. Three important co-synthesis steps areviapping:
In contrast to previous techniques, which "simply” exploit Determining the assignment of computational tasks to PEs and
available slack time, this generalised technique additionally data transfers to communication links (CLs), $heduling:
considers the PE power profile during a refined voltage selec- Determining the execution order (sequencing) of tasks mapped
tion to further increase the energy savings. Extensive experi-to PEs and communications to CLs, andEsjaluation: De-
ments are conducted to demonstrate the efficiency of the protermining the quality of the implementation candidate (timing
posed approach. We report up to 43.2% higher energy reduc-feasibility, cost, power, area, etc.). Previous research in co-
tions compared to previous DVS scheduling approaches basegynthesis is extensive but has mainly focused on traditional
on constructive techniques and total energy savings of up toarchitecturesexcludingissues related to power [15, 20, 26] or
82.9% for mapping and scheduling optimised DVS systems. considered energy optimisation with components thamnate
DVS enabled [8, 16, 22]. This research will provide a valuable
. basis for the presented work. However, three recently proposed
1. Introduction and Related Work synthesis approaches for distributed systems have a close re-
Modern embedded systems are often implemented as distationship to the problems we address in this paper. In [11],
tributed systems consisting of several processing elements DVS optimised schedule is derived using a constructive list
(PEs), like programmable microprocessors, ASIPs, FPGAs,scheduling technique with a dynamic re-calculation of task pri-
and ASICs. In reality, such embedded systems have to con-orities based on average energy dissipation. If the found sched-
currently perform a multitude of complex tasks under a strict ule does not meet the specified deadline, priorities of tasks on
timing behaviour, given in the system specification. However, the critical path are increased and all tasks are re-scheduled. In
due to the various degrees of application parallelism, the PES18], a mobility based list schedule is modified towards DVS
experience non-uniform workloads, resulting in idle intervals. utilisation by distributing slack time more evenly among the
Furthermore, the performance of the allocated architecture canasks of the system. A method for the identification of scaled
often not be adapted perfectly to the application needs, turningsupply voltages for distributed system was introduced in [3].
out as slack between deadline and the real finishing time. However, it focuses mainly on the voltage selection and its iter-

Dynamic voltage scaling (DVS) exploits such idle and slack ative nature results in undesirable high execution times, which
times to reduce the power consumption [12,14,21]. This is can not be tolerated in the inner most loop of an iterative sched-
done by conjointly changing the supply voltage and the opera-ule and mapping optimisation. All these approaches are based
tional frequency during run-time, with respect to temporal per- on constructive scheduling heuristics and neglect the power
formance requirements. Recent implementations of DVS pro-profile information during the supply voltage selection.
cessors have shown that voltage scaling can reduce the power This paper presents an iterative list scheduling heuristic to
consumption by up to 10 times when running real-life appli- simultaneously optimise the schedule towards feasible timing
cations [5]. Nevertheless, modern microprocessors make ofterbehaviour and utilisation of DVS-PEs, and hence the minimi-
use of gated clocks to switch off unused circuit parts during idle sation of the dissipated energy. Due to the potentially larger

search space of iterative optimisation methods, compared to T DVS—_PEO
constructive techniques, schedules with reduced energy dissi-

pation are likely be found. Furthermore, the optimisation pro- §

cess is guided by a generalised DVS algorithm [23]. This volt- E PE1
age scaling technique takes into account the PE power profiles | .2/ &/} /- 6y 5=1.6ms

during a refined voltage selection, leading to further energy re-

ductions. In addition to the schedule optimisation, we employ 1N g mrams DVS-PE2
a task mapping based on GA to push the distribution of tasks @ ®

among the architecture towards energy-efficiency by abetting
the exploitation of DVS. Overall, we concentrate here on the

task mapping and scheduling aspects rather than on the voltage The architectures we consider here consist of heterogeneous

sel_lc_'::on, whlcht|sdexpl?(|nedk|n [Ztﬁ]'f lowi tributions: PEs, like general purpose processors, ASIPs, FPGAs, and
e presented work makes the following contributions: a) ASICs. These componentsclude state-of-the-art DVS-PEs.

.It 'S s;hOV\.I,:;] how |tergt|veﬁ|m|t3_r0\|/em§nt tmgp;plngtgnq SChe?UI' Furthermore, the PEs might employ lower level power manage-
N9 la gorlt TS catn € g ec |veﬁy a atlp ?I' Ot' op ITItShe Sg\s/gmment techniques, like gated clocks. An infrastructure of com-
Implementations towards an efficient utiisation ot the " munication links, like buses and point-to-point connections,

PEs wh|.le meeting, at the same time, hard dead!mes. This 'Sconnects these PEs through communication interfaces (CIs),
done using a new two-step approach for scheduling and map

. ; . ; able to adapt to the different operational frequencies caused
ping based on genetic algorithms (GAs). b) The outlined sched-by scaling the DVS-PEs. An example architecture is shown

ule optimisation is based ona DVS algor|thm, which takes into in Fig. 1(b). The architecture is captured using a directed graph
account the PE power profiles, hence, leading to further energys (P, L) where nodest ¢ represent PEs and edgks: £
savings. ¢) To illustrate the efficiency of the proposed approach,d(/;,lot’e Cls

a comparative St.Udy Is preseqted, comparing our result's with Each task of the system specification might have multi-
two recently pubhshed gynthess a.pproach.es.[ll, 18], which are le implementation alternatives, therefore, it can be potentially
based on constructive list scheduling heuristics and neglect th apped to several PEs able to execute this task. If two com-

PE power profiles. This further includes a quantitative com- municating tasks are accommodated on different PEsind

parison between a variable-voltage system and a multl—voltageﬂm with n - m, then the communication takes place over a CL,

system, which dem_onstrates the efficiency of the proposed tecr‘i'nvolving a communication time and power overhead. For each
nigue also for multi-voltage processors.

. .) . . ossible task mapping certain implementation properties, like
The remainder of this paper is organised as follows: Prelim- P pping P prop

. ¢ introduced in Section 2. Section 3 d ib e.g. execution time, dynamic power dissipation, memory, and
Inary aspects are introduced in Section 2. Section 5 describeg, o, requirements, are given in a technology library. These val-
our synthesis approach in detail which then, in Section 4, is

tended t lti-volt i In Section 5 A ues are either based on previous design experience or on esti-
extended fo multi-voltage systems. In SECHion o We Present €y, 5, techniques such as those presented in [4,17, 25]. This

.) : i m
tensive experiments and comparisons W'th_the results producegs not a trivial task and influenced by various parameters, e.g.
by other approaches. We conclude in Section 6. the input data of the application. However, such techniques are
essential to enable an effective co-synthesis, including the pre-
sented approach.

Figure 1. Task graph and DVS architecture

2. Preliminaries

2.1. Specification and Architectural Model

In this work, we consider that a multi-rate application is spec- 2.2. Task Execution Order and DVS

ified as a set of communicating tasks, represented by a taskrhe relation between dynamic power dissipatign, opera-
graphGs(7, C). This (hyper) task graph might be the combi- tional frequencyf, and supply voltag¥yg is expressed by,

nation of several smaller task graphs, capturing all task activa-

tions for the hyper-period (LCM of all graph periods). Fig. 1(a) Payn=CL -No_1- - Vg 1)
shows a task graph example. Each node7 in these graphs f =k-(Vag _Vt)z/vdd (2)
represents a task, an atomic unit of functionality to be executed

without preemption. A node might inherit a hard deadlthe whereC,_ denotes the load capacitance of the digital circuit,
which must be met at run-time in order to ensure correct func- Ng_,1 represents the zero-to-one switching activitis a circuit
tionality. Edgesy € C in the task graph denote precedence con- dependent constant, aigis the threshold voltage. It can be
straints and data dependencies between tasks. If two tasks, observed from Equation (2) that the operational frequehcy
andtj, are connected by an edge, then the execution oftiask decreases with decreasing supply volt&gg and hence the
must be finished before task can be started. Data dependen- task execution time increases. Thereby, DVS is applicable in
cies inherit a data value, reflecting the quantity of information schedules where idle and slack times can be found, allowing to
to be exchanged by two tasks. Further, each task graph has slow down certain tasks while meeting hard deadlines. Since
specific periodp, representing the time limit between two suc- the execution order of tasks influences the idle and slack times
cessive invocations. An implementation is only feasible when in a schedule it should be optimised for the utilisation by DVS.
all timing and precedence constraints are fulfilled. To clarify this, consider the following illustrative example.

E=71pJ

E=65.611J

E=53.9J

e P P i P .
(mw) (mw) (mw) | (mw) P
PEO PEO PEO : PEO P
g |5 1y |5 : P
i “ |

1 14l 1 1416 | 07 125 |
PEL b PE1, . § PEL — i PEL L P
o] 1| 2 | L] 5] 2 | o] 2 | * P
03 Oiﬁ] 03 06 1 3 03 07 1 P 03 07 T P
PE2 Slack | PE2) : PE2 P PE2 P
™ 5 1 i o]

41 t 114 1416 t 11 1416 t 11 1416 t

07 1 1416 G s (ms) (ms)

(a) Execution at nominal supply (b) Scaled execution with (a) Execution at nominal supply ~ (b) Scaled execution with

voltageVmax Vdaz = 2.08V andVyge = 2.34V voltageVimax Vgas = 2.74V andVygs = 2.41V

Figure 2. Possible schedule not optimised for DVS Figure 3. Schedule optimised for generalised DVS

Fig. 2(a) shows a possible schedule for the tasks given inthis schedule shows that only tasigsandts can be extended.
Fig. 1(a) executing at nominal supply voltage. The underlying This is due to the slack time of task, which finishes execution
architecture consists of two DVS-PEs (PEO, PE2) and one non-at 13mswhile its deadline i¥5 = 1.6ms Generating a voltage
DVS-PE (PE1) connected through a bus, as given in Fig. 1(b).schedule for this execution order of tasks results in the supply
The nominal supply voltag€nax and the threshold voltagé voltagesVygs = 2.74V andVygs = 2.41V, using the same gen-
of PEO and PE2 aré,ax= 3.3V andV; = 0.8V, respectively, eralised DVS technique as for the previous alternative. Hence,
while PEL runs all tasks &nax. For the sack of simplicity, the the energy is reduced = 53.9uJ, an improvement of 24.1%
communications are neglected when discussing this particulaicompared to the 7.6% of the first schedule.
example. The task execution timgs, and power dissipations Although the schedule in Fig. 3(a) shows less slack than
Pmaxat nominal supply voltage are given in Table 1, which also the one in Fig. 2(a), its energy reduction is significantly higher
shows the task mapping. According to these values, the energywith 16.5%). This is due to the particular power consumptions
when executing the different tasks. The example demonstrates
how important it is to take into consideration the power profiles

Task [[tmin (Ms) | Pmax (MW) | mapping

To 8-3 ;8 EEi during scheduling, in order to produce energy-efficient imple-
T . . .

T; 0 = EL mentations with DVS-PEs.

T3 0.1 40 PE2 o . .

T 0.4 70 PEO 2.3. Genetic List Scheduling Algorithm

Ts 0.2 90 PEO List scheduling algorithms (LS) make scheduling decisions
T6 03 20 PE2 based on task priorities. They maintain one or more ready list,

which contain tasks ready to be scheduled. A static schedule is
constructed by scheduling the ready task with the highest pri-
ority as soon as the eligible PE becomes available. Thereby,
dissipation corresponding to the given schedule can be calcuthe assignment of priorities defines the task execution order.
lated asE = Y cq Pmax(T) - tmin(t) = 714J. Considering the Most traditional list scheduling approaches use various sophis-
deadlines given in Fig. 1(a), it can be observed from Fig. 2(a) ticated algorithms to calculate these task priorities statically
that the taskss andtg are eligible for scaling, since; finishes (before list scheduling) or dynamically (re-calculation after
at Imsand it has a deadlinBs = 1.4ms resulting in a slack each scheduling step).
of 0.4ms An extension of any other task can not be tolerated, In contrast, genetic list scheduling algorithms (GLSA) con-
since tasks has a finishing time equal to its deadline. By scal- struct and evaluate many different schedules during an itera-
ing the schedule, using our implementation of the generalisedtive optimisation process. Task priorities are encoded into pri-
DVS technique (taking the PE power profile into account) pre- ority strings, hence, a manipulation through genetic operators
sented in [23], the voltage schedule shown in Fig. 2(b) can be(e.g. crossover, mutation, etc.) is possible. As common for ge-
produced, with tasksz andtg executing at 28V and 234V, netic algorithms (GAs), the optimisation is guided by a objec-
respectively. Thereby, the energy is reduced tdHb (using tive, called fitness, which needs to be minimised or maximised.
Equations (1) and (2)), a 7.6% reduction. More details on our GLSA are given in Section 3.1. The three
Now, consider a second feasible schedule at nominal supplymain advantages of GLSA over traditional LS are: a) The ob-
voltage, as shown in Fig. 3(a), where the order0dndT, has jective can be based on an arbitrary complex function which
been exchanged. Since the mapping of the tasks has not beemeeds to be optimised. b) The enlarge search space provides
modified the dissipated energy remals= 71uJ. Observing the opportunity to find solutions with a potentially higher qual-

Table 1. Execution times, power dissipations, and
mappings for the example task graph

ity. ¢) There is a large freedom to trade-off between acceptable

synthesis time and solution quality, as opposed to constructive -t 1
technigues. 3 3

2.4. Problem Formulation §
Using the common triplet notation for scheduling problems, our
problem is described b@m|pred6;, fa, ¥ E?, whereQn, spec-
ifies a multiprocessor environmemtrecrefers to a task model ‘
with precedence constraint, and f are objectives capturing
the deadline and area constraints, respecti\EE/f denotes the €) (b)

additional objective to minimise the energy dissipation based Figure 4. Presented energy-efficient synthesis ap-

on DVS. Therefore, the scheduling problem for DVSiis to find proach and task priority encoding into priority string

an arrangement of the task execution order and mapping, such

that the energy reduction through DVS-PEs is maximised andthe search space results in high optimisation times, however,

all specification constraints (timing, precedence, area, etc.) arg, o show in Section 5 that these times are still reasonable.
met. A more detailed description of the synthesis problem, in-

cluding the DVS problem, can be found in [24]. - . .

We make the assumption that the specified tasks are of suf-3'1' Low-Energy Genetic List Scheduling Algorithm
ficiently coarse granularity and that the PEs can continue operdn this section, we give an overview of our DVS optimised
ation during the voltage scaling (as the case for the DVS pro-GLSA for energy-efficiency, calleBE-GLSA. The algorithm
cessor in [5]), which allows to neglect of the scaling overhead generates an energy-efficient schedule of tasks and communi-

EE-GMA

in terms of power and time. cations for agiven mapping. By imitating and applying the
principles of natural selection and "survival of the fittest” on
3. Energy-Efficient Synthesis Approach a population pool of individuals, GAs are able to evolve (op-

timise) solutions over several generations. In each generation

In contrast to the GLSA based synthesis approach presented pey population is evolved by mating (through crossover) the
in [6, 10], our synthesis approach separates task mapping angiest individuals of the current population. Mutation provides

scheduling into two nested optimisation steps; see Fig. 4(). an additional opportunity to enter unexplored regions of the
* The GLSA for energy-efficiency, which produces an opti- search space by applying randomly changes to an individual.
mised sequencing of task executions (Section 3.1). In our case, each individual is represented by a priority string
e A mapping optimisation based on GA, which distributes (solution candidate) and each solution represents a schedule.
the tasks among the PEs of the architecture and, by this,Fig. 4(b) shows the encoding and the relations between prior-
decides on the execution time and power dissipation of ity string and tasks. A description of tlEE-GLSA is given in
each task (Section 3.2). Fig. 5. The distinguishing features of this GA can be found in
We have split these two steps due to the following reasons: a)steps 02, 03, and 04, which are explained next. The remaining
The combination of list scheduling and mapping algorithms de- steps vary only slightly from common GAs, and more details
cide upon task priorities which task is to be scheduled next, buton the functionality of GAs can be found elsewhere [9]. In step
at this point it isnot known where to execute the chosen task. 02, for each priority string of the population a schedule is gener-
Therefore, the execution time and power dissipation of the taskated by going through the following two steps: a) The priorities
are unknown as well. In this context, it is the duty of the sched- of each individual are assigned from the corresponding prior-
uler to make a "greedy” mapping decision based on the powerity string. b) Based on this priority assignment, the execution
and time values with respect to the design objectives. How-order of tasks is determined by a list scheduling algorithm. In
ever, DVS influences the execution times and power dissipa-addition, our implementation of the list scheduler relies solely
tions, hence, the mapping decision made upon the static valuesn the priorities to make scheduling decisions, i.e., no other
might proof to be wrong, especially from the energy reduction optimisation technique (e.g. hole filling) is applied. Although
point of view. Separating the scheduling and mapping into two such technigues can improve the timing behaviour by eliminat-
nested iterative optimisations overcomes this problem since theng idle periods, we dissociate from them since DVS exploits
mapping is given before a schedule is constructed. b) Due to theexactly these idle times.
constructive nature of list scheduling and mapping algorithms In step 03, the produced schedules are passed to our gener-
a solution is constructed one by one. This results in a greedyalised DVS algorithm [23], which identifies the supply voltage
approach, which is likely to get trapped at low quality or in- for each task executed on a DVS-PE to minimise the energy
feasible solutions in the presence of tight area and timing con-dissipation. These voltage schedules are generated taking into
straints. A solution to overcome this problem was presented inaccount the PE power profiles, leading to a further energy re-
[15]. However, this approach neglects issues related to powerduction. Based on the steps 02 and 03, the fitness for each
By splitting the problem into two steps, we avoid this greedi- priority string is calculated in step 04. It is this fithess function
ness problem and can leverage the advantage of an increaseshich guides the optimisation process, and therefore, it should
search space, which is explored iteratively. Clearly, increasinglead the search towards low energy and feasible implementa-

EE-GLSA supply voltage,Ipys is the set of all tasks mapped to DVS-

Input: - task graph TG PEs, andP: andtc denote the power and execution time of
- mapping and execution properties corresponding communication activities. The second part of the fitness func-
to the mapping tion (3) introduces a penalty factor due to deadline violations of
Output: - timing and energy optimised schedule deadline tasks which are given By; = max(0,tr (1) —t4(1)),

01: Initialisation: Create initial population pod? of priority wheretg (1) andty(1) denote the finishing time and deadline of
strings, half randomly generated and half based on mobility. taskt, respectively. Typ is the hyper task graph period, used
02: Perform List Scheduling: Generate, for each member of to relate the deadline violations. Squaring has been applied in
g‘r?of_‘t)'uéis:goo'- a schedule based on the corresponding order to assign a higher penalty to larger violations of imposed

iority string.

deadlines. The parameters of the GA where set as follows: The
population pool consists of 25 individuals, the dynamic mu-
tation probability is calculated ddp = max0.15,1/exp(Ns-
0.05)) (Nsis the current generation), and the generational over-

a) Assign task priorities from the priority string
b) Invoke list scheduler without hole filling

03: Perform Voltage Scaling: Invoke the generalised DVS tech
nique, calculating supply voltages for each task executed on a

DVS-PE. This is done under the consideration of the indi- lap is 50%.
vidual power dissipation of tasks.
04: Assign Fitness:Compute fitness of each individual in the 3.2. Low-Energy Task Mapping Algorithm
population pool. The mapping step determines which PE carries out which task.
a) Calculate timing penalty Thereby, it determines the execution time and power dissipa-

b) Calculate energy based on the supply voltages
c¢) Derive fitness based on energy and timing penalty
05: Ranking: Individuals are ranked according to their fitness.
06: Selection: According to the size of the generational overlap,
select individuals for mating. High ranked individuals have a

tion at nominal supply voltage. The mapping also specifies the
area requirements of tasks in terms of bytes or gates, whether
implemented as software or hardware. Obviously, due to the in-
terrelation between scheduling and mapping, the distribution of

high probability to be selected. tasks among the PEs has an influence on how well the allocated
07: Mating: Produce two-point crossover between a pair of DVS-PEs can exploit their energy reduction possibilities.
selected individuals. We have extended a GA based task mapping algorithm sim-
08: Mutation: Randomly change genes of individuals using a ilar to the one given in [8] such that it solves our specific prob-
dynamic mutation probability scheme, with exponential lem. The extension is based on the presem®edLSA algo-
decreasing probability during run-time. rithm (see Section 3.1), which is called from inside the mapping
09: Offspring insertion: Exchange low ranked individuals by optimisation loop and is used to calculate parts of the mapping

newly produced individuals with respect to the size of the
generational overlap.

10: Termination: If no improved individual (improve-
ment> 1%) has been produces for 10 generations, then
terminate. Otherwise, continue with step 02.

fithess functioriy. In our GA based mapping approach, called
EE-GMA, solution candidates are encoded into mapping strings.
Each gene of these strings captures a mapping of a task to a PE.
The GA we use to evolve the solutions is similar to the previ-
ously presented one (Fig. 5). In order to guide the optimisation
Figure 5. The proposed EE-GLSA approach for energy- not only towards low energy and timing feasible solutions, us-
efficient schedules ing the scheduling fitness, but also towards feasibility in term
of area, the fitness functiofRy uses an additional objective,
tions. OUrEE-GLSA relies on the following fitness functidfs namely area. The fitness we assign to individuals is expressed

to achieve these goals, by,
=Fs- [1AR 4
ZT DVTZ FM FS T[I:l? L ()
Ty
Fs= <z E(€)> |1+ e ®3) whereFs denotes the schedule fitness (including the DVS re-
QEE , HP duced energy and the timing penalty, as given by Equation (3))
Energy diss. m andAP; represents an area penalty for eachrREP with ex-

ceeded area constraints. The exact equation for the calculation
where4 = T U C defines the set of all activities arify rep- of APy is given by,

resents all hard deadline tasks. The first part of the equation)

is used to calculate the total dynamic energy dissipation of all AP — 1 if AA‘TZ' Sh

activitiese € 4. Based upon the type of activity, the energy m k- (% - 1) +1 otherwise

Al
dissipation can be calculate in the following way,)) .
where the used area is denotedS#® and the maximal avail-

Pmax(€) - tmin(€) - \\//gd((es)) if £ € Toys able area is represented By, If the. available are#Ay is
E(e) — Prl®) - tinE) fax if£c T\ Tovs not excee_de_d we do not need to assign an area penalty, hence,
Pe(e) -to(E) ifeeC Fsis multiplied by one. Otherwise, the used af®#%; and the
available area\A;; are related and multiplied by a constant
wherePnaxandtmin refer to the power dissipation and execution which allows to adjust the aggressiveness of the penalty. Dur-

time at nominal supply voltage, respectivéliq is the scaled ing our experiments we have det= 0.02. This was found to

be low enough to keep a high population diversity while avoid- EVEN-DVS [18] Proposed
ing, at the same time, infeasible results. The parameters of the No. of || Reduction | Reduction | Reduction
. . . Example | tasks/ mobility GLSA EE-GLSA
GA where set as follows: The population pool consists of 50 edges (%) %) %)
individuals, the dynamic mutation probability is calculated as Tofl 89 7550 1627 Z1.05
Mp = max0.05,1/expNy - 0.05)) (N represents the current Tof2 26/43 2.80 2291 26.79
generation), and the generational overlap is 20%. Tgff3 40/77 25.98 51.89 69.18
Toff4 20/33 6.66 1255 12.99
4. Variable-Voltage vs. Multi-Voltage Toffs | 40777 534 11.13 17.14
This section clarifies the differences between variable-voltage Tgff 20126 123 1.35 161
: _ g Toff? | 2027 10.16 24.47 29.90
and multi-voltage DVS-PEs and introduces necessary equa- Tgf8 18/26 728 10.01 13.83
tions, later used in the experimental results. The generalised Tgff9 16/15 2.25 16.76 24.85
DVS technique [23], as used in our synthesis approach, pro- Tgff10 16/21 26.08 34.65 35.77
; ; Tgffil | 30729 1.28 13.67 16.96
duces supply voltages under the assumption that a continuous Tofiz 650 314 149 =17
voltage range is available. However, real DVS processors [1,2, T3 37736 1673 1956 5071
5] show a limited number of supply voltages at which tasks can Tl 24133 12.78 23.44 28.12
be executed. For example, the DVS processor given in [5] uses Tgffi5 | 40/63 0.84 2.13 415
a 7 bit frequency register, allowing to operate at 15 different Tgffl6 | 31/56 16.63 28.68 29.88
discrete voltage-frequency (5 bit VCO) settings. Therefore, the ToffL7 29/56 13.06 19.34 22.20
) . : Tgff18 12/15 0.00 6.87 23.44
continuous selected supply voltages are not Q|rectly appllcaple, Tgfiio | 14/19 50.63 5308 5784
however, they can be used as a base for mutli-voltage selection. Tgff20 19725 37.77 45.02 52.30
It has been shown in [14] that the two neighbouring discrete Tgff21 70/99 0.07 6.13 19.45
voltagesVy: andVyp, Vg1 < Vgd < Vo, around the continuous Tgff22 | 100/135 13.48 19.87 29.10
selected voltag¥yq are the ones which minimise energy, under Tgff23 | 84/151 6.79 15.05 23.20
ag¥dd _ - energy, Tgff24 | 80/112 0.06 2.08 853
the assumption that the time overhead for §W|tch|ng petwgen Tgf25 29/97 150 12418 50.16
voltages can be neglected. The corresponding execution times Hou 20129 7.29 22.46 39.40
tq1 andty, for task execution aty; andVy,, can be calculated Houc 8/7 20.64 20.64 28.56
as, v v Table 2. Scheduling comparison between EVEN-DVS
Va1 - (Vag —W)2 (Vddd—u\l/t)z - (deﬂzvt)z [18] and the proposed EE-GLSA approach
tar = texer 2 : Vg Vi (5)
(Va1 —W)? - Vud VoV~ Ner 2 architecture consists of two identical, uniform power profile
_ DVS-PEs.
ta2 = texe—ta1 (6)

To give insight into the energy efficiency of the proposed
whereteye denotes the execution time of the task at the contin- synthesis approach, we compare it first with the approach pre-
uous selected voltag®g. sented in [18], which neglects the PE power profiles (in the
following we call this approaclEVEN-DVS). Table 2 shows

?hf erc))eglégg Qtﬁtlhlggs L::\ltsroach was tested on several benc his comparison for the benchmark segf _ andHou. Each
prop y pproac - - “benchmark is characterised by its complexity in terms of nodes
mark examples to demonstrate its capability to produce high

uality solutions in terms of ener timing. and area re and edges. Column 3 shows the achieved energy reductions
guirer)]/"nents It was implemented Sgi,ng C+?-’ on a Pentium- (with respect to a task execution at nominal supply voltage) of

. . theEVEN-DVS approach using a mobility based schedule. This
11/750Mhz/128MB Linux PC. The benchmarks consist of four represents the approach presented in [18]. Column 4 shows

Sitsr:n 1|) Weﬁqave utsifdzg GFlF [11]1 to generﬁite ﬁthyi% Otlhzt'calthe energy reduction for the same DVS technique, however, the
examples g ~ 49)". These specifications include mobility based scheduling was replaced by a GLSA. More ex-

power r(?an_ag?_d)VS-P_Es and nont-hDVS-PE?. (?;:col:dlng_ltya the actly, the scheduling is performed using our GA based approach
power dissipation varies among the execuited asks (wi MaAXhut without the generalised DVS technique which is part of the
imal variations of 2.6 times). 2) Thdou examples are taken

: EE-GLSA. In Column 5 the energy reductions of the proposed
from [13]. The PEs of these benchmarks are characterised b)fEE-GLSA approach, based on ag)e/neralised DVS tecr?nié)ue and
non uniform power profiles. Since the initial PEs, considered !

: .~ a GLSA, are presented. Comparing Column 3 and 5, it can be
in [13], are not DVS enabled, we extended the same PEs with : ecina
DVS capabilities, such tha — 0.8V andVime— 3.3V. 3) The observed that our approach is able to reduce the energy dissipa

tion of all examples further. The achieved reductions are up to
gi ?Z?rgg rereEsGéZSr? T_?hzevsvgesree?;f;t.fgﬁ?.Ll(j] gngf/OSn-iDE 43.2% percent higher. However, to avoid the misleading argu-
I'th ? tp ' d'. inali P '.f' ' inciu il q nent that these higher energy reductions are solely introduced
with constant power dissipation (un_l orm power proti €) an by the GLSA, we have combined tB&EN-DVS approach with
the given time constraints represent tight deadlines. 4) The final

benchmarkn taken f 31 and N exactly the same scheduling technique (GLSA) as used in our
enchmarkneas was taxen rom [3] an represents a measure- approach, Column 4 shows the results. It can be observed that
ment application with 12 tasks and 12 communications. The

the proposedE-GLSA technique results in higher energy sav-
LAvailable at: http:/iwww.ecs.soton.ac.uk/"ms99r/benchmarks.html ings for all examples, with reductions of up to 24.78% com-

LEneS [11] Proposed EVEN-DVS [18] Proposed

Average | CPU Average | Average| CPU Example || Reduction| CPU time || Reduction| CPU time

Example || Reduc. | time Reduc. | Reduc. | time (%) (s) (%) (s)
dis. (%) (s) cont. (%) | dis. (%) (s) Tgffl 65.23 1.91 70.60 6.53
TG1 28 10-120]] 41.16 3761 | 3-16 Tgff2 11.80 13.34 47.08 46.78
TG2 13 10-120 || 18.82 1583 | 0.3-1.7 Tgff3 24.60 39.68 66.86 | 2394.47
i Tgff4 75.37 12.15 82.88 585.47
Table 3. Comparison between the results of the ~ LEneS Tgf5 3497 2173 400 | 1824.16
algorithm [11] and the proposed EE-GLSA Tgff6 70.44 11.66 82.14 374.11
Tgff7 21.59 555 28.75 51.08
pared to theEVEN-DVS based GLSA. This indicates that the Tgff8 65.18 8.49 72.44 49.91
generalised DVS technique [23] combined with the presented TTg gf‘;ffo 48'2? g'gz gg'gg ?i'gz
scheduling approach generates solutions, that lead to higher en- TqfiL 16,02 1448 5579 13310
ergy savings. Regarding the computational complexity, the re- Toffi2 48.36 37.61 80.45| 329583
sults in the Columns 3, 4, and 5 where achieved in m@35) Tgff13 44.92 32.56 61.22| 1958.38
1.19s, and 1799s, respectively, for benchmarks with up to 100 Tgff14 1.88 14.39 17.09 96.06
tasks. Tgffl5 10.34 54.39 22.85| 1066.99
Tgffl6 27.05 24.64 28.97 275.79
Next, we compare the approach proposed by Gruian et al. TgiL7 29.60 26.80 45.32 306.99
[11], calledLEneS, with the presented scheduling technique. Tgff18 17.80 2.80 30.02 12.27
Similar to EVEN-DVS, LEneS neglects the PE power profile Tgff19 36.59 4.12 47.14 23.96
during the voltage selection. Table 3 presents the results ob- 19222 gg'gg 53%? ;g'ﬁ siﬁ'gg
tained by both algorithms for the benchmafs1 and TG2 Tgﬁzz 5574 17538 4748 3438.95
LEneS was able to reduce the power consumption of both Tgff23 40.90 87.85 61.97 | 87657.76
benchmark sets on average by 28% and 13%. The optimisation Tgff24 58.07 98.07 72.08 | 16355.14
took between 18and 128 for each of the 60 task graphs in the Toff25 20.95 44.36 26.44 | 2740.64
benchmark sets. The presen®8GLSA was able to reduce H%?fc zg:‘éé 1;_‘3? g%:‘;z 3;_';%

these values further. The average energy reductions resulted
in 41.16% and 18.82%. However, since our approach produces Table 4. Comparison between the mapping optimisa-
continuous selected scaling voltages, we have adopted the same tion for EVEN-DVS [18] and EE-GLSA
discrete voltages (8V, 1.7V, 2.5V, and 33V) as given in [11]) ,)
to ensure a fair and accurate comparison. Using Equation®VS @pproach [23] shows a higher computational complexity
(5) and (6) the energy reductions of the multi-voltage system than the voltage scaling used&vEN-DVS.
are calculated as 37.61% and 15.81%. Note that, since the The next experiment is concerned with the benchmark ex-
benchmark set§G1andTG2show constant power dissipation amplemeas. We had to re-calculate the throughput constraints
among the executed tasks, our approach is not able to leverat nominal supply voltag¥lyq = 5V for the same scheduling
age its additional energy reduction feature to consider theseand mapping as given in [3], since we employ a different com-
power variations. However, the achieved savings are 9.61% andnunication model (contention, requests for the bus, etc.). Un-
2.81% higher, showing that our approach performs well evenfortunately this makes a direct comparison to the results given
when applied to systems with uniform power profiles. Com- in [3] impossible. Nevertheless, due to the highly serialised
paring the computational times indicates a performance advanstructure of this example, we could calculate the theoretically
tage of the proposed method, which produced results3sto optimal supply voltages settings, which resulted in an energy
16s. Another interesting observation is that the multi-voltage reduction of 13%, with respect to a task execution at nominal
setting (using just 4 discrete voltages) consumes only less tharsupply voltage. Our synthesis approach found a near optimal
4% more power than the variable-voltage approach. solution, with an energy dissipation only 4% higher than the
We have further conducted a set of mapping optimisation ex- theoretical bound, in 8s.
periments and achieved similar results and observations as for The final experiment demonstrates that our scheduling op-
the GLSA andEE-GLSA based schedule optimisation. The re- timisation EE-GLSA) does not only reduce significantly the
sults are given in Table 4, which compa®#EN-DVS and the dissipated energy, but simultaneously improves the timing be-
proposedEE-GLSA when included into the same mapping al- haviour compared to constructive techniques. This is of great
gorithm (EE-GMA, Section 3.2). The proposed technique was importance since high quality solutions could be found in de-
able to further reduce the energy dissipation when comparedsign space regions where infeasible and feasible solutions are
to the results of th&VEN-DVS approach, with improvements spatially placed closely together. Making a wrong decision

of up to 42.26%. The optimisation times fBVEN-DVS var- might involve a more costly implementation of the system. To
ied between B1s and 17238s for task graphs with up to 100 clarify this, consider the mapping and scheduling results shown
nodes. Our approach optimised the same example2ifs in Table 5. The ten examples are taken from Gruian’s bench-

8765%. These increased execution times are due to two readmarks sefTG1 and use an architecture of 10 identical DVS-
sons: a) The search space EWEN-DVS is smaller, since itis PEs. Column 2 shows the reduction results obtained by EVEN-
based on a constructive list scheduling, and b) The generalisedVS, which is based on a constructive list scheduling heuristic

EVEN-DVS [18] Proposed
Example || Reduc. (%)[CPUtime (s) || Reduc. (%)] CPU time (s)
r000 unsolved 18.60 26.53 194.86
rool 21.97 13.87 47.35 804.73
r002 unsolved 16.51 25.89 189.97
r003 28.43 15.98 44.29 769.58
roo4 unsolved 19.97 36.15 360.58
r005 37.45 16.75 49.83 1596.67
ro06 unsolved 17.55 34.62 827.22
ro0o7 unsolved 20.20 32.48 269.07
ro08 unsolved 19.25 26.32 207.46
r009 37.64 14.99 54.23 1535.28

Table 5. Comparison between the mapping optimisa-
tion for EVEN-DVS [18] and EE-GLSA for TG1

(10]

(mobility based). Observe that for 6 out of 10 task graphs the

scheduling and mapping attempt failed (unsolved), making it [11]
necessary to increase the performance of the allocated system.

On the other hand, olEE-GLSA is able to improve infeasible

schedules by providing feedback to the optimisation process. In[12]

this way, it was possible to find feasible mappings and sched-

ules for all examples by using olBE-GLSA approach. This

[5] T.D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen.
A Dynamic Voltage Scaled Microprocessor Systen=EE J.

Solid-State Circuits35(11):1571-1580, November 2000.
M. K. Dhodhi, I. Ahmad, and R. Storer. SHEMUS: Synthesis of

Heterogeneous Multiprocessor SystethdMlicroprocessors and

Microsystems19(6):311-319, August 1995.
R. Dick, D. Rhodes, and W. Wolf. TGFF: Task Graphs for free.

In Proc. CODES$pages 97-101, March 1998.
R. P. Dick and N. K. Jha. MOGAC: A Multiobjective Ge-

netic Algorithm for Hardware-Software Co-Synthesis of Dis-
tributed Embedded SystemHEEE Trans. Computer-Aided De-

sign, 17(10):920-935, Oct 1998.
D. E. Goldberg.Genetic Algorithms in Search, Optimization &

Machine LearningAddison-Wesley Publishing Company, 1989.
M. Grajcar. Genetic List Scheduling Algorithm for Scheduling

and Allocation on a Loosely Coupled Heterogeneous Multipro-

cessor System. IRroc. DAG pages 280-285, 1999.
F. Gruian and K. Kuchcinski. LEneS: Task Scheduling for Low-

Energy Systems Using Variable Supply Voltage Processors. In

Proc. ASP-DACpages 449-455, Jan 2001.
I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava.

Power Optimization of Variable-Voltage Core-Based Systems.
IEEE Trans. Computer-Aided DesigtB(12):1702—-1714, 1999.

(6]

[7]
(8]

9]

13] J. Hou and W. Wolf. Process Partitioning for Distributed Embed-

effect is likely to appear in the presence of tight deadline spec-

ifications, as e.g., the benchmark $&1 of Gruian et al. [11].

(14]

Of course, these higher quality results require longer optimisa-

tion times.

6. Conclusions

We have presented a new approach for the energy-efficienfi6]

(15]

scheduling and mapping of distributed embedded systems. The
energy-efficiency is achieved not only through the schedule and

mapping optimisation towards DVS, but under the additional [17

consideration of the PE power profiles during these optimisa-

tion steps. Furthermore, it was shown that genetic list schedul-[lg

ing and mapping algorithm can be extended to solve the specific
problems introduced through voltage scaling. We have also val-

idated the quality of the proposed approach through extensive19]

benchmark examples and a comparison with two recently pro-

posed synthesis techniques for DVS enable distributed system
This has shown that with the usage of a GA based synthesis a

p-

proach for DVS enabled architectures itis possible to find better

320]

ded Systems. IRroc. CODES$pages 70 — 76, March 1996.
T. Ishihara and H. Yasuura. Voltage Scheduling Problem for

Dynamically Variable Voltage Processors. Mmoc. ISLPED

pages 197-202, 1998.
A. Kalavade and E. A. Lee. A Global Criticality/Local Phase

Driven Algorithm for the Constrained Hardware/Software Parti-

tioning Problem. IrProc. CODES$pages 42-48, Sept. 1994.
D. Kirovski and M. Potkonjak. System-level Synthesis of Low-

Power Hard Real-Time Systems. Pnoc. DAG pages 697-702,

1997.
] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance Estimation of

Embedded Software with Instruction Cache ModelingPtoc.

ICCAD, pages 380-387, Nov. 1995.
] J. Luo and N. K. Jha. Power-conscious Joint Scheduling of Peri-

odic Task Graphs and Aperiodic Tasks in Distributed Real-time

Embedded Systems. Rroc. ICCAD pages 357-364, Nov 2000.
A. Manzak and C. Chakrabarti. Variable Voltage Task Schedul-

ing for Minimizing Energy or Minimizing Power. IrProc.

ICASSP pages 3239-3242, 2000.
S. Prakash and A. Parker. SOS: Synthesis of Application-

Specific Heterogeneous Multiprocessor SystetsParallel &
Distributed Computingpages 338—351, Dec 1992.

solutions in reasonable amounts of time.

Acknowledgements

The authors wish to acknowledge Flavius Gruian (Lund Uni-
versity, Sweden) and Neal K. Bambha (University of Maryland,
USA,) for kindly providing their benchmark sets.

References

(1]
(2]
(3]

(4]

Intel® XScald™ Core, Developer's Manual, December 2000.

Order Number 273473-001.
Mobile AMD Athlon™4, Processor Model 6 CPGA Data Sheet,

November 2000. Publication No 24319 Rev E.
N. Bambha, S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid

Global/Local Search Strategies for Dynamic Voltage Scaling in
Embedded Multiprocessors. RProc. CODES pages 243-248,

April 2001.
C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Energy

Estimation for 32 bit Microprocessors. Froc. CODES pages
24-28, May 2000.

[21]

(22]

(23]

(24]

(25]

(26]

G. Quan and X. S. Hu. Energy Efficient Fixed-Priority Schedul-
ing for Real-Time Systems on Variable Voltage Processors. In

Proc. DAG pages 828-833, 2001.
A. Rae and S. Parameswaran. Voltage Reduction of Application-

Specific Heterogeneous Multiprocessor Systems for Power Min-

imisation. InProc. ASP-DACpages 147-152, 2000.
M. T. Schmitz and B. M. Al-Hashimi. Considering Power Vari-

ations of DVS Processing Elements for Energy Minimisation in

Distributed Systems. IRroc. ISSSpages 250-255, Oct 2001.
M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. Co-Synthesis

with Energy Minimisation for Heterogeneous Distributed Sys-
tems containing Power Managed Processing Elements. Tech. Re-

port UOS-TR-MTSO01, University of Southampton, Sept. 2001.
V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded

Software: A First Step Towards Software Power Minimization.

IEEE Trans. VLSI Systenidec 1994.
W. H. Wolf. An Architectural Co-Synthesis Algorithm for Dis-

tributed, Embedded Computing SystertsEE Trans. VLSI Sys-
tems 5(2):218-229, June 1997.

