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An Analytical Comparison Between the Nonsingular Necessarily for such a comparison to be made on a level playing
Quadratic Performance of Robust and Adaptive field, we are hampered largely by the state of art in adaptive control.
Backstepping Designs As noted above, adaptive control theory is weak in the presence of un-
modeled dynamics; thus in our comparative scenario we will only con-
M. French sider static uncertainties: those that arise from bounded external dis-

turbances, or internal static uncertainties of the plant. In all other man-
ners, we will weight the situation in favor of the robust control theory:
strict feedback system are compared with respect to a cost functional which namely, we will consider arbitrarily fast time variations and nonpara-
is based on an igstantaneous qF:Jadratic penarIJty measuring both the output metric uncertamt'es_' Performance W'_" be measured by a integral per-
transient and the control effort. It is shown that the adaptive design out- formance cost functional which penalizes both the state and the control
performs the robust design when the actual uncertainty level is sufficiently effort.
high and the a-priori known uncertainty level is sufficiently conservative. The main result of this note establishes that an adaptive backstepping
Index Terms—Backstepping, nonsingular performance, robust control.  design out-performs its robust counterpart when the actual uncertainty
level is sufficiently high and tha priori known uncertainty level is suf-
ficiently conservative. This is undoubtedly a “folklore” result which is
I. INTRODUCTION known to control practionersdaptive control should be used when the
A major open field in control theory concerns the definition of angncertainty is highbut this note establishes the first such mathematical
relation between the two main branches of the subject: namely adapfiggult:
control and robust control [10]. There are many reasons as to why this

Abstract—Robust and adaptive backstepping designs for an uncertain

field remains so open, including the following. Il. SYSTEMS, UNCERTAINTIES AND PERFORMANCECRITERIA
* The lack of a clear focus in adaptive control as to the very defini- Leti/, )’ be function spaces representing the input and output signal
tion of an adaptive controller [9]. spaces. A system is denoted¥yand is a causal operathr: 2/ — .

* The fact that the domain of adaptive control is largely restricteThe set of all admissable causal systéis denoted bys = S(i4, V).
to that of parametric uncertainties, whilst robust control theoryhe basic problem considered in this paper is the control of a parame-
encompasses much wider classes of uncertainties: perhaps ifized set of systenis, ({f}) wherep € P generally represents eg.
marily it is focused on the case of un-modeled dynamics.  an initial condition andf € F represents, e.g. a system function. In

Whilst the performance theory in robust control is highly departicular, we will consider systems in a (time varying) strict feedback
veloped, the corresponding adaptive performance and robustnfessn

theory is less developed. Adaptive theory is largely limited to the

basic performance requirement of closed loop stability and the 2.,({f}) : & =ziva + fi(er,...,20t) 1<i<n—1

analysis of the transient state signal, see, eg. [9], [8], [5], (with in =t ful@1e..aan,t) 2(0) =10

some notable exceptions, see, for example, [4},,[8])2. — (1)
So there are two main problems in developing any comparative results: '
firstly we must find a problem domain in which both robust and adahe parameterised set of systems is denoted Yy, ie.
tive control designs can both be meaningfully considered; secondly®we = {X,({f}) | p € P}. For concreteness, we defirfe to
must measure performance in a manner which is both meaningful asdthe initial condition set
for which analytical results can be derived. The recent framework of .
constructive nonlinear control [5] is an ideal setting for the develop- P={z €R"| wgxo < 4712}. (2
ment of such results. In this note, we will develop a set of results which o ]
allow analytical comparisons to be made between adaptive and robust® model uncertainties, we defifel (4) }s>o to be a set of subsets
designs: in particular we will establish results which indicate whe®f 7 such that
adaptive designs can be expected to out-perform their robust counter- o 0
parts. The dual theory, namely conditions for when robust controllers L A0) = {f }for somef” € 7
out-perform adaptive controllers will be considered in a forthcoming 2. A (81) CA(82) if 61 < bo. 3)
paper.

We sayX,, (A(6)) has uncertaintyA (§) with an uncertainty level. For
the systems given by (1), we consider pointwise uncertainty models of
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10ptimal adaptive results based on the solution of Isaacs equations such as
[1] utilize worst case costs which contain terms directly measuring the size of feC (R xR:,R"
the uncertainty, differing from the results in this paper and generally in robust — + R
control where the uncertainty level solely enters the cost functional via a worst
case supremum over all possible systems. ) ; ]

2Although note that the inverse optimal results of [6] are not concerned with <4V eRLVEERL, 1 <i<n (4)
integral performanceer-se as the cost functional is not determinagbriori,
rather they are concerned with guaranteeing desirable gain and phase margins. o ONT - . .
See also [6] for a discussion of the limitations of earlier work on optimal L&heref” = (f/,..., f,)" is the nominal model and the continuous
adaptive control. functions (Y : R* — R1 < i < n) satisfyf?(0) =0for1 <i < n.
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Furthermore we assume that the weighis continuous ana; (x) > The second definition captures the essential feature of robust de-
0Vz € R',1 < i < n. We have thus defined the syst&m(A(6)).  signs, namely that the performance degrades as the uncertainty descrip-
{Z,(A(6))}s>0 is a sequence of subsets $fand is defined in the tion becomes more conservative.
natural manner, likewis€Xp(A(6))}s>o. Definition 3.2: T is said to be a type R control design if

A controller is denoted b and is a causal operatar: J — . 1) T is P stable
The controllers we will be considering are defined in Section IV. The 2) there existss > 0 such that for alls, > &, P(Sp(A(S)),
set of all admissable controllers is denotedby= C(), /). Finally

i ' ! [(62)) — oo as 6 — oc.
we define an interconnectid®, =] of a systent and controlle= as

- oo h , the closed.| ianals (ie. th uti It is straightforward to observe that control designs of type A and R

E)“f";] — (f”’ %L) V_V Srey, u are the closed-loop signals (ie. the solu 'ON%re mutually exclusive as: R implies (not A). However, this does not
Su =y, u = Zy). . . rovide a complete classification for the reverse implication does not
Performance of a closed loop is measured by a functional of tﬁe . .

output and input signals old and so there are controllers which are of neither type. The key

performance relation between the two types of design is given by the
following lemma:
T Y xU— Ry (5) Lemma 3.3: Lef,, T, be type A and R designs respectively. Then
35 > 0 such thatvs; > 6§ 38" > 6, such thatvés > &’ we have

Throughout, we consider a quadratic cost functional which penalizes

the nonsingular transient performance of the system and is given by P(Ep(A(61)),Tr(62)) > P (Ep(A(61)), Ta(82)) .- )
. Proof: This is a simple consequence of the definition of type A
Ty, u()] = / Y2 () + u’(t) dt (6) and type R control designs. O
Ty The interpretation of this lemma is as follows. Thinkéefas the ‘ac-

tual’ uncertainty level in the system aid as the a-priori known un-
where the time sef,, is defined ag, = {t > 0| |y(¢)| > n}. Sucha certainty level in the system. Typically is a conservative estimate of
cost penalizes the response of the system whilst ¢ [—7, ], hence ;. The lemma states that providing the actual uncertainty level is suf-
for a closed loop whose goal is to stabilige¢o any closed subset of ficiently high, then as tha priori estimated uncertainty level becomes
(=n. 1), whilst keepingy, « bounded, this cost is a reasonable penaltyore conservative, the type A design neccessarily beats the type R de-
on the transient behavior. Note that also a finite cost implies the '§ign. This is because the type A design is independaét,ofhereas
quired stabilization. the performance of the type R controller degrade& dncreases.

Performance of a controllét will be measured in this paper with

respect to a worst case cost, .. P(S) x C — Ry.3 whereP(S) |y A CompARISONBETWEENADAPTIVE AND ROBUSTBACKSTEPPING
denotes the power set 6fand where (7), shown at the bottom of the

page, holds trué. In this section, we will demonstrate how the framework described
We now make a crucial definition. previously can be used to explicitly compare the performance of two
Definition2.1: A P stable control design is a mappitig R, — ¢ backstepping control designs.

such that

A. Robust Controller (ISS Controller)

P(Zp(A(0)),I(8)) < oo, V6 20. (8) The robust controller is a variant on robust backstepping [5], [7] and

is defined recursively as follows. Let> 0 andzy, = ao = 0. Then,
Thus, we are concerned with the behavior of a class of controllgty 1 < ; < n, define

{I'(6) }s>0 as specified by the design functibnwhich defines a (dif-

ferent) controller for each uncertainty levelExamples of design op- 2 =X — Gy
eratorsT” will be given later by, e.g., (10), (11), (30), (19), (20), and =1 50
Qf—1
(40). @ (21,00, 05) = — ¢z — zi1 + Z P (Zj+1)
j=1
Ill. A PARTIAL CLASSIFICATION OF CONTROL DESIGNS N P 2
—rz; | w; + Z = w;
First, we make two definitions. The first is a stronger version of the =1 0z,
concept of universality in adaptive control, namely we demand that for il
all un(_:e_rgainty Ievel§, a ;ingle controller gives a finiteT co§t. _ <.in _ Z gr—l ff) (20)
Definition 3.1: T is said to be a type A control design if = 7

1) T is P stable

. ) ) We letT; : R™ R™ d te th i z)==z.Th troll
2) there exist&, € C such that for alls > 0, T'(§) = E,. e eth ~ enote the mappingi () € controfler

E,(x) is then taken to be
3We also admit the possibility that eithgf or 7 may not be defined for all _
their respective domains. B (k) u= an(a). (11)

4The final supremum is taken over all solutions to the closed loop, this is . . . .
required since our differential equations have discontinuous right-hand sideglevant properties of this well-known control design are summarized
hence although existence of solutions will be guaranteed, uniqueness will nais follows.

P([Zp(A(8)).E]) = sup sup sup Ty, ul-)]- @)
Jea(s) z0€P solns [, ({£}).=]
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Proposition 4.1: For the closed-loop systé®.,(A(6)),Z-(k)),

wherezry, € R” we have

1) y, x, v are uniformly bounded for all > 0 as a function ofeo,
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Then, 4) follows as required:

§ andk;
i . 7 7 i
2) %1111 bupt?x ly(t)] < 2\/n(n + 1)6//\/28(1», ks nn+ 1) -
3) if Ti(wo) Ti(za) > n° > (n(n+ 1)6%)/8ck, ther? <lec+ 7€ + 4—2 —Vdt
2 K1) 0
nln+ 1162\ ! .
4k (Tl (x0)" T (20) — 772> = <c + gez + %) (V(0) =V ("))
m(7,) < ; (12) i
8ckn? —n(n +1)862 aN=1 s 1 2
‘ ko nn+1)8 Z 20 — 1)
=\t e 2 '
4y if Ty (20) " Ti(x0) > 1 > n(n +1)5%/8ck, then K
. koo nn+ 182\ " [l —n? B. Adaptive Controller
/ 2(t)dt < <c+ &+ —7) <L) @@y -
7 2 drn? 2 The adaptive controller is also based on a backstepping idea. How-
ever, the adaptive estimates are of the uncertainty levedther than
where any physical parameter of the system as in more standard designs, e.g.,
[5]. This controller operates by increasing it's gains until the state of the
= min inf{wi (21,n.. i) |e €R" systemis sufficier!tly small and can be thought_ of as an adaptive coun-
1<i<n terpart to the previous robust controller. Later, in Section IV-E we will
, consider conventional parametric adaptive controllers under stronger
T2 (2)] < |Th (T’O)l}' 14) assumptions on the system uncertainty.

Proof: (Sketch). Let = (1/2):T
pute

2 : 2 2
V —L/« ~-|- |:~L i ,; — RZ; W;
i—1

Oy o evi—q
+g< Sl (- 1) - (6

T n(n + 1)(52 '

- 8K

<

1) and 2) now follow from standard arguments. 3) is established as’
follows. First, note that the /2 level set oft is invariant, so defining

= {t > 0]z"z > 5}, we must haveZ,” = [0
t* € [0, o0]. Now, the inequalities

[, =V dt
7 _
- iIlfteT; |‘Y(f)|

VO -V

z. Then, it is routine to com-

)

4K (T1 (z0)" Th (w0) — "IZ)

We define the adaptive controller as follows. ket 0, zo = ap =
0. Forl < i < n, define

B =wi— iy

a; (;L’l,...,;l‘r,j,el,..-wei>
O

— Zi— 1+ZO
=1

60 1 A
+Z - Tip1 — 0z

0(?1 1

1)
)

— cz

CZg

- -y

J=1

OaT 1
+Z< Oz

1y 0
Bi—fi

2
w;

— n(n+1)62
("}2 - 8k

establish 3) as required. We establish 4) as follows.
(15), we can bound” as

—(c+gez>zlz+

> 1°, so

n(n + 1)6°

7 <
! 4k

In particular, o0, t*) we have:T -

(c n Eez) T, nin+1)6% 7z
2 4k n?

Koo n(n +1)6* T,
<c—|— 26 + i z z.

V< —

SHerem(T') denotesthe Lebesgue measure of th&set R, .

8ckn? — n(n + 1)62

(15)
da; 2
—1
B =2 ( +Z< 5, ]) ) (19)
,t*) for some N . ] N .
We letT: : R*™ — R*" denote the mappin@s («,8) = (z,6). The
controller=,, is then taken to be
ot U =0y, (r,é) R
AN
ii=p(8(03).2))
F;(0)=0 1<i<n (20)

(16)

whereD is a dead-zone function defined to be such tBx{2, =) = 0
if z€ QandD(Q,z) =1if = ¢ QandB(z, r) denotes the Euclidean
Alternatively Bl centred at, of radiusr. As the closed Ioop will be governed by an
equation with a discontinuous RHS, we adopt the Fillipov notion of a
solution, [2]. Relevant properties of this controller are summarized in
the following.
Proposition 4.2: For the closed-loop systef®.,(A(6)),=Z.),
wherez, € R™ we have
1) y, x,u, 9 are uniformly bounded for all > 0 as a function of
ro andé;
2) lim sup,___ |ly(®)| < n/2 < n;
3) if 71 (z0)" Th(x0) > 5%, then

17

(18) 2 (T4 (20)" T3 (o) = )

m (L) < 3cn?

(21)
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Proof: Whenever: ¢ B(0,1/2) we can write the system in the tion of a Fillipov solution,d; = \3; for some\ € [0,1]. So since
z-coordinates in the forml(< i < n) D_z" z = 0, it follows from (24) that:

. . 0 n
% —4l+i1_l 'C/wz Zic1 + (fz fi ) 9. =\ < LT _ Z (9 _ é,) 22
0 =1
o O\
i1 2 A Z < Oz wj) - @n
_ éizi (r”)? + Z <8(l"1',—1 “/’j) ) j=1 .
’ Oi; Consequently
=zZip1 — Czi — Zis)

+(6-6.)= <u + Z <3al L )2> bv :D-%ZTZ + D-% (¢~ ‘9>T (¢-9)
) Or] :_l(e_é>T(;<>\<£—czT7><0 (28)
((f, — f,- ) — Hz,"u,v;) 2 = 4 3 IS

iy iy 2 where the last two inequalities follow from (25) and (26), as required.
+ Z G f;) 0z < G u’f) Consequently, it can be established that— B(0,7/2), (hence,
! - limsup, . |y(t)| < n/2 < 1), = is bounded and thakis bounded.
(22) By standard arguments we have the uniform boundednegsagfu,
6. 3) is established by the inequalities

o

Now, we define

. T 2
N1 1+ ~\2 4 1)62 =Vt 2(Ty (x0)” Ty (o) — 1
V(b)) =524 5> (0 -0) ﬁzn(";fiz). @)  m(T)< S, < ( — ) (29)
T =1 =en infteTn )( 3en
Since [ |
ALl L,
at2” - 7 C. Comparative Result
n 1—1 2 . . . .
N2 f 2 doi—1 1) Robust Backstepping is a Type R Desidgfrom the previous
+ Zl (9 97’) o <LL’ + Z < Ox; LL]) ) properties of the robust controller, we define a robust control design
= = by
+ 2 D= f7) = 0ziw; 2
<((f f ) ) T, (62) ==, <w) Voo > 0. (30)
4en

that the robust desighi. is type R with respect to the transient cost.

i—1 2
Z Oovi—1 . Oovi— i i i i
n < 1 (fj _ f,o) . < o ,1 7!’;‘) >> The crux of this note is the following result which allows us to show
(24) Proposition 4.3: Consider the integrator chai,,({0})

it follows that: U rdi =vig L<i<n—1

. Ty Uk Y = T1 (31)
V<—cxlz
" with initial condition of the form
0 2
Zi i = fi) — fziw;
+ ; <((f 1) v) 2(0) = (0,...,0,2n) (32)
y 2 wheren > 0 andu,, = =,(x). Then
+ Z iy fi fo) — 0z iy wj . 1
Oz J Ox; )
(25) / (yf + uf) dt < oo Ve >0 (33)
; 7,
By repeated application of the inequality — b* < a?/4, we can '
establishvz ¢ B(0,71/2) 2)
- =) / (2 +a2)d :
< _ v Y +uy)dt — 0o ask — oo. (34)
v Z( 04 + 4011 +j:1 4911)]2- T,
, 82 — 52 on? ., Proof: 1) follows from 1) and 3) of Proposition 4.1. To establish
< Z <—czi + 10 + Z @) < 1 ZPZ’ (26) 2), definet,, = inf{t > 0|, (t.) = n}, t. = sup{t < ti|on(ts) =
=1 7=l =1 29}, ex = t. — 1. and letH (x,i) denote the intervaH (i) =

As the closed-loop system has a discontinuous RHS, it is also nfé-+(1—1/2")e..t.]. Foracontradiction supposg /4 0asx — oo,
cessary to check for the absence of destabilising sliding solutions ignthere exists an. > 0 and a subsequender,, },»>1 such that
the boundary of the dead-zone region. Thus, it suffices to check that, > e« Vm 2> 1.

DV < 0forz € 8B(0,1/2) andD_z* =z = 06. Now, by defini- For an induction, claim fod < i < n that

SHere D _ denotes the left-hand derivative. Tn_i(t) > 270N 20t € H(k,i). (35)
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By constructionym > 1, e.,. > e«, SOz, (t) > nVt € H(x,0),s0 I, I, be defined by (30), (40) respectively. Thgh > 0 such that

claim is valid for: = 0. Assume the claim is valid far= j. Then

oo () = an(t) 2 27DUTV 2ely i€ H(n.j).  (36)

Since all components of are increasing of9, ¢..] by definition of the
initial condition, it follows that for alt € H(x,j + 1):

Tn—j—1(t) >m (H(k,j)\ H(r,j+ 1))

X < inf :i'n,]’,l)
H(k,j+1)\H(x,5)

—o—G+D/2,4, ©*
=2 ex) I

:2—(j+1)(j+2)/2€i+177 (37)

thus completing the proof of the claim.
Now, sinceH (r,n — 1) C 7,, it follows that:

/ z2dt2/ 2idt
7, H(x,n—1)

n
> (27(77)(7771)/26:—17’>2

9

€x
on—1
:2—(”-&-1)("—1)/2ein—l77 (38)
This is a contradiction since by 4 of Proposition 4];.7,7 22dt — 0 as
r — oo (asTi(xe) = zo by choice of the initial condition and the
equilibrium assumption on the nominal model). Therefere— 0 as
Now, the following estimate holds by Cauchy—Schwartz:

/ uidtz/
T, H(x,n—1)

W .
(fH(»: 1) ;z:n;irnclt)
fH(»:‘n—l) agdt
(3 (th) = 2% (t))”
B 4fH(N.n71) whdt
>L.
B 4]H(N.n71) Tfl(]f

wldt

>

(39)

V& > 638" > & such thatvsy > &' we have

P(Ep(A(61)), T (62)) >P(Ep(A(61)),Ta(62)). (41)

Proof: The result follows from a direct application of Lemma 3.3

and Propositions 4.4 and 4.5.

E. Further Generalizations and Applications

« Under greater structural assumptions on the uncertaintsim-
ilar results comparing the robust controller (10), (11), (30) with
conventional parametric adaptive controllers can be obtained. For
example, consider an uncertainlyof the form

f €A(parametricé)
:{f € C”(Rn X R+7Rn) |Vt Z O?fi (1"13- .l‘,,f)

}-

This describes an parametrically uncertain time invariant strict
feedback system. The same robust control design (10), (11), (30)
can be utilized, since for a suitable choicewf(eg.w; = 1 +

|¢:]), we have

2

ce) 8,00 € R™, 076 =67 (42)

=i (21,...

A(parametricé) C A <L"° <R" X Ry %) ./0,6) . (43)
Furthermore, it is straightforward to prove that standard adaptive
controllers such as the adaptive backstepping design [5] or tuning
function design [5] have the type A property. Hence the analogue
of Theorem 4.6 is also valid for these controller comparisons.
Theorem 4.6 requires the actual uncertainty to be sufficiently
large so that we can ensutec A and hence apply Proposition
4.3. To remove the assumption on the high uncertainty level, we
require further restrictions on the nominal nonlinearfy. For
example, this assumption can be removed‘if= 0, or if we
have

o r,cox) >0, Vo, >0, 1<i<n—1, fo=0. (44)

This is summarized in the following theorem.
Theorem 4.7: Suppose the initial condition $eis given by 2 and

the uncertainty modeh (§) = A(L*(R" x Ry; 1/w), £°, 6) is given

. . by (4), where the nominal nonlinearitf satisfies (44). Suppose the
Finally, the result follows since;, ., @ndt < dexn® — 0, as  performanceP(Sp(A(5),Z) is defined by (6). LeF,., ' be defined

K — 00. ]

by (30), (40) respectively. Th&fs, > 038" > &1 such thatvs, > &

Proposition 4.4: I'r [(30)] is a type-R control design with respect we have

to the performance cof® defined by (6)
Proof: Takeé > maxi<i<n [|f7 || (ri,1/w,), SO0 € A. The
fact thatl"r is P stable follows from 1) and 3) of Proposition 4.1. The

P(Sp (A (01).T, (82)) > P (Se (A (61)) . Ta (62))

Proof: The proofis similar to that of Theorem 4.6, by noting that

(45)

divergent performace property now follows from Proposition 4.3 Proposition 4.3 can be extended to the casE pf by noting that the

Adaptive Backstepping is a Type A Desigiihe adaptive control equivalent inequality (36) holds by the sign assumptiorfon

design denoted by, is defined by

[.(8) =2, ¥§>0. (40)

It is simple to show that the adaptive design is a type A design.
Proposition 4.5: T',[(40)] is a type A control design with respect to

the performance cos® defined by (6)

Proof: This is a simple consequence of Proposition 4.2. =

D. Main Result

The main result of this note now follows by an application of Lemma
3.3.

Theorem 4.6: Suppose the initial condition gkis given by 2, and
the uncertainty modeh (§) = A(L>(R" x Ry; 1/w), £°, 8) is given

e The results can also be extended to a number of alternative
cost functionals, here we remark that the integrand can easily
be changed: Leg(t) > 0 be the instantaneous cost occured
at timet > 0. If ¢ is of the formq(t) = Q(y(t),u(t)),
where @ is radially unbounded (so that penalizes both the
output and the control effort), then by definition @f we have
q(t) > v(y*(t) + u>(t)) for some clask.. function~. The
enables us to give the same results for the cost functional with
integrandy.

V. CONCLUDING REMARKS

We have demonstrated that an adaptive backstepping design outper-

forms its robust counterpart provided that the uncertainty in the system

by (4). Suppose the performanBéX »(A(6), Z) is defined by (6). Let is sufficiently high and that the a-priori estimate of the uncertainty is
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sufficiently conservative. The performance was measured in a worghn LMI Condition for the Robust Stability of Uncertain

case sense penalising both the output and the control effort. The tech- Continuous-Time Linear Systems
nigues developed in this paper for the comparison of these two specific
schemes can be extended to compare many other control designs. It was Domingos C. W. Ramos and Pedro L. D. Peres

illustrated how to obtain similar results for systems with parametric

uncertainties when comparing the same robust design to a parametric o - - ]
adaptive design: as the type A nature of an adaptive design is simple td\°Stract—A new sufficient condition for the robust stability of contin-

. uous-time uncertain linear systems with convex bounded uncertainties is
verify. o ) proposed in this note. The results are based on linear matrix inequalities
Although we have only stated qualitative results here, using recepiis) formulated at the vertices of the uncertainty polytope, which pro-

quantitative upper bounding techniques developed for adaptive contride a parameter dependent Lyapunov function that assures the stability of
performance [3], [4], bounds for the regions in which the adaptive d@?Y matrix inside the uncertainty domain. With the aid of numerical pro-

. . ures based on unidimensional search and the LMIs feasibility tests, a
sign outperforms the robust design bounds can be constructed. Héﬁgple and constructive way to compute robust stability domains can be

ever, as we have made no effort to optimize the lower bound developgghplished.

in this note, we have not exhibited these regions, but leave this for fu- ) . - ) )
Index Terms—Linear matrix inequalities (LMIs), linear uncertain sys-

ture work. tems, parameter dependent Lyapunov functions, robust stability, time-in-
variant uncertain parameters.
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