Dynamic Evaluation of Coordination
Mechanisms for Autonomous Agents

Rachel A. Bourne', Karen Shoop', and Nicholas R. Jennings?
! Department of Electronic Engineering
Queen Mary, University of London
London E1 4NS, UK
r.a.bourne,karen.shoop@elec.qgmul.ac.uk
2 Dept of Electronics and Computer Science
University of Southampton, Highfield
Southampton SO17 1BJ, UK
nrj@ecs.soton.ac.uk

Abstract. This paper presents a formal framework within which au-
tonomous agents can dynamically select and apply different mechanisms
to coordinate their interactions with one another. Agents use the task
attributes and environmental conditions to evaluate which mechanism
maximises their expected utility. Different agent types can be charac-
terised by their willingness to cooperate and the relative value they place
on short- vs long-term rewards. Our results demonstrate the viability of
empowering agents in this way and show the quantitative benefits that
agents accrue from being given the flexibility to control how they coor-
dinate.

1 Introduction

Autonomous agents are increasingly being deployed in complex applications
where they are required to act rationally in response to uncertain and un-
predictable events. A key feature of this rationality is the ability of agents to
coordinate their interactions in ways that are suitable to their prevailing cir-
cumstances [5]. Thus, in certain cases it may be appropriate to develop a de-
tailed plan of coordination in which each of the participant’s actions are rigidly
prescribed and numerous synchronisation points are identified. At other times,
however, it may be appropriate to adopt much looser coordination policies in
which the agents work under the general assumption that their collaborators are
progressing satisfactorily and that no explicit synchronisation is needed. What
this illustrates is that there is no universally best method of coordinating. Given
this fact, we believe agents should be free to adopt, at run-time, the method
that they believe is best suited to their current situation. Thus, for example, in
relatively stable environments social laws may be adopted as the most appro-
priate means of coordinating [10], whereas in highly dynamic situations one-off
contracting models may be better suited [11], and in-between, mechanisms that
involve the high-level interchange of participants’ goals may be best [4].



To achieve this degree of flexibility, agents need to be equipped with a suite
of coordination mechanisms (CMs) (with different properties and characteris-
tics), be provided with a means of assessing the likely benefit of adopting the
various mechanisms in the prevailing circumstances, and have the ability to se-
lect and then enact the best mechanism. Against this background, this paper
develops and empirically evaluates a generic decision making model that agents
can employ to coordinate flexibly. Specifically, we identify a number of poten-
tially differentiating features that are common to a wide range of CMs, provide a
decision-theoretic model for evaluating and selecting between competing mech-
anisms, and empirically evaluate the effectiveness of this model, for a number of
CMs, in a suitably general agent scenario. This work builds upon the preliminary
framework of [2], but makes the following advances to the general state of the
art. Firstly, using a range of CMs, we show that agents can effectively evaluate
and decide which to use, dependent on their prevailing conditions. Secondly, the
evaluation functions associated with these CMs highlight the different types of
uncertainty agents need to cope with and the different environmental parame-
ters they need to monitor, in order to coordinate flexibly. Thirdly, we show that
individual agent features such as their willingness to cooperate and the degree
to which they discount their future rewards affects which CM they adopt.

The remainder of the paper is structured in the following manner. Section 2
outlines the key components of the reasoning model and introduces the exemplar
coordination models we evaluate in this work. Section 3 describes the grid world
scenario we use for our evaluation. Section 4 formalises the reasoning models.
Section 5 describes the experimental results and analysis. Section 6 looks at
related work in this area. Finally, in section 7 we draw our conclusions.

2 Coordination Mechanisms

Flexible coordination requires the agents to know both how to apply a given
CM and how to reason about which mechanism to select. In the former case, an
agent must have access to the necessary protocols for coordinating with other
agents and/or the environment. In the latter case, an agent must be capable of
evaluating and comparing the possible alternatives.

2.1 Protocols for Coordination

Coordination involves the interworking of a number of agents, subject to a set of
rules. The specification of exactly what is possible in a particular coordination
context is given by the coordination protocol [8]. Thus, such protocols indicate
the parties (or roles) that are involved in the coordination activity, what com-
munication flows can occur between these parties, and how the participants can
legally respond to such communications. Here we refer to the instigator of the
coordination as the manager and to the other agents that assist the manager as
the subordinates (or subs).



For example, in the Contract Net protocol, the manager initiates a two-stage
process whereby bids are requested and received, and then selected and subs
are appointed. In a simpler mechanism, such as being commanded by a superior
officer, a sub simply obeys the commands it receives. In all cases, however, the
key point is that for each mechanism an agent supports, it must have the ability
and the know-how to enact the protocol.

2.2 Evaluation of Mechanisms

A manager that is faced with a coordination task will have several potential
CMs at its disposal. Each such mechanism requires a means of determining the
expected value it will provide, which should be comparable with the others avail-
able. To this end, an evaluation function is needed. The value of a given CM
may depend on many features including: the reward structure, the likely time of
completion, and the likely availability of subordinates. Generally speaking, the
more complex the coordination protocol and reward structure, the more com-
plex the evaluation function. In particular, the more uncertainty that exists in
the agent’s ability to set up and enact a CM, the harder it is to evaluate its use
accurately. Moreover, some of the parameters that are needed for evaluation are
likely to vary from mechanism to mechanism. A final consideration is that the
value of an agent’s current situation may also depend on the state of the mecha-
nism it has adopted. For example, an agent that has successfully recruited other
agents may value its state more highly than one still engaged in the recruitment
process. For all these reasons, evaluation functions need to be tailored to the
specific CM they describe.

When subordinates are invited to assist in coordination, they too must assess
the value of accepting. These valuations are typically less complex than those
for the managers since the reward on offer and the completion time are gener-
ally declared, though in some cases a sub may also need to handle uncertainty.
Subs also need to take into account whether accepting an offer would incur any
additional cost, such as a penalty for dropping a commitment to another agent.

2.3 Sample Mechanisms

This section outlines the protocols and reward structures for the CMs considered
in this work (their evaluation functions are left to section 4). Clearly this list is
not exhaustive. Rather our aim is to incorporate specific exemplars that are typi-
cal of the broad classes of coordination techniques that have been proposed in the
literature. Thus, the precise form of each mechanism is of secondary importance
to its broad characteristics and performance profile. Moreover, additional mech-
anisms can be incorporated simply by providing appropriate characterisations
and evaluation functions. Nevertheless we believe that the chosen mechanisms
are sufficient for our main objective of demonstrating the efficacy of dynamically
selecting CMs.

In this work, tasks are assumed to have several attributes: a minimum per-
sonnel requirement (mpr), a total requirement of agent effort (effort), and a



reward that is paid to the managing agent when the task is accomplished. Thus
a task that has mpr of 3 and effort of 6 may be realised by 3 agents each
contributing 2 units, by 6 agents each contributing 1 unit, but not by 2 agents
each contributing 3 units. It follows that tasks with a high mpr are likely to
incur a delay before the necessary subs are recruited and all agents can start
working on the task together. Here agents can only work on one task at a time.
However, each agent has a default task (mpr = 1, effort = 1) that it puts on
hold whenever it agrees to participate in a more complex one. The type of task
and how many are generated can all be varied experimentally.

Asocial CM: This mechanism is used when a manager elects to perform a
task alone; therefore there is no need to coordinate with any subs. The manager
adopts the task, works on it and, ultimately, receives all the reward. This CM
can only be used on tasks for which mpr = 1.

Social Law CM: A manager may elect to have the task performed by invoking
a social law (SL) that has been agreed in advance by all the agents in the
system!. For a task with mpr = n, the nearest n— 1 other agents are commanded
to work on the task with the manager. Because the social law extends to all
agents, the subordinates cannot refuse to help. They simply assist until they
are released from the task. The reward is then divided equally among all the
participants. In our experimental setting, the location of subs was performed by a
central coordinator allowing minimal set up delay and the prevention of multiple
managers attempting to command subs at the same time. A truly distributed
version is possible though would require a longer set up time.

Pot Luck CM: A manager that elects to use Pot Luck (PL) coordination, sets
terms under which it is willing to pay subs on a piecemeal (step-by-step) basis.
These terms are then offered to all agents in the direct vicinity (this is called
“pot luck” since the manager makes no active effort to recruit subs in the hope
that some are already present or wander by shortly). When the task is completed
the manager receives the full reward. From the subordinate’s point of view, it is
occasionally offered “temporary” work for an indefinite period at a fixed rate; it
either accepts and works on the task, or declines and ignores the offer. This CM
is likely to be more successful when the environment is densely populated. But
because the manager issues a blanket offer, it runs the risk of both over- and
under-recruitment of subs. A sub can decommit from a PL task at any time at
no penalty, keeping any reward it has already earned.

Contract Net CM: A manager that elects to use Contract Net (CN) coor-
dination requests bids from other agents that submit their terms according to
their current circumstances. The manager selects from among the bids received
and sends out firm offers. An agent receiving an offer either accepts and works
on the task, eventually receiving a reward based on its bid, or declines. The
manager may thus fail to recruit sufficient subs in which case it repeats the

! The process of agreeing the social law is not considered in this work. In particular,
this means that the associated costs of acheiving consensus are not factored into the
cost of this mechanism.



request-bid-offer cycle. When the task is accomplished, the manager receives the
whole reward but must pay off the subs with the agreed amounts. Again, under
this CM a manager may under recruit if some agent declines its offer. Once a
sub has accepted a task under this CM, it may later decommit though it will
have to pay a penalty for doing so. If a manager abandons a task under this CM,
it must pay off any subs it has recruited, according to their terms.

3 Grid World Scenario

The scenario involves a number of autonomous agents occupying a grid world (see
[2] for more details). Tasks are generated randomly according to the experimental
conditions and are found by the agents who must decide whether or not to take
them on. Each agent always has a specific (default) task that may be carried
out alone. Tasks are located at squares in the grid and each has an associated
mpr, effort and reward. One unit of effort is equivalent to one agent working on
the task at the square for one time step (provided sufficient agents work on it in
total). When accepting a task, an agent must decide how to tackle it; if the mpr
is greater than one, it must recruit other agents to assist it, according to the
various CMs at its disposal. To simplify the evaluation functions, tasks persist
until they have been achieved. A more realistic setting with deadlines on tasks
will require that the evaluation functions be extended to take into account the
possibility of a task not being completed in time.

The agents themselves have various features that can be parameterised to
simulate different behavioural types. Each agent has a willingness to cooperate
(wtc) factor which it uses when bidding for and evaluating tasks; when this factor
is low (wtec < 1) the agents are greedy and when high (wtc > 1) they are selfless;
in-between (wtc = 1) agents are neutral. Agents also use a discount factor (see
below) which reflects their capacity to value short- vs long-term rewards.

The agents move synchronously around the grid world, being capable of five
actions: up, down, left, right and work (remain). To simplify the analysis below,
the grid is formed into a torus so that an agent moving up from the top of the
grid arrives at the bottom in the corresponding column; similarly for the left
and right edges. This enables us to use a relatively simple probabilistic model of
square occupancy by agents.

This scenario offers a broad range of environments in which the effective-
ness of reasoning about the various CMs can be assessed. While this scenario
is obviously idealised (in the tradition of the tileworld scenario for single agent
reasoning), we believe it incorporates the key facets that an agent would face
when making coordination decisions in realistic environments. In particular, the
ability to systematically control variability in the scenario is needed to evaluate
our claims about the efficacy of flexible coordination and the dynamic selection
of CMs according to prevailing circumstances.



4 Agent Decision-Making

Since the agents always have a specific task to achieve with mpr = 1 and
effort = 1 they always have a non-zero expectation of their future reward. How-
ever, they can increase this reward by initiating or participating in collaborative
tasks (CTs) with other agents. In deciding on its collaborations, each agent aims
to maximise its future rewards by adopting the best mechanism under the cir-
cumstances. Thus at all instants in time, an agent will have a current goal being
undertaken using a particular CM with the agent taking a particular role.

Agents may find tasks in the environment or be offered them by other agents.
In either case, however, an agent needs a means of evaluating new tasks under
each of the CMs. It must also be able to compare these values with its current
task so as to determine when to accept a new offer. Thus each CM has an
associated evaluation function which it can use to approximate the value of
potential new tasks, as well as any current task being undertaken using it. These
evaluation functions have some common features, but they also differ between
the CMs in that they may use different aspects of the (perceived) environment.

An important consideration that needs to be incorporated into the evaluation
of new offers is that of liability. If, for example, an agent has agreed to participate
under the Contract Net CM, it may incur a penalty for decommitting — any
new offer will need to be greater than the current task and the decommitment
penalty. Conversely, a manager must manage its liabilities so that, if a task
becomes unprofitable, it can “cut its losses” and abandon it (since the situation
has already deteriorated from the time it was adopted).

Our agents are myopic in that they can only see as far as the next reward,
however since tasks may arrive at different times in the future we discount all
rewards back to the present using a discount factor, 0 < ¢ < 1. When § ~ 1,
the difference between long- and short-term rewards is not great; however, when
0 << 1, short-term rewards appear more attractive [7].

For the Social Law, Pot Luck and Contract Net CMs both managers and subs
mask their valuations according to their own wtc factor. This makes coordinating
over collaborative tasks a more attractive proposition when wtc is high and less
attractive when it is low. Evaluation of the Asocial CM is unaffected by wtc.

The following subsections give details of the evaluation functions used for
each of the aforementioned CMs. These functions are designed to illustrate the
sorts of functions that can be used to evaluate CMs. They are necessarily ap-
proximate valuations, not least because there is a great deal of uncertainty and
imperfect information in the scenario. We do not claim that they are the only
ones possible, nor that they are optimal, but rather that they are reasonable and
demonstrate that CMs can be evaluated in dynamic and unpredictable environ-
ments using suitably parameterised functions.

4.1 Asocial CM

This CM simply involves the agent moving towards its task and working there
for the necessary number of time steps before receiving the reward. To evaluate



a task with mpr = 1, effort = e and reward = R, an agent discounts the reward
it expects by the time until it will receive it. If the distance to the task is [, the
expected value of the CM, V4, is given by:

Va = Re'**

If the agent is already performing the task (I = 0), the reward is discounted by
the amount of effort remaining.

Evaluation of the Asocial CM does not require any additional environmental
information.

4.2 Social Law CM

When an agent adopts the Social Law CM, the appropriate number of the nearest
agents are commanded to come to the manager’s assistance. When the final agent
arrives, all agents work on the task until completion and the reward is equally
divided among them.

To evaluate a task with mpr = m, effort = e and reward = R under this CM,
the agent must estimate the time it will take for the furthest agent to arrive at
the square. This can be calculated using the average occupancy of each square?.
The manager adds up the occupancies of the nearest squares to it until it obtains
m — 1, and uses the furthest square required to estimate the time till all agents
will be present, say [. Since this CM can only be invoked on one task at a time,
the manager may also take some non-zero set up cost into account, say s. Given
these estimates, the expected value of this CM, Vgy, is given by:

RoU+s+3)

Vst =

Evaluation of the Social Law CM requires knowledge of the distribution and
density of other agents, here represented by average occupancy, as well as any
set up costs which using the social law may incur.

4.3 Pot Luck CM

When an agent adopts the Pot Luck CM, it makes no effort to recruit other
agents unless they happen to enter the square where the CT is situated. In such
cases, the manager offers the potential subordinates employment for an indefinite
period at a fixed rate. The terms it offers reflect the agent’s perceptions about
the wtc and discount factor of other agents; it sets a rate that, it believes, is
sufficient to attract passers-by until the task has been achieved. Any agents that
accept this offer and remain at the square, committed to this task, receive the
agreed rate at each step. These offers of piecemeal employment remain until the
task is completed or the managing agent abandons it. When the task is complete,
the managing agent receives the reward.

2 . numberOfOtherAgents
That 18, numberOfSquares



To evaluate a task with mpr = m, effort = e and reward = R, the manager
assumes that subs will wander by at intervals determined by the remaining aver-
age occupancy: if n agents are at large, the interval is given by numberOfSquares/n.
The manager computes a rate, r, to offer to the subs that it would find accept-
able itself in similar circumstances (see below). Based on these assumptions and
the task effort, the agent computes the expected completion time of the task,
ect and the future value of the amount it will have to pay out to the subs, p.
Then the expected value of applying this CM, Vpy, is given by:

Vep, = (R = p)o®!

When this CM is in use, the manager uses a similar technique to evaluate the
task in progress, taking into account any subs already helping. Clearly, if agents
are already present, the value increases considerably. Note that, with the Pot
Luck CM, it is possible that the manager recruits more agents than the mpr,
meaning that the task will be achieved more quickly.

Subordinates evaluating a Pot Luck offer discount the rate offered, r, indefi-

nitely into the future:
r

1-9

Thus although the rate may be low compared with the reward for their default
task, the fact that they will receive it regularly starting from the next time step
makes the offer relatively attractive.

Evaluation of the Pot Luck CM again requires knowledge of the distribution
and density of other agents, though this knowledge is used in a different way.
Managers need to be able to offer an appropriate rate to subs; in general, the
manager will need to consider the other agents’ wic and discount factors, though
here it assumes them to be the same as its own.

Vpr =

4.4 Contract Net CM

Under this mechanism, a manager broadcasts a request for bids to the other
agents. On receiving their replies, it computes the best set of bids and sends
out firm offers of employment to the selected agents. These agents may either
accept the offer or decline, possibly causing the managing agent to issue more
requests. When the task has been completed, the manager receives the reward
and pays its recruits the agreed amounts. Since the completion time of the task is
unknown, subordinates bid an amount which reflects their current requirements,
and when they are paid off this is factored up by their discount rate and their
time committed. This means that the manager has an increasing liability to the
other agents so long as the task remains unfinished—any extension to the ect
may therefore greatly affect the value of using this CM.

To evaluate this mechanism, the agent estimates the average distance away of
the furthest agent (as described above) and adds to this the communication costs
of this CM (3 time steps until subs will be committed) and the duration based
on effort/mpr. This gives the ect. The manager also estimates the likely bid



requirements of the subs based on its perception of their wtc, discount factors
and their specific task rewards. Thus if it anticipates completion in ect time
steps, with ¢ subs committed 3 time steps hence each bidding r;, the value of
using the Contract Net CM is given by:

T

Ven = 6°H(R — Z Wt_g)

2

The reward structure of this CM is such that the subs only receive payment
when the manager either completes or abandons the task. At this time they
receive their bid factored up by the amount of time they have been committed
(agent i receives r;/d! after being committed for ¢ time steps). Thus, however
long they are committed to the task, the reward they receive, discounted back to
when they started, remains the same. In this way the manager can determine its
current liability at any stage of the coordination, e.g., when an offer is rejected.

An agent bidding under the Contract Net CM, factors its current reward by
its wtc and projects it two time steps into the future, since this is when an offer
will arrive. It submits this amount, r;, plus its required discount factor, §;, and
the time it expects to arrive at the task. The manager selects bids based on how
they affect its expected reward. That is, it looks at the surplus reward when each
agent has been paid, discounted by how long until it arrives. This simplifies the
otherwise combinatorial problem of selecting the best ¢ bids.

Evaluating a Contract Net CM that is underway, involves computing the
current liability to agents committed, projecting this forward till the ect and
discounting this value and the reward back to the present. As time goes by, the
value of participating in this CM increases for subs (since the manager will be
paying more and more at each time step) and so a sub becomes more committed
the longer it has been involved.

If a sub decommits, even through being coopted under Social Law, it must
pay the manager a decommitment penalty, which is intended to compensate the
manager for the time wasted. Although not implemented here, a more sophis-
ticated evaluation function would require an estimate of the likelihood of subs
decommitting. Additionally, more flexible decommitment penalties could be set
dynamically to reflect the prevailing circumstances. This aspect of our work is
being investigated concurrently and is reported in [6].

Evaluation of the Contract Net CM requires similar knowledge to the Pot
Luck CM.

5 Experiments, Results and Analysis

Our first set of experiments assessed the accuracy of each CM’s evaluation func-
tion; the circumstances under which each is selected; and to what extent this
additional flexibility benefits the managing agent. To this end, we conducted a
series of simulations for a 10 x 10 grid, containing just one CT with reward = 15
(default tasks have reward = 1). Furthermore, all agents have wtc = 1 and
discount = 0.9. We varied the number of agents (from 5 to 25), the mpr (from



1 to 8) and the effort (from 10 to 30). Since this represents a very large sample
space, we report a selection of representative results.

60.0%

——PL, MPR 1
—#-PL, MPR 2
50.0% —4—PL, MPR 3
—+—CN, MPR 2
—=#-CN, MPR 3

-@-SL, MPR 2
\ ——SL, MPR 3
N \\ \s‘\
20.0%
10.0% / T
oo '—N
10.0% — \/v

-20.0%

40.0%

1 - Value Achieved / Evaluation

Number of Agents

Fig. 1. Performance of CM Evaluation Functions

Figure 1 plots the difference between the value managers actually achieved
and their evaluations, for each CM, mpr = 1,2,3 and effort = 10. (SL and CN
do not apply when mpr = 1; the value of PL. when mpr = 3 and there are
only 5 agents is negative and so the manager sticks with its default task.) PL is
the least accurate, overestimating the true value by 50% in the worst case. SL
and CN are more accurate reflecting their lower levels of uncertainty. The graph
indicates that the accuracy of all CMs tends to improve as the agent population
increases. Bearing in mind that, for a discount factor of 0.9, a one step error in ect
leads to about a 10% error in evaluation, these results show that the evaluation
functions work acceptably under a variety of conditions. This demonstrates that
it is feasible to evaluate CMs based on estimates of environmental parameters.

Figure 2 shows the type of CM selected by the managers under different
agent densities and task profiles. It is clear that, at least from the manager’s
point of view, for high agent densities and low mpr, PL is the most preferred.
This is due to PL’s low communication costs (no active recruitment), low payout
rate to subordinates and the ability to over-recruit. However, under more general
conditions, CN is the most preferred: the communication cost (set up delay) and
the relatively high rates paid to subs are compensated for by the reduced time
till all agents arrive. For tasks with extremely stringent requirements, i.e., high
mpr or effort in low density populations, the speed and certainty of SL leads to
it being selected over CN. In fact, the choice between CN and SL depends mainly
on the reward assigned to the task—for lower task rewards, SL is preferable to
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CN. In the extreme, even SL is unprofitable and managers opt to perform their
default tasks instead.

Figure 3 shows the total reward achieved by managers using each CM in
isolation, and when the managers have the capability to dynamically choose
which CM to use. The number of agents is fixed at 15, and the task profiles
have fixed reward = 15, effort = 10 and mpr ranging from 1 to 8. As the mpr
increases, the surplus reward available to managers naturally decreases, but the
graph shows that agents who can coordinate flexibly maintain high levels of
reward (in fact the line for ALL roughly traces the maximum over all CMs).

When taken together, these results clearly show that providing alternative
mechanisms for coordination is beneficial to agents that are required to interop-
erate under changeable environmental or task conditions.

Our second set of experiments examined the overall effect on the system when
the agents displayed different characteristics in terms of their wic and discount
factors. The general hypothesis here is that when agents are less greedy, more
collaborative tasks will be achieved and that an agent’s perspective on future
rewards may well affect the type of CM it chooses. To test this, we conducted a
series of experiments varying wtc from 0.25 to 3 and discount from 0.5 to 0.95
(the number of agents was fixed at 15, and the tasks have fixed reward = 15,
effort = 10 and mpr = 2).

Figure 4 shows the total number of CTs achieved for each discount factor as
wtc increases. When the discount factor was 0.8 or less, the managers always
selected SL, because this minimises the ect. However, when the agent’s wtc is
low, it devalues its own reward for CTs to the extent that the default task is



10000

9000 \

8000

——PL ——sL

—S-ALL  —8—CN

7000
6000

5000 \ \

4000 \ \
3000 \\

e N\
VTN,

1 2 3 + MPR s 6 7 8

Total Manager Reward

Fig. 3. Total Reward Achieved by Managers

often chosen instead. The choices for discounts of 0.9 and 0.95 were identical,
with PL being chosen for wic < 1 (agents neutral or greedy) and CN being
chosen otherwise (agents selfless). This indicates that, if potential subordinates
are likely to require relatively large rewards and the manager can afford to wait,
it will choose to do so, paying out less to subordinates. These results confirm
that the relative value of using different CMs is indeed affected by the both the
individual characteristics of an agent and its beliefs about the environment in
which it operates.

6 Related Work

The majority of previous work on multi-agent system coordination assumes it
is a design time problem (e.g., [10,11,4]). However [5] has argued that agents
need the flexibility to coordinate at different levels of abstraction, depending
upon their particular needs at a given moment in time. To date, however, this
work has not developed mechanisms for explicitly reasoning about which level to
coordinate at in a given situation. Such flexibility was also built into cooperative
problem solving agents by [9]. Here, agents could choose to cooperate according
to various conventions which dictated how they should behave in a particular
team context. These conventions varied in terms of the time they took to es-
tablish and the communication overhead they imposed. However, again, there
was no reasoning mechanism for determining which convention was appropri-
ate for a given situation. Boutilier [3] presents a decision making framework,
based on multi-agent Markov decision processes, that does reason about the
state of a coordination mechanism. However, his work is concerned with optimal
reasoning within the context of a given coordination mechanism, rather than
actually reasoning about which mechanism to employ in a particular situation.
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[1] present a software engineering framework that enables agents to vary their
CMs according to their prevailing circumstances. They also identify criteria for
determining when particular mechanisms are appropriate. However, the decision
procedures for actually trading-off these criteria are not well developed. Finally,
[2] provide a framework in which CMs are characterised by set up costs and
probability of success and can be evaluated accordingly; however, their agents
use a contract-net style protocol for all their interactions.

7 Conclusions

This paper presented a framework in which agents can evaluate and apply differ-
ing CMs and has demonstrated that agents can benefit from such flexibility. It
has shown that CMs can be practically evaluated using appropriate environmen-
tal parameters despite the uncertainty agents face. However, these experiments
use static environmental conditions and the agents involved use assumptions
about the environment. To overcome these restrictions, in our future work we
will allow agents to monitor and learn the relevant environmental parameters so
that they can react to dynamic environments. Agents will then be in a position
to adapt their own attributes (wtc and discount) to better suit their circum-
stances. Given agents that learn and adapt to their environment, it will also be
important to assess whether alternative evaluation functions or heuristics impact
on agent performance.
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