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An Analytical Comparison Between the Nonsingular
Quadratic Performance of Robust and Adaptive

Backstepping Designs

M. French

Abstract—Robust and adaptive backstepping designs for an uncertain
strict feedback system are compared with respect to a cost functional which
is based on an instantaneous quadratic penalty measuring both the output
transient and the control effort. It is shown that the adaptive design out-
performs the robust design when the actual uncertainty level is sufficiently
high and the a-priori known uncertainty level is sufficiently conservative.

Index Terms—Backstepping, nonsingular performance, robust control.

I. INTRODUCTION

A major open field in control theory concerns the definition of and
relation between the two main branches of the subject: namely adaptive
control and robust control [10]. There are many reasons as to why this
field remains so open, including the following.

• The lack of a clear focus in adaptive control as to the very defini-
tion of an adaptive controller [9].

• The fact that the domain of adaptive control is largely restricted
to that of parametric uncertainties, whilst robust control theory
encompasses much wider classes of uncertainties: perhaps pri-
marily it is focused on the case of un-modeled dynamics.

• Whilst the performance theory in robust control is highly de-
veloped, the corresponding adaptive performance and robustness
theory is less developed. Adaptive theory is largely limited to the
basic performance requirement of closed loop stability and the
analysis of the transient state signal, see, eg. [9], [8], [5], (with
some notable exceptions, see, for example, [4], [1]1 , [6])2 .

So there are two main problems in developing any comparative results:
firstly we must find a problem domain in which both robust and adap-
tive control designs can both be meaningfully considered; secondly we
must measure performance in a manner which is both meaningful and
for which analytical results can be derived. The recent framework of
constructive nonlinear control [5] is an ideal setting for the develop-
ment of such results. In this note, we will develop a set of results which
allow analytical comparisons to be made between adaptive and robust
designs: in particular we will establish results which indicate when
adaptive designs can be expected to out-perform their robust counter-
parts. The dual theory, namely conditions for when robust controllers
out-perform adaptive controllers will be considered in a forthcoming
paper.
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1Optimal adaptive results based on the solution of Isaacs equations such as
[1] utilize worst case costs which contain terms directly measuring the size of
the uncertainty, differing from the results in this paper and generally in robust
control where the uncertainty level solely enters the cost functional via a worst
case supremum over all possible systems.

2Although note that the inverse optimal results of [6] are not concerned with
integral performanceper-se, as the cost functional is not determineda priori,
rather they are concerned with guaranteeing desirable gain and phase margins.
See also [6] for a discussion of the limitations of earlier work on optimal LQ
adaptive control.

Necessarily for such a comparison to be made on a level playing
field, we are hampered largely by the state of art in adaptive control.
As noted above, adaptive control theory is weak in the presence of un-
modeled dynamics; thus in our comparative scenario we will only con-
sider static uncertainties: those that arise from bounded external dis-
turbances, or internal static uncertainties of the plant. In all other man-
ners, we will weight the situation in favor of the robust control theory:
namely, we will consider arbitrarily fast time variations and nonpara-
metric uncertainties. Performance will be measured by a integral per-
formance cost functional which penalizes both the state and the control
effort.

The main result of this note establishes that an adaptive backstepping
design out-performs its robust counterpart when the actual uncertainty
level is sufficiently high and thea priori known uncertainty level is suf-
ficiently conservative. This is undoubtedly a “folklore” result which is
known to control practioners:adaptive control should be used when the
uncertainty is high, but this note establishes the first such mathematical
result.

II. SYSTEMS, UNCERTAINTIES AND PERFORMANCECRITERIA

LetU ,Y be function spaces representing the input and output signal
spaces. A system is denoted by� and is a causal operator� : U ! Y .
The set of all admissable causal systems� is denoted byS = S(U;Y).
The basic problem considered in this paper is the control of a parame-
terized set of systems�p(ffg) wherep 2 P generally represents eg.
an initial condition andf 2 F represents, e.g. a system function. In
particular, we will consider systems in a (time varying) strict feedback
form

�x (ffg) : _xi =xi+1 + fi(x1; . . . ; xi; t) 1 � i � n� 1

_xn =u+ fn(x1; . . . ; xn; t) x(0) = x0

y =x1: (1)

The parameterised set of systems is denoted by�P , ie.
�P = f�p(ffg) j p 2 Pg. For concreteness, we defineP to
be the initial condition set

P = fx0 2
n j xT0 x0 � 4�2g: (2)

To model uncertainties, we definef�(�)g��0 to be a set of subsets
of F such that

1: �(0) = f
0 for somef0 2 F

2:�(�1) � �(�2) if �1 � �2: (3)

We say�p(�(�))has uncertainty�(�)with an uncertainty level�. For
the systems given by (1), we consider pointwise uncertainty models of
the form

f =(f1; . . . ; fn)
T 2 �(�) = � L

1 n � +;
1

w
; f

0
; �

= ff 2 C ( n � +;
n) j 8t � 0

kfi(�; t)� f
0
i (�)kL ( ;1=w ) � �; 1 � i � n

= f 2 C ( n � +;
n)

(fi(x; t)� f0i (x))

wi(x)

� �; 8x 2 i
; 8t 2 +; 1 � i � n (4)

wheref0 = (f01 ; . . . ; f
0
n)

T is the nominal model and the continuous
functions (f0i : i ! 1 � i � n) satisfyf0i (0) = 0 for 1 � i � n.
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Furthermore we assume that the weightw is continuous andwi(x) >
0 8x 2 i, 1 � i � n. We have thus defined the system�P (�(�)).
f�p(�(�))g��0 is a sequence of subsets ofS and is defined in the
natural manner, likewisef�P (�(�))g��0.

A controller is denoted by� and is a causal operator� : Y ! U .
The controllers we will be considering are defined in Section IV. The
set of all admissable controllers is denoted byC = C(Y;U). Finally
we define an interconnection[�;�] of a system� and controller� as
[�;�] = (y; u)wherey; u are the closed-loop signals (ie. the solutions
of �u = y; u = �y).

Performance of a closed loop is measured by a functional of the
output and input signals

J : Y � U ! +: (5)

Throughout, we consider a quadratic cost functional which penalizes
the nonsingular transient performance of the system and is given by

J [y(�); u(�)] =
T

y
2(t) + u

2(t) dt (6)

where the time setT� is defined asT� = ft � 0 j jy(t)j > �g. Such a
cost penalizes the response of the system whilsty(t) 62 [��; �], hence
for a closed loop whose goal is to stabilisey to any closed subset of
(��; �), whilst keepingy; u bounded, this cost is a reasonable penalty
on the transient behavior. Note that also a finite cost implies the re-
quired stabilization.

Performance of a controller� will be measured in this paper with
respect to a worst case cost, ie.P : P (S) � C ! +;3 whereP (S)
denotes the power set ofS and where (7), shown at the bottom of the
page, holds true.4

We now make a crucial definition.
Definition2.1: A P stable control design is a mapping� : + ! C

such that

P(�P (�(�));�(�)) <1; 8� � 0: (8)

Thus, we are concerned with the behavior of a class of controllers
f�(�)g��0 as specified by the design function�, which defines a (dif-
ferent) controller for each uncertainty level�. Examples of design op-
erators� will be given later by, e.g., (10), (11), (30), (19) , (20), and
(40).

III. A PARTIAL CLASSIFICATION OF CONTROL DESIGNS

First, we make two definitions. The first is a stronger version of the
concept of universality in adaptive control, namely we demand that for
all uncertainty levels, a single controller gives a finite cost.

Definition 3.1: � is said to be a type A control design if

1) � is P stable;
2) there exists�a 2 C such that for all� � 0, �(�) = �a.

3We also admit the possibility that eitherJ orP may not be defined for all
their respective domains.

4The final supremum is taken over all solutions to the closed loop, this is
required since our differential equations have discontinuous right-hand sides,
hence although existence of solutions will be guaranteed, uniqueness will not.

The second definition captures the essential feature of robust de-
signs, namely that the performance degrades as the uncertainty descrip-
tion becomes more conservative.�

Definition 3.2: � is said to be a type R control design if

1) � is P stable;
2) there exists� � 0 such that for all�1 > �, P(�P (�(�1));

�(�2)) ! 1 as �2 ! 1.

It is straightforward to observe that control designs of type A and R
are mutually exclusive as: R implies (not A). However, this does not
provide a complete classification for the reverse implication does not
hold and so there are controllers which are of neither type. The key
performance relation between the two types of design is given by the
following lemma:

Lemma 3.3: Let�a, �r be type A and R designs respectively. Then
9� � 0 such that8�1 � � 9�0 � �1 such that8�2 � �0 we have

P (�P (�(�1));�r(�2)) > P (�P (�(�1));�a(�2)) : (9)

Proof: This is a simple consequence of the definition of type A
and type R control designs.

The interpretation of this lemma is as follows. Think of�1 as the ‘ac-
tual’ uncertainty level in the system and�2 as the a-priori known un-
certainty level in the system. Typically�2 is a conservative estimate of
�1. The lemma states that providing the actual uncertainty level is suf-
ficiently high, then as thea priori estimated uncertainty level becomes
more conservative, the type A design neccessarily beats the type R de-
sign. This is because the type A design is independant of�2, whereas
the performance of the type R controller degrades as�2 increases.

IV. A COMPARISONBETWEENADAPTIVE AND ROBUSTBACKSTEPPING

In this section, we will demonstrate how the framework described
previously can be used to explicitly compare the performance of two
backstepping control designs.

A. Robust Controller (ISS Controller)

The robust controller is a variant on robust backstepping [5], [7] and
is defined recursively as follows. Letc > 0 andz0 = �0 = 0. Then,
for 1 � i � n, define

zi =xi � �i�1

�i (x1; . . . ; xi) =� czi � zi�1 +

i�1

j=1

@�i�1

@xj
(xj+1)

� �zi w
2
i +

i�1

j=1

@�i�1

@xj
wj

2

� f
0
i �

i�1

j=1

@�i�1

@xj
f
0
j : (10)

We letT1 : n ! n denote the mappingT1(x) = z. The controller
�r(�) is then taken to be

�r(�) : u = �n(x): (11)

Relevant properties of this well-known control design are summarized
as follows.

P([�P (�(�));�]) = sup
f2�(�)

sup
x 2P

sup
solns [� (ffg);�]

J [y(�); u(�)]: (7)
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Proposition 4.1: For the closed-loop system(�x (�(�));�r(�)),
wherex0 2 n we have

1) y, x, u are uniformly bounded for allt � 0 as a function ofx0,
� and�;

2) lim supt!1 jy(t)j � n(n+ 1)�=
p
8c�;

3) if T1(x0)TT1(x0) � �2 > (n(n+ 1)�2)=8c�, then5

m (T�) �
4� T1 (x0)

T T1 (x0)� �2

8c��2 � n(n+ 1)�2
; (12)

4) if T1(x0)TT1(x0) � �2 > n(n+ 1)�2=8c�, then

T

z2(t)dt � c+
�

2
�2 +

n(n+ 1)�2

4��2

�1
zT0 z0 � �2

2
(13)

where

� = min
1�i�n

inf wi (x1; . . . ; xi) jx 2 n

jT1(x)j � jT1 (x0)j : (14)

Proof: (Sketch). LetV = (1=2)zTz. Then, it is routine to com-
pute

_V =� czT z +

n

i=1

zi fi � f0i � �z2iw
2
i

+

i�1

j=1

zi
@�i�1

@xj
fj � f0j � �z2i

@�i�1

@xj
wj

2

�� czT z +
n(n+ 1)�2

8�
: (15)

1) and 2) now follow from standard arguments. 3) is established as
follows. First, note that the�2=2 level set ofV is invariant, so defining
T �� = ft � 0jzT z � �2g, we must haveT �� = [0; t�) for some
t� 2 [0;1]. Now, the inequalities

(T�) � T
� _V dt

inft2T j _V (t)j

� V (0)� V (t�)

c�2 � n(n+1)�
8�

=
4� T1 (x0)

T T1 (x0)� �2

8c��2 � n(n+ 1)�2

(16)

establish 3) as required. We establish 4) as follows. Alternatively to
(15), we can bound_V as

_V � � c+
�

2
�2 zT z +

n(n+ 1)�2

4�
: (17)

In particular, on[0; t�) we havezT z � �2, so

_V �� c+
�

2
�2 zT z +

n(n+ 1)�2

4�

zT z

�2

=� c+
�

2
�2 +

n(n+ 1)�2

4��2
zT z: (18)

5Herem(T ) denotesthe Lebesgue measure of the setT � .

Then, 4) follows as required:

T

y2(t) dt �
T

zT z dt

� c+
�

2
�2 +

n(n+ 1)�2

4��2

�1 t

0

� _V dt

= c+
�

2
�2 +

n(n+ 1)�2

4��2

�1

(V (0)� V (t�))

= c+
�

2
�2 +

n(n+ 1)�2

4��2

�1
zT0 z0 � �2

2
:

B. Adaptive Controller

The adaptive controller is also based on a backstepping idea. How-
ever, the adaptive estimates are of the uncertainty level�, rather than
any physical parameter of the system as in more standard designs, e.g.,
[5]. This controller operates by increasing it’s gains until the state of the
system is sufficiently small and can be thought of as an adaptive coun-
terpart to the previous robust controller. Later, in Section IV-E we will
consider conventional parametric adaptive controllers under stronger
assumptions on the system uncertainty.

We define the adaptive controller as follows. Letc > 0, z0 = �0 =
0. For1 � i � n, define

zi =xi � �i�1

�i x1; . . . ; xi; �̂1; . . . ; �̂i

=� czi � zi�1 +

i�1

j=1

@�i�1

@�̂j
�j � f0i �

i�1

j=1

@�i�1
@xj

f0j

+

i�1

j=1

@�i�1
@xj

xj+1 � �̂izi w2

i +

i�1

j=1

@�i�1
@xj

wj

2

�i =z
2

i w2

i +

i�1

j=1

@�i�1
@xj

wj

2

: (19)

We letT2 : 2n ! 2n denote the mappingT2(x; �̂) = (z; �̂). The
controller�a is then taken to be

�a : u =�n x; �̂ ;

_̂
�i = D B 0;

�

2
; z �i

�̂i(0) =0 1 � i � n (20)

whereD is a dead-zone function defined to be such that:D(
; z) = 0
if z 2 
 andD(
; z) = 1 if z 62 
 andB(x; r) denotes the Euclidean
ball centred atx, of radiusr. As the closed loop will be governed by an
equation with a discontinuous RHS, we adopt the Fillipov notion of a
solution, [2]. Relevant properties of this controller are summarized in
the following.

Proposition 4.2: For the closed-loop system(�x (�(�));�a),
wherex0 2 n we have

1) y, x, u, �̂ are uniformly bounded for allt � 0 as a function of
x0 and�;

2) lim supt!1 jy(t)j � �=2 < �;
3) if T1(x0)TT1(x0) � �2, then

m (T�) �
2 T1 (x0)

T T1 (x0)� �2

3c�2
: (21)
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Proof: Wheneverz 62 B(0; �=2) we can write the system in the
z-coordinates in the form (1 � i � n)

_zi =zi+1 � czi � zi�1 + fi � f0i

+

i�1

j=1

@�i�1
@xj

fj � f0j

� �̂izi w2
i +

i�1

j=1

@�i�1
@xj

wj

2

=zi+1 � czi � zi�1

+ � � �̂i zi w2
i +

i�1

j=1

@�i�1
@xj

wj

2

+ fi � f0i � �ziw
2
i

+

i�1

j=1

@�i�1
@xj

fj � f0j � �zi
@�i�1
@xj

wj

2

:

(22)

Now, we define

V z; �̂ =
1

2
zT z +

1

2

n

i=1

� � �̂i
2

; � =
n(n+ 1)�2

2c�2
: (23)

Since

d

dt

1

2
zT z =� czT z

+

n

i=1

� � �̂i z2i w2
i +

i�1

j=1

@�i�1
@xj

wj

2

+ zi fi � f0i � �ziw
2
i

+

i�1

j=1

@�i�1
@xj

fj � f0j � �zi
@�i�1
@xj

wj

2

(24)

it follows that:

_V �� czT z

+

n

i=1

zi fi � f0i � �ziw
2
i

+

i�1

j=1

@�i�1
@xj

fj � f0j � �zi
@�i�1
@xj

wj

2

:

(25)

By repeated application of the inequalityab � b2 � a2=4, we can
establish8z 62 B(0; �=2)

_V �

n

i=1

�cz2i +
fi � f0i

2

4�w2
i

+

i�1

j=1

fj � f0j
2

4�w2
j

�

n

i=1

�cz2i +
�2

4�
+

i�1

j=1

�2

4�
�

c�2

4
�

n

i=1

cz2i : (26)

As the closed-loop system has a discontinuous RHS, it is also nec-
cessary to check for the absence of destabilising sliding solutions on
the boundary of the dead-zone region. Thus, it suffices to check that
D V � 0 for z 2 @B(0; �=2) andD zT z = 06 . Now, by defini-

6HereD denotes the left-hand derivative.

tion of a Fillipov solution, _̂�i = ��i for some� 2 [0; 1]. So since
D zT z = 0, it follows from (24) that:

_̂
�i = � czT z �

n

i=1

� � �̂i z2i

� w2
i +

i�1

j=1

@�i�1
@xj

wj

2

: (27)

Consequently

D V =D
1

2
zT z +D

1

2
� � �̂

T

� � �̂

=�
1

2
� � �̂

T _̂
� � �

c�2

4
� czT z � 0 (28)

where the last two inequalities follow from (25) and (26), as required.
Consequently, it can be established thatz ! B(0; �=2), (hence,
lim supt!1 jy(t)j � �=2 < �), z is bounded and that̂� is bounded.
By standard arguments we have the uniform boundedness ofy, x, u,
�̂. 3) is established by the inequalities

m (T�) �
T
� _V dt

inft2T _V (t)
�

2 T1 (x0)
T T1 (x0)� �2

3c�2
: (29)

C. Comparative Result

1) Robust Backstepping is a Type R Design:From the previous
properties of the robust controller, we define a robust control design
by

�r (�2) = �r
n(n+ 1)�22

4c�2
8�2 � 0: (30)

The crux of this note is the following result which allows us to show
that the robust design�r is typeR with respect to the transient cost.

Proposition 4.3: Consider the integrator chain�x (f0g)

�� : _xi =xi+1 1 � i � n� 1

_xn =u� y� = x1 (31)

with initial condition of the form

x(0) = (0; . . . ; 0; 2�) (32)

where� > 0 andu� = �r(�). Then

1)

T

y2� + u2� dt <1 8� > 0; (33)

2)

T

y2� + u2� dt!1 as�!1: (34)

Proof: 1) follows from 1) and 3) of Proposition 4.1. To establish
2), definet� = infft � 0jxn(t�) = �g, t0� = supft � tkjxn(t�) =
2�g, e� = t� � t0� and letH(�; i) denote the intervalH(�; i) =
[t0�+(1�1=2i)e�; t�]. For a contradiction supposee� 6! 0 as�!1,
ie. there exists ane� > 0 and a subsequencefe� gm�1 such that
e� � e� 8m � 1.

For an induction, claim for0 � i � n that

xn�i(t) � 2�(i)(i+1)=2ei�� 8t 2 H(�; i): (35)
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By construction,8m � 1, e� � e�, soxn(t) � � 8t 2 H(�; 0), so
claim is valid fori = 0. Assume the claim is valid fori = j. Then

_xn�j�1(t) = xn�j(t) � 2�(j)(j+1)=2ej�� 8t 2 H(�; j): (36)

Since all components ofx are increasing on[0; t�] by definition of the
initial condition, it follows that for allt 2 H(�; j + 1):

xn�j�1(t) �m (H(�; j) nH(�; j + 1))

� inf
H(�;j+1)nH(�;j)

_xn�j�1

=2�(j)(j+1)=2ej��
e�
2j+1

=2�(j+1)(j+2)=2ej+1� � (37)

thus completing the proof of the claim.
Now, sinceH(�; n � 1) � T� , it follows that:

T

z2dt �
H(�;n�1)

x21dt

� 2�(n)(n�1)=2en�1
� �

2 e�
2n�1

=2�(n+1)(n�1)=2e2n�1
� �2: (38)

This is a contradiction since by 4 of Proposition 4.1,
T

z2dt! 0 as
� ! 1 (asT1(x0) = x0 by choice of the initial condition and the
equilibrium assumption on the nominal model). Therefore,e� ! 0 as
� ! 1.

Now, the following estimate holds by Cauchy–Schwartz:

T

u2�dt �
H(�;n�1)

u2�dt

�
H(�;n�1)

xn _xndt
2

H(�;n�1)
x2ndt

=
x2n (t

0
�)� x2n (t�)

2

4
H(�;n�1)

x2ndt

�
9�4

4
H(�;n�1)

x2ndt
: (39)

Finally, the result follows since
H(�;n�1)

x2ndt � 4e��
2 ! 0, as

�!1.
Proposition 4.4: �R [(30)] is a type-R control design with respect

to the performance costP defined by (6).
Proof: Take� > max1�i�n kf

0
i kL ( ;1=w ), so0 2 �. The

fact that�R isP stable follows from 1) and 3) of Proposition 4.1. The
divergent performace property now follows from Proposition 4.3.

Adaptive Backstepping is a Type A Design:The adaptive control
design denoted by�a is defined by

�a(�) = �a; 8� � 0: (40)

It is simple to show that the adaptive design is a type A design.
Proposition 4.5: �a[(40)] is a type A control design with respect to

the performance costP defined by (6).
Proof: This is a simple consequence of Proposition 4.2.

D. Main Result

The main result of this note now follows by an application of Lemma
3.3.

Theorem 4.6: Suppose the initial condition setP is given by 2, and
the uncertainty model�(�) = �(L1( n� +; 1=w); f

0; �) is given
by (4). Suppose the performanceP(�P (�(�);�) is defined by (6). Let

�r , �a be defined by (30), (40) respectively. Then9� � 0 such that
8�1 � � 9�0 � �1 such that8�2 � �0 we have

P (�P (� (�1)) ;�r (�2)) > P (�P (� (�1)) ;�a (�2)) : (41)

Proof: The result follows from a direct application of Lemma 3.3
and Propositions 4.4 and 4.5.

E. Further Generalizations and Applications

• Under greater structural assumptions on the uncertainty�, sim-
ilar results comparing the robust controller (10), (11), (30) with
conventional parametric adaptive controllers can be obtained. For
example, consider an uncertainty� of the form

f 2�(parametric; �)

= ff 2 C ( n � +;
n) j8t � 0; fi (x1; . . . ; xi; t)

= 'i (x1; . . . ; xi)
T �; v� 2 m; �T � = �2 : (42)

This describes an parametrically uncertain time invariant strict
feedback system. The same robust control design (10), (11), (30)
can be utilized, since for a suitable choice ofw, (eg.wi = 1 +
j'ij), we have

�(parametric; �) � � L1 n � +;
1

w
; 0; � : (43)

Furthermore, it is straightforward to prove that standard adaptive
controllers such as the adaptive backstepping design [5] or tuning
function design [5] have the type A property. Hence the analogue
of Theorem 4.6 is also valid for these controller comparisons.

• Theorem 4.6 requires the actual uncertainty to be sufficiently
large so that we can ensure0 2 � and hence apply Proposition
4.3. To remove the assumption on the high uncertainty level, we
require further restrictions on the nominal nonlinearityf0. For
example, this assumption can be removed iff0 = 0, or if we
have

f0i (x1; . . . xi) � 0; 8xi � 0; 1 � i � n� 1; f0n = 0: (44)

This is summarized in the following theorem.
Theorem 4.7: Suppose the initial condition setP is given by 2 and

the uncertainty model�(�) = �(L1( n� +; 1=w); f
0; �) is given

by (4), where the nominal nonlinearityf0 satisfies (44). Suppose the
performanceP(�P (�(�);�) is defined by (6). Let�r, �a be defined
by (30), (40) respectively. Then8�1 � 09�0 � �1 such that8�2 � �0

we have

P (�P (� (�1)) ;�r (�2)) > P (�P (� (�1)) ;�a (�2)) : (45)

Proof: The proof is similar to that of Theorem 4.6, by noting that
Proposition 4.3 can be extended to the case of�f by noting that the
equivalent inequality (36) holds by the sign assumption onf0i .

• The results can also be extended to a number of alternative
cost functionals, here we remark that the integrand can easily
be changed: Letq(t) � 0 be the instantaneous cost occured
at time t � 0. If q is of the form q(t) = Q(y(t); u(t)),
whereQ is radially unbounded (so thatq penalizes both the
output and the control effort), then by definition ofQ, we have
q(t) � 
(y2(t) + u2(t)) for some classK1 function 
. The
enables us to give the same results for the cost functional with
integrandq.

V. CONCLUDING REMARKS

We have demonstrated that an adaptive backstepping design outper-
forms its robust counterpart provided that the uncertainty in the system
is sufficiently high and that the a-priori estimate of the uncertainty is
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sufficiently conservative. The performance was measured in a worst
case sense penalising both the output and the control effort. The tech-
niques developed in this paper for the comparison of these two specific
schemes can be extended to compare many other control designs. It was
illustrated how to obtain similar results for systems with parametric
uncertainties when comparing the same robust design to a parametric
adaptive design: as the type A nature of an adaptive design is simple to
verify.

Although we have only stated qualitative results here, using recent
quantitative upper bounding techniques developed for adaptive control
performance [3], [4], bounds for the regions in which the adaptive de-
sign outperforms the robust design bounds can be constructed. How-
ever, as we have made no effort to optimize the lower bound developed
in this note, we have not exhibited these regions, but leave this for fu-
ture work.

ACKNOWLEDGMENT

The author would like to thank Cs. Szepesvári for many useful dis-
cussions, and F. Beleznay for comments on an earlier draft of this note.

REFERENCES

[1] G. Didinsky and T. Basar, “Minimax adaptive control of uncertain
plants,” in Proc. IEEE Conf. Decision Control, Dec. 1994, pp.
2839–2844.

[2] A. F. Filippov, Differential Equations with Discontinuous Right-hand
sides, 1st ed. Boston, MA: Kluwer, 1988.

[3] M. French and C. Szepesvári, Function approximator based control de-
signs for strict feedback systems: LQ performance and scaling, sub-
mitted for publication.

[4] M. French, C. Szepesvári, and E. Rogers, “Uncertainty, performance and
model dependency in approximate adaptive nonlinear control,”IEEE
Trans. Automat. Contr., vol. 45, pp. 353–58, Feb. 2000.
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An LMI Condition for the Robust Stability of Uncertain
Continuous-Time Linear Systems

Domingos C. W. Ramos and Pedro L. D. Peres

Abstract—A new sufficient condition for the robust stability of contin-
uous-time uncertain linear systems with convex bounded uncertainties is
proposed in this note. The results are based on linear matrix inequalities
(LMIs) formulated at the vertices of the uncertainty polytope, which pro-
vide a parameter dependent Lyapunov function that assures the stability of
any matrix inside the uncertainty domain. With the aid of numerical pro-
cedures based on unidimensional search and the LMIs feasibility tests, a
simple and constructive way to compute robust stability domains can be
established.

Index Terms—Linear matrix inequalities (LMIs), linear uncertain sys-
tems, parameter dependent Lyapunov functions, robust stability, time-in-
variant uncertain parameters.

I. INTRODUCTION

The investigation of stability domains for state space models has
been addressed in many papers during the last years. The use of Lya-
punov functions is certainly the main approach for this kind of anal-
ysis, since bounds for the stability domains can be obtained in terms of
the associated Lyapunov matrix and the allowed perturbation directions
[1]. As is well known, the use of a parameter independent Lyapunov
function to investigate the stability domain of a linear system is only
a sufficient condition for robust stability. Denominatedquadratic sta-
bility in the literature (see, for instance, [2]), this kind of Lyapunov sta-
bility analysis can be used to design robust state feedback control gains
[3], [4], being specially adequate when time-varying uncertain param-
eters are considered (providing not too conservative results when the
parameters vary fast).

Less conservative results based on parameter dependent Lyapunov
functions have been obtained [5]–[7]. In most of these cases, the uncer-
tainty must verify some matching condition or must have a particular
structure and intensive computation is needed to test the robust stability,
sometimes involving scaling parameters. It is worth of mentioning that
scaling parameters can be useful in some situations, mainly when sta-
bility domains can be computed without evaluating all the vertices of
the polytope. Another recent and interesting approach for analysis and
control design of uncertain systems is based on the use of piecewise
Lyapunov functions [8] but the numerical solution of the problems also
requires a high level of computational complexity.

Among the more recent papers on this subject, it is worth to men-
tion the Lyapunov dependent parameter function approaches presented
in [9]–[11] and also the LMI formulations given in [12]. In [9], suffi-
cient conditions for diagonal and simultaneous stability of a class of
system matrices have been proposed in terms of LMIs which are re-
lated to passivity and real positiveness conditions. In [10], the suffi-
cient conditions for the existence of a parameter dependent Lyapunov
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