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Abstract

Landscape pattern represents a key variable in management and understanding of the environment, as well as driving many environmental

models. Remote sensing can be used to provide information on the spatial pattern of land cover features, but analysis and classification of

such imagery suffers from the problem of class mixing within pixels. Soft classification techniques can estimate the class composition of

image pixels. However, their output provides no indication of how such classes are distributed spatially within the instantaneous field-of-

view (IFOV) represented by the pixel. Techniques to provide an improved spatial representation of land cover targets larger than the size of a

pixel have been developed. However, the mapping of subpixel scale land cover features has yet to be investigated. We recently described the

application of a Hopfield neural network technique to super-resolution mapping of land cover features larger than a pixel, using information

of pixel composition determined from soft classification, and now show how our approach can be extended in a new way to predict the

spatial pattern of subpixel scale features. The network converges to a minimum of an energy function defined as a goal and several

constraints. Prior information on the typical spatial arrangement of the particular land cover types is incorporated into the energy function as a

semivariance constraint. This produces a prediction of the spatial pattern of the land cover in question, at the subpixel scale. The technique is

applied to synthetic and simulated Landsat Thematic Mapper (TM) imagery, and compared to results of an existing super-resolution target

identification technique. Results show that the new approach represents a simple, robust, and efficient tool for super-resolution land cover

pattern prediction from remotely sensed imagery. D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

The landscape is a complex, hierarchically organised,

spatiotemporal mosaic, where there are strong relationships

coupling spatial pattern to process (Lobo, Moloney, Chic, &

Chiariello, 1998). Information on land cover is required to aid

understanding and management of the environment. Land

cover represents a critical biophysical variable that affects the

functioning of terrestrial ecosystems in bio-geochemical

cycling, hydrological processes, and the interaction between

surface and atmosphere (Cihlar et al., 2000). It is therefore

central to all scientific studies that aim to understand terres-

trial dynamics at any scale. Spatial patterns of cover types in

landscape systems are the result of an interaction among

dynamical processes operating across a range of spatial and

temporal scales (Lobo et al., 1998). Such spatial issues have

interested ecologists for a long time, and have been receiving

increasing attention over recent years. To understand and

rigorously test the effects of landscape pattern on ecological

processes, models of spatial pattern have been developed.

Such models attempt to capture a set of constraints dictating

landscape pattern and assign the remaining pattern to a purely

random process (Keitt, 2000). These were originally intro-

duced to generate spatial patterns of land cover in the absence

of any structuring process and can suffer from inadequacies

due to their underconstrained nature. This paper presents a

technique to model land cover pattern using remotely sensed

imagery and prior information on land cover distribution to

constrain the predictions.

Remotely sensed imagery derived from aircraft and

satellite mounted sensors can provide information on land

cover. However, there exist practical limitations (Tatem et

al., 2001). Perhaps the biggest drawback of obtaining land

cover information from remotely sensed images relates to
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scale. Spatial scale is a key factor in the interpretation of

remotely sensed land cover data (Woodcock & Strahler,

1987) and the information obtainable from remotely sensed

imagery can vary greatly depending on the spatial variation

in the observed land cover and the specific terrain character-

istics under consideration. There also exist practical limits to

the level of detail that can be identified by each remote

sensor and these limits are defined by the resolutions of the

remote sensing system. One of the commonest measures of

image characteristic used is spatial resolution, which deter-

mines the level of spatial detail depicted in an image. This

measure is a function of the instantaneous field-of-view

(IFOV) of a sensor, defined as the cone angle within which

incident energy is focused on the detectors (Campbell,

1996). In turn, the IFOV leads to a ground resolution

element (GRE) on the surface of the Earth (this GRE should

not be confused with the pixel, which is the output product

to which a radiance value is assigned). The pixel represents

the smallest element of a digital image and has, therefore,

traditionally represented a limit to the spatial detail obtain-

able in land cover feature extractions from remotely sensed

imagery. Within remote sensing images, a significant pro-

portion of pixels may be of mixed land cover class compo-

sition, and the presence of such mixed pixels can affect

adversely the performance of image analysis and classifica-

tion operations (Fisher, 1997).

Traditionally, classification approaches have focused on

‘hard’, one-class-per-pixel techniques (Campbell, 1996).

Such approaches were found to be inaccurate, inappropriate,

and an alternative approach has become more common, in

the form of soft classification. Subpixel class composition is

estimated through the use of techniques such as spectral

mixture modelling (Garcia-Haro, Gilabert, & Melia, 1996),

multilayer perceptrons (Atkinson, Cutler, & Lewis, 1997),

nearest neighbour classifiers (Schowengerdt, 1997), and

support vector machines (Brown, Gunn, & Lewis, 1999).

These approaches allow soft proportions of each pixel to be

partitioned between classes. The output of these techniques

generally takes the form of a set of proportion images, each

displaying the proportion of a certain class within each

pixel. In most cases, this results in a more appropriate and

informative representation of land cover than that produced

using a hard, one-class-per-pixel classification. However,

the spatial detail obtainable from many remote sensors

means that within the imagery produced, some land cover

features (e.g., individual trees or buildings) are smaller than

a pixel. Consequently, while these features can be detected

within pixels by soft classification techniques, there exist

many difficulties in accurately identifying them and using

them within models.

Much previous research has been centred on attempting

to extract data on subpixel scale features from remote

sensing imagery. For example, information has been

extracted about subpixel scale volcano vents (Bhattacharya,

Reddy, & Srivastav, 1993), coal fires (Zhang, Van Genderen,

& Kroonenberg, 1997), glacial features (Smith, Woodward,

Heywood, & Gibbard, 2000), and water storage ditches

(Shepherd, Wilkinson, & Thompson, 2000). However, in

all cases, the features have been merely detected using soft

classification techniques, and no attempt at locating them

has been made. This paper demonstrates that it is possible to

identify subpixel scale land cover targets and recreate their

spatial distribution across an image.

1.1. Previous super-resolution land cover target

identification and mapping

Only recently has research been done on the subject of

identifying and mapping land cover from remotely sensed

images at the subpixel scale. Each technique put forward

has produced a certain amount of success at super-

resolution mapping of land cover targets larger than a

pixel, but research has yet to be carried out on locating

subpixel scale features. This paper attempts to build on

the ideas of these existing techniques to provide a

solution to the problem of subpixel scale land cover

feature mapping.

Schneider (1993) introduced a knowledge-based analysis

technique for the automatic localisation of field boundaries

with subpixel accuracy. The technique relies on knowledge

of straight boundary features within Landsat Thematic

Mapper (TM) scenes, and serves as a preprocessing step

prior to automatic pixel-by-pixel land cover classification. It

represents a successful, automated, and simple preprocess-

ing step for increasing the spatial resolution of satellite

sensor imagery. However, its application is limited to

imagery containing large features with straight boundaries

at a certain spatial resolution and the models used still have

problems resolving image pixels containing more than two

classes (Schneider, 1999). Flack, Gahegan, and West (1994)

also concentrated on subpixel mapping at the borders of

agricultural fields and used edge detection and segmenta-

tion techniques to identify field boundaries and the Hough

transform to identify the straight, subpixel boundaries.

These vector boundaries were superimposed on a sub-

sampled version of the image, and the mixed pixels were

reassigned to each side of the boundaries. However, no

validation or further work was carried out, and so the

success of the technique remains unclear. Aplin, Atkinson,

and Curran (1999) utilised Ordnance Survey land line

vector data, and undertaking per-field rather than the tradi-

tional per-pixel land cover classification, mapping at a

subpixel scale was demonstrated. However, in most cases

around the world, availability of accurate vector data sets to

apply the approach will be rare, and the technique is limited

to features large enough to appear on such data sets.

The techniques described so far are based on direct

processing of the raw imagery. In other research, soft

classification is first applied to the imagery, and an attempt

is then made to map the location of class components within

the pixels. Atkinson (1997) used an assumption of spatial

dependence within and between pixels, to map the location
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within each pixel of the proportions output from a soft

classification. However, the complex mixing in the data

caused the simple technique to suffer from problems due to

the existence of subpixel scale land cover features. Unlike

Atkinson, Foody (1998) made use of a higher spatial

resolution image in a simple regression and contouring-

based approach to sharpen the output of a soft classification

of a lower spatial resolution image, producing a subpixel

land cover map. However, the areal extent of the lake was

not maintained using the contouring technique and gener-

ally, it is difficult to obtain two coincident images of

differing spatial resolution. Gavin and Jennison (1997)

adopted a Bayesian approach, incorporating prior informa-

tion on the true image into a stochastic model that attached a

higher probability to images with shorter total edge length.

The model produced accurate results, but the complex

multistage operation meant it was slow and only applicable

to small images containing features larger than a pixel.

Verhoeye and De Wulf (2000) used similar assumptions to

Atkinson, but formulated the approach as a linear optimi-

sation problem. Results showed a certain degree of success,

but problems were noted where land cover features were

smaller than a pixel.

Tatem et al. (2001) presented a technique that allowed

prior information to be included in the prediction process. A

Hopfield neural network was formulated as an energy

minimisation tool to predict the land cover distribution

within each pixel. By utilising information contained in

surrounding pixels, the land cover within each pixel was

mapped using a simple spatial clustering function coded into

a Hopfield neural network. In that work, the prior informa-

tion was representative of spatial coherence, i.e., the prop-

erty of objects within natural landscapes to be similar to

neighbouring objects. Here, the ability to incorporate prior

information is extended to account for the spatial pattern of

objects smaller than the ground resolution of the sensor. The

long-term aim of both works is to establish a method for

identifying the spatial arrangement of land cover objects at

any scale. The results from the technique described in Tatem

et al. are used for comparison with the results from the

pattern prediction technique in Section 4.

The focus of each of the techniques described so far on

land cover features larger than the scale of a pixel (e.g.,

agricultural fields) enables the utilisation of information

contained in surrounding pixels. However, this source of

information is unavailable when examining imagery of

land cover features that are smaller than a pixel (e.g., trees

in a forest). Consequently, while these features can be

detected within a pixel by soft classification techniques,

surrounding pixels hold no information for inference of

spatial relationships to aid their mapping. Therefore, the

technique presented in this paper attempts to overcome

this problem and to present a novel and effective solution

to super-resolution land cover pattern prediction from

remotely sensed images, as well as an extension to the

technique proposed by Tatem et al. (2001). This method is

based on prior information on the spatial arrangement of

land cover. A simple function to match land cover

distribution within each pixel to this prior information is

coded into a Hopfield neural network. The nature of this

approach should allow the production of differing, equally

probable solutions each time the network is run. There-

fore, the network can run multiple times and generate

different realisations, each of which represents a possible

land cover distribution.

2. The Hopfield neural network

The Hopfield neural network is a fully connected recur-

rent network and can be implemented physically by inter-

connecting a set of resistors and amplifiers with symmetrical

outputs and external bias current sources (Fig. 1). Hopfield

(1984) shows how the equation describing the behaviour of

such an array of electronic components can be written in a

neural context for ease of interpretation where, in this case,

the nonlinear amplifiers correspond to neurons:

ti
dui

dt
¼ �aiui þ

XN
j¼1

Tijvj þ Ii; i ¼ 1 . . .N ; ð1Þ

where ti =Ci is the time constant for neuron i; ui is the total

weighted input at neuron i; ai= 1/resistance to neuron i; N is

the number of neurons in the network; Ii is the external bias

on neuron i; and Tij is the weight from neuron j to neuron i,

which corresponds to conductance in Fig. 1. vi= gi(ui) is the

neural output which is a function of the input ui, where gi(ui)

is the nonlinear activation function, defined as:

giðuiÞ ¼
1

2
ð1þ tanhluiÞ; ð2Þ

where l determines the steepness of the function.

The set of equations described so far defines the time

evolution of the network. Thus, from a set of initial neuron

outputs, the state, v, of the network varies with time until

convergence to a stable state, where neuron output stops

varying with time. Weights and biases determine the neural

outputs at this stable state.

Hopfield (1984) showed that using symmetric weights

with no self-connection, i.e., Tji = Tij and Tii = 0 is sufficient

to guarantee convergence to such a stable state. Therefore,

independent of its initial status, a Hopfield neural network

will always reach an equilibrium state where no output

variation occurs and it was also demonstrated that for high

values of the gain, li, the activation function gi(ui) (Eq. (2))

approaches a step function. The stable states of the network

consequently correspond to the local minima of the follow-

ing ‘energy function’ (Cichocki & Unbehauen, 1993),

E ¼ � 1

2

XN
i¼1

XN
j¼1

Tijvivj �
XN
i¼1

viIi ð3Þ
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where E is the energy calculated over the whole network.

From Eqs. (1) and (3), the equation describing the

dynamics, i.e., the rate of change of neuron input of the

Hopfield network can be written as:

dui

dt
¼ � dE

dvi
; ð4Þ

or

dui

dt
¼ �

XN
j¼1

Tijvj þ Ii: ð5Þ

The Hopfield network can therefore be used for energy

minimisation problems if the weights and biases are

arranged such that they describe an energy function, with

the minimum of energy occurring at the stable state of the

network (Hopfield & Tank, 1985). By specifying different

values for the weights and biases, any hypothetical energy

minimisation problem can be simulated.

Many real-world problems can be formulated as the

minimisation of an energy function, and this is central to

the design of a Hopfield neural network formulated as an

optimisation tool. The energy function used must represent

the problem correctly, and reach a minimum at the

solution of the problem. Once this function is designed,

the weights and biases can be set, and the network is built

around these.

Most real-world problems contain built-in constraints in

addition to a goal, which must be considered. These con-

straints form a cost added to the objective within the energy

function, which can then be defined as (Eq. (6)):

Energy ¼ Goalþ Constraints: ð6Þ

If the energy function is arranged in this particular way,

the constraints become part of the minimisation process,

which means that each does not need to be treated sepa-

rately, just weighted by their importance to the problem.

The Hopfield network process then finds the minimum

energy that represents a compromise between the goal and

the constraints.

The Hopfield network has been used within remote

sensing for ice-mapping, cloud motion, and ocean current

tracking (Côté & Tatnall, 1997; Lewis, 1998). These

applications demonstrate the utility of the Hopfield net-

work for feature tracking, the basic principle of which is to

match common features in a sequence of images. In

addition, more general feature matching problems have

been tackled using a Hopfield network (Forte & Jones,

1999; Li, Wang, & Tseng, 1999; Nasrabadi & Choo,

1992), as well as applications such as recognition or

classification (Campadelli, Medici, & Schettini, 1997;

Raghu & Yegnanarayana, 1996).

Fig. 1. Hopfield neural network as an analog circuit. The black circles at the intersections represent resistive connections between outputs and inputs.

Connections between inverted outputs and inputs represent negative connections.

A.J. Tatem et al. / Remote Sensing of Environment 79 (2002) 1–144



3. Using the Hopfield network for super-resolution land

cover pattern prediction

The input data for the research described in this paper

were derived from aerial photography, whereby land cover

targets were identified and extracted accurately from the

photographs by hand. By degrading these verification

images of clearly defined land cover targets to the spatial

resolution of Landsat TM data using a square averaging

filter, perfect class proportions were obtained for each pixel.

These provided the input to the network. In practice, the

input could come from automated soft classification meth-

ods, such as the multilayer perceptron applied to real

imagery, providing the target features to be mapped were

separable enough from the other land cover classes to be

accurately identified in classification. However, for the

research in this paper, the aim was to understand and test

the capabilities of the Hopfield network technique. Any

error introduced to the input data by automated soft classi-

fication would be detrimental to this aim.

Mapping the spatial distribution of the class components

within each pixel was formulated as a constraint satisfaction

problem and an optimal solution to this problem was

determined by the minimum of an energy function coded

into a Hopfield neural network. The network architecture

was arranged to represent a finer spatial resolution image,

and constraints within the energy function determined the

spatial layout of binary neuron activations within this

arrangement. The Hopfield neural network was used to find

the minimum of this energy function, which corresponded

to a bipolar map of class components within each pixel. The

procedure is outlined in detail in the following sections.

3.1. Network architecture

In many papers on the use of Hopfield neural networks

for optimization, the spatial relations between neurons are

considered irrelevant. However, for this paper, the nature of

the problem and the proposed solution requires the network

neurons to be considered as being arranged in a regular grid,

with positioning within this grid being of significance to the

network design for this task (Fig. 2). Therefore, neurons will

be referred to by coordinate notation, for example, neuron

(i,j) refers to a neuron in row i and column j of the grid, and

has an input voltage of uij and an output voltage of vij. The

zoom factor, z, determines the increase in spatial resolution

from the original satellite sensor image to the new high-

resolution image and after convergence to a stable state, the

neurons represent a bipolar classification of the land cover

at the higher spatial resolution. Fig. 2 shows the notation

used in this paper, and how coordinates are transformed

linearly from the image space to the network neuron space,

for example, the pixel (x,y) in the satellite sensor image is

represented by z� z neurons centred at coordinates

[xz + int(z/2), yz + int(z/2)], where int is the integer value.

3.2. Network initialisation

Each neuron is initialised with a starting value, uinit, and

two strategies for initialising the network exist.

(i) Each set of neurons representing a pixel in the low-

resolution image is identified and a proportion of this set is

randomly given an output of uinit = 0.55. This proportion is

equal to the actual area proportion of the class within the

image pixel and the remaining neurons of the set are given

an output of uinit = 0.45. The values of 0.55 and 0.45 were

chosen as the initial ‘on’ and ‘off’ outputs to speed up

processing time and avoid unnecessary bias towards certain

energy minimisation paths. In Hopfield and Tank (1985)

and many other papers related to the use of the Hopfield

network for solving the travelling salesman problem, neu-

rons are initialised with a random value close to the central

state value (0.5). This choice is justified by the fact that no

initial preference should be given to any path. The small

difference between the two values also enables the network

to ‘push’ neuron outputs to 1 or 0 to represent a bipolar

classification faster than if, for example, a neuron was

initially given an output of 0 and had to be ‘pushed’ to 1

to produce an optimal solution.

(ii) The completely random initialisation of neuron out-

puts within the range uinit = [0.45, 0.55]. This allows per-

formance comparison with the class proportion-defined

initialisation and does not introduce any possible unneces-

sary bias into the result, which may occur using (i) should

estimated class proportions be inaccurate.

Tatem et al. (2001) demonstrated no significant differ-

ences in results from the two initialisation techniques.

3.3. Implementation

When implemented on a digital computer, sets of biases

and weights do not need to be determined, as the network is

simulated via its equation of motion (Eq. (5)) using the

Euler method:

uijðt þ dtÞ ¼ uijðtÞ þ
duijðtÞ
dt

dt; ð7Þ

where dt is the time step of the iterative method and the

function (duij(t)/dt) is measured using (dEij/dv). Eq. (4)

Fig. 2. (a) 2� 2 pixel image, p and q represent the image dimensions, x and

y represent the image pixel coordinates; (b) Representation of the Hopfield

network for the image in (a), i and j represent the neuron coordinates

(int = integer value).
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shows the correspondence between the two functions, and

(dEij/dv) is determined using the goals and constraint of the

super-resolution target identification task. Eq. (7) is run untilP
i;j
uijðt þ dtÞ � uijðtÞ � duc, where duc is a sufficiently

small value, and the equations of motion were defined as:

dEij

dvij
¼

Xz
n¼1

kn
dSnij

dvij

 !
þ kzþ1

dPij

dvij
: ð8Þ

Each component of Eq. (8) is described in the subse-

quent sections.

3.4. The energy function

The goal and constraints of the subpixel mapping task

were defined such that the network energy function for a

zoom factor of 7 was:

E ¼ �
X
i

X
j

ðk1S1ij þ k2S2ij þ k3S3ij þ k4S4ij

þ k5S5ij þ k6S6ij þ k7S7ij þ k8PijÞ; ð9Þ

where k1 to k8 are constants weighting the various energy

parameters, S1ij to S7ij represent the output values for

neuron (i,j) of the seven semivariance (objective) functions

(see Section 3.4.1), and these correspond to the quadratic

term in Eq. (3). Pij represents the output value for neuron

(i,j) of the proportion constraint (see Section 3.4.2) which

corresponds to the linear term in Eq. (3).

3.4.1. The semivariance functions

The semivariance (objective) functions, S1ij to S7ij, aim to

model the spatial pattern of each land cover at the subpixel

scale. Prior knowledge about the spatial arrangement of the

land cover in question is utilised, in the form of semivariance

values, calculated by:

gðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1;j¼1

½vij � vi 	 h; j 	 h
2 ð10Þ

where g(h) is the semivariance at lag h, and N(h) is the

number of pixels at lag h from the centre pixel (i,j). This is

calculated for z lags from an aerial photograph for example.

This provides information on the typical spatial distribution

of the land cover under study, which can then be used for

land cover simulation from remotely sensed imagery at the

subpixel scale.

By using the values of g(h) from Eq. (10), the output of

the centre neuron, v(c)ij, which produces a semivariance of

g(h) can be calculated using:

vðcÞij ¼
1

2a
½�b	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

 ð11Þ

where a ¼ 2NðhÞ; b ¼
PNðhÞ

i¼1;j¼1

v1	h;j	h; c ¼
PNðhÞ

i¼1;j¼1

ðvi	h;j	hÞ2

�2NðhÞgðhÞ. The semivariance function value for lag 1

(h = 1), S1ij, is then given by (Eq. (12)):

dS1ij

dvij
¼ vij � vðcÞij: ð12Þ

If the output of neuron (i,j), vij, is lower than the target

value, v(c)ij, calculated in Eq. (11), a negative gradient is

produced that corresponds to an increase in neuron output to

counteract this problem. An overestimation of neuron output

results in a positive gradient, producing a decrease in neuron

output. Only when the neuron output is identical to the

target output does a zero gradient occur, corresponding to

S1ij = 0 in the energy function (Eq. (9)). The same calcu-

lations are carried out for lags 2 to 7, to produce values for

S2ij to S7ij.

3.4.2. The proportion constraint

While the semivariance functions provide the enforce-

ment of a certain spatial pattern, using only these functions

would result in the entire image displaying the same regular

pattern. Therefore, a method of constraining the effect of

those functions to the correct image areas was required. The

proportion constraint, Pij, aimed to retain the pixel class

proportions output from the soft classification. This was

achieved by adding in the constraint that the total output

from the set of neurons representing each coarse spatial

resolution image pixel should be equal to the predicted class

proportion for that pixel. An area proportion estimate

representing the proportion of neurons with an output of

0.55 or higher was calculated for all the neurons represent-

ing pixel (x,y) (Eq. (13)):

Area Proportion Estimate

¼ 1

2z2

Xxzþz

k¼xz

Xyzþz

l¼yz

ð1þ tanhðvkl � 0:55ÞlÞ: ð13Þ

The use of the tanh function ensures that if a neuron

output is above 0.55, it is counted as having an output of 1

within the estimation of class area per pixel. Below an

output of 0.55, the neuron is not counted within the

estimation, which simplifies the area proportion estimation

procedure, and ensures that the neuron output must exceed

the random initial assignment output of 0.55 in order to be

counted within the calculations.

To ensure that the class proportions per pixel output from

the soft classification were maintained, the proportion target

per pixel, axy, was subtracted from the area proportion

estimate (Eq. (14)):

dPij

dvij
¼ 1

2z2

Xxzþz

k ¼ xz

Xyzþz

l ¼ yz

ð1þ tanhðvkl � 0:55ÞlÞ � axy: ð14Þ
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If the area proportion estimate for pixel (x,y) is lower than

the target area, a negative gradient is produced, which

corresponds to an increase in neuron output to counteract this

problem. An overestimation of class area results in a positive

gradient, producing a decrease in neuron output. Only when

the area proportion estimate is identical to the target area

proportion for each pixel does a zero gradient occur, corre-

sponding to Pij = 0 in the energy function (Eq. (9)).

3.5. Advantages of the technique

The approach described in this paper holds several

strategic advantages over those techniques mentioned in

Section 1.1:

� The technique has the ability to map land cover

features smaller than a pixel, rather than being

restricted to large features.� The option to choose the level of increase in spatial

resolution. This is essential if land cover pattern

prediction of higher spatial resolution imagery is

the aim.� The ease by which any additional information can be

incorporated within the framework to aid the pattern

prediction. Any prior information about the land cover

depicted in the input imagery can be coded easily into

the Hopfield network as an extra constraint to inc-

rease accuracy.� The design of the Hopfield network as an optimisation

tool means that all constraints are satisfied simulta-

neously, rather than employing a multistage operation.� The effect that each one of these constraints has on the

final prediction image can be controlled simply

via weightings.

4. Results

Illustrative results were produced using the Hopfield

network run on a P2-350 computer. As the pattern predic-

tion technique represents an extension of the method

described in Tatem et al. (2001), results of both techniques

were compared to highlight the need for a dual approach. To

determine the success of each technique at recreating the

spatial pattern exhibited in the target images, plots of lag

against semivariance (a variogram; Curran & Atkinson,

1998), calculated using Eq. (10), were used. In addition to

visual comparison of the target image variograms with the

prediction variograms, a correlation coefficient was calcu-

lated to provide a statistical measure of association between

the various plots. This was given by:

rtp ¼
Covðt; pÞ
stsp

; ð15Þ

where,� 1 < rtp� 1,and,Covðt; pÞ ¼ 1
n

Pn
q¼1

ðtq � mtÞðpq � mpÞ.

In Eq. (15), t is the target semivariance value, p is the

predicted value, n is the number of semivariance values, s is

the standard deviation of each set of values and m is the

mean of each set of values. A correlation coefficient of 1

represents a perfect match between target and predicted

semivariance values, whereas a value of � 1 corresponds to

a perfect negative correlation. The class area shown in each

image is also calculated to give an indication of the success

of the proportion constraint.

4.1. Synthetic imagery

To understand and illustrate the workings of the Hopfield

network set up in the above way, several synthetic images

were created. By breaking down the elements of real-world

imagery into simplified representations, understanding such

an image processing technique and making improvements to

it becomes easier.

Figs. 3 and 4 show the four images used to test the

prediction capabilities of the Hopfield network. The

images were designed to represent a range of possible

landscape features, so that the generalisation ability of the

network could be examined. For example, Fig. 3(a): sparse

natural woodland or seminatural vegetation; Fig. 3(b):

dense natural woodland or seminatural vegetation; Fig.

4(a): woodland plantation or housing; Fig. 4(b): intergrade

between land covers.

Each 56� 56 pixel synthetic image in Figs. 3 and 4 was

subsampled (using a 7� 7 averaging filter) to generate an

8� 8 pixel image. This causes mixing of the two classes

(white and black) at the object boundaries, producing four

proportion images, and imitating the effect of class mixing

within remotely sensed imagery. By using these four pro-

portion images as inputs to the Hopfield network, and

setting a zoom factor of 7, it should be possible to test the

capabilities of the techniques by approximating the four

images each was derived from. Semivariance was calculated

using Eq. (10) at lags 1 to 7 from the target images, and used

as input to the semivariance functions. The network was run

using settings of k1 to k7 = 0.2 and k8 = 1.4, which gave the

semivariance and proportion functions equal weighting,

ensuring that neither had a dominant effect. After 1000

iterations (approximately 15 s running time), the results in

Figs. 3 and 4 were produced.

Figs. 3 and 4 demonstrate the effectiveness of the pattern

prediction technique in maintaining the spatial layout, while

mapping subpixel scale features. Visual comparison of the

target images and variograms with the predictions of the two

techniques suggests the pattern prediction technique is more

successful, and the variogram correlation coefficients con-

firm this.

The earlier spatial clustering-based technique (Tatem et

al., 2001) groups the class proportions into features larger

than a pixel in most cases, indicated by the shape of each

variogram. In contrast, the pattern prediction technique

described in this paper maintains a similar spatial structure
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to that of the target image. In terms of class area, apart from

Fig. 3(a), the clustering technique proves more successful,

although the over- or underestimation of the pattern pre-

diction technique is at most 107 pixels, representing just 3%

of the total number of pixels. Comparison of the various

variogram plots indicates that the relative semivariance

between lags has been more accurately maintained using

the pattern prediction technique. The images resulting from

each pattern prediction technique match the target image

better than any by the clustering technique, which tends to

exhibit the same shape, regardless of input image. The

variogram correlation coefficients for Figs. 3(a) and 4(a)

show significant differences between the two techniques in

approximating the target semivariance values, while Fig.

4(b) shows the highest correlation of .987 for the pattern

prediction technique. Only in Fig. 3(b) does the clustering

technique show a better variogram correlation with the

target image.

Fig. 3. Results of the Hopfield neural network predictions on synthetic imagery.

A.J. Tatem et al. / Remote Sensing of Environment 79 (2002) 1–148



4.2. Simulated remotely sensed imagery

Figs. 5 and 6 show the two areas used for this study and the

imagery obtained. Both class proportion images were derived

from aerial photographs to avoid the potential problems of

incorporating error from the process of soft classification.

Both super-resolution techniques were again run for the

proportions in Figs. 5(c) and 6(c). After 1000 iterations

(approximately 80 s running time) at a zoom factor of 7, the

results in Figs. 7 and 8 were produced.

Figs. 7 and 8 again demonstrate the effectiveness of the

pattern prediction technique in mapping subpixel scale

features while maintaining their spatial distribution across

the image. Visual comparison of the target images and

variograms with the predictions of the two techniques

indicates that the pattern prediction technique is more

Fig. 4. Results of the Hopfield neural network predictions on synthetic imagery.
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successful, and the variogram correlation coefficients con-

firm this.

In the same way as for Fig. 3, both Figs. 7 and 8 show that

the spatial clustering technique produces a map where the

land cover features are much larger and fewer than those in

the target image. In contrast, the technique described in this

paper appears to maintain a similar spatial structure to that of

the target images. Visual comparison shows that in Fig. 7, the

Fig. 6. (a) Digital aerial photo of an area of Bath, UK; (b) 12� 4 pixel simulated Landsat TM image (for illustration only); (c) Building class proportions

derived from verification data; (d) Verification image derived from aerial photography.

Fig. 5. (a) Digital aerial photo of an area of the New Forest, UK; (b) 12� 4 pixel simulated Landsat TM image (for illustration only); (c) Tree class proportions

derived from verification data; (d) Verification image derived from aerial photography.
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pattern prediction image contains more and slightly smaller

trees than the target image, and in Fig. 8, the technique

predicts fewer and slightly larger buildings than those

depicted in the target image. Class area comparisons show

that, as with the synthetic imagery, the spatial clustering

technique proves more accurate, with the pattern prediction

technique demonstrating overestimation on both occasions.

However, comparison of the variogram plots in Figs. 7 and 8

indicates that the relative semivariance between lags has been

more successfully maintained using the pattern prediction

technique. The shapes of each pattern prediction technique

plot in Figs. 7 and 8 match the target plots better than any of

the clustering technique plots, and the correlation coefficients

confirm this. Fig. 7 shows that while the clustering technique

plot correlates with the target plot to a level of .931, the

pattern prediction plot improves on this with .975, demon-

strating a strong correlation. The success of the pattern

prediction technique in matching the semivariance of the

Fig. 8. (a) Verification image, class area, and variogram; (b) Hopfield network prediction image, class area, variogram, and variogram correlation

coefficient (Tatem et al., 2001 technique); (c) Hopfield network prediction image, class area, variogram, and variogram correlation coefficient (pattern

prediction technique).

Fig. 7. (a) Verification image, class area, and variogram; (b) Hopfield network prediction image, class area, variogram, and variogram correlation coefficient

(Tatem, Lewis, Atkinson, & Nixon, 2001 technique); (c) Hopfield network prediction image, class area, variogram, and variogram correlation coefficient

(pattern prediction technique).
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target image is mirrored in Fig. 8, with a correlation coef-

ficient of .968, significantly larger than that of .843 for the

spatial clustering technique.

5. Discussion

5.1. Results analysis

The results shown in Section 4 indicate that the Hopfield

neural network technique described in this paper displays

excellent potential for super-resolution land cover pattern

prediction. Whereas the spatial clustering approach

described in Tatem et al. (2001) failed to recreate the spatial

characteristics of land cover features that were smaller than

a pixel, the pattern prediction approach introduced here is

relatively successful. This suggests that a combination of the

two approaches could potentially identify the spatial

arrangement of land cover objects at any scale. It should

be noted that while the focus of the results of this paper are

features such as trees or buildings that are smaller than a

pixel in Landsat imagery, the technique could be equally

applied to AVHRR imagery, to predict the spatial pattern of

subpixel scale features such as lakes, tree stands, or villages.

The result of applying the technique to synthetic imagery

highlights the generalisation capabilities of the approach.

Visual inspection of Figs. 3 and 4 shows a wide range of

synthetic land cover patterns, and comparison of these with

the results of the pattern prediction technique in Figs. 3 and

4 suggests good generalisation ability. This is of course

important if the approach is to be applied in an automated

fashion. Throughout the testing of the technique, the various

weighting parameters, k1 to k8 remained at the same values,

and the maintenance of successful results for each spatial

arrangement indicates the ability of the approach to general-

ise. The synthetic imagery shows that the technique produ-

ces surprisingly good results for random patterns, as well as

the more difficult challenge of a regular grid pattern, while

the results from aerial photos demonstrate its potential

success in dealing with real-world problems. Figs. 7 and 8

demonstrate clearly that the proportion constraint has

ensured that the class proportions occur in the correct areas

of the images, while the semivariance functions ensure that

these proportions are arranged in a similar spatial pattern to

those in the target images.

While the pattern prediction approach was extremely

successful at recreating the spatial arrangement of class

proportions from coarse spatial resolution imagery, irrespec-

tive of the type of pattern in the target images, in many cases

there were inaccuracies in recreating the target class area. In

all cases in (Figs. 3, 4, 6, and 7), except for Fig. 3(b), there

was an overestimation of class area by the pattern prediction

technique. This suggests a failure by the proportion con-

straint, Pij, as it is the role of this function to maintain the

target proportions given in the input coarse spatial resolution

image. A possible solution could be to increase the weighting

of this function, k8, within the energy function, making it a

dominant factor. However, this is likely to also hinder the

effect of the semivariance functions, lessening the success

with which the target spatial pattern is recreated. This high-

lights one of the difficulties with such an optimisation

technique, in that there is no ideal method for determining

optimal constraint weightings. However, while the difficult

choice of weightings can be a drawback, the inclusion of

such weightings means that the technique can be tailored to

the task in hand. If the maintenance of class area is of prime

importance, then the proportion constraint can be weighted

strongly, whereas if recreation of spatial pattern is the

objective, then the semivariance functions can be given

priority. This flexibility makes the use of the Hopfield neural

network an attractive technique.

In all cases except one (Figs. 3, 4, 6, and 7), the pattern

prediction technique outperformed the other Hopfield neural

network technique described by Tatem et al. (2001) in

recreating the spatial pattern of land covers. The only

example where the spatial clustering technique produced a

larger variogram correlation coefficient is in Fig. 3(b).

However, visual inspection of the images and variogram

shapes suggest that the pattern prediction technique has

produced a more realistic and accurate result, and it is only

the fact that the semivariance is underestimated at small lags

by the clustering technique that produces the larger corre-

lation coefficient. While the super-resolution spatial cluster-

ing technique has been shown to be successful for mapping

accurately land cover targets larger than a pixel by Tatem et

al., when features are of subpixel scale, the lack of prior

information on their layout produces poor performance by

the technique, indicating that the work in this paper is a

necessary extension to the technique.

5.2. Applications

The success of the technique demonstrated in this paper

leads to potential application in fields of work where

recreation of the spatial pattern of land cover is more

important than attempting accurate mapping.

5.2.1. To provide spatial information for local or regional

scale environmental models

The technique has potential future application in provid-

ing data for input to local or regional scale process models

where spatial pattern is important. For example, local scale

flood-routing models require maps containing information

on the spatial pattern of individual trees within an area of

forest. The pattern prediction approach described here can

provide this information from coarse spatial resolution

imagery. Previously, where input maps of sufficient spatial

detail have been unavailable, the pattern prediction techni-

que can utilise widely available coarse spatial resolution

imagery to produce a prediction of land cover at the spatial

resolution required. This may be imagery of the scale

produced by MERIS or MODIS (300 m spatial resolution),
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Landsat TM (30 m spatial resolution) or even up to the

newly launched Ikonos sensor (1–4 m spatial resolution).

5.2.2. To provide spatial information for global scale

environmental models

In an age when global scale models are being increas-

ingly used to study the world’s climate, oceans and

ecosystem interactions, input spatial data with sufficient

coverage and spatial resolution are valuable resources. The

spatial pattern of land cover, meteorological or ocean

features is often vital input information to such models,

and in many cases, the satellite sensor imagery used to get

large spatial coverage (e.g., AVHRR, 1.1 km spatial

resolution) has insufficient spatial detail to identify such

patterns. Therefore, application of the super-resolution

technique described in this paper could potentially solve

this problem by providing spatial pattern predictions from

coarse resolution satellite sensor imagery.

5.2.3. Environmental management

In many cases, information on the spatial pattern of a

certain land cover class is far more useful for its manage-

ment than attempting to obtain an accurate map. For

example, in forestry, the spatial arrangement of trees within

forest stands provides an insight into the allocation of

above- and below-ground resources. The spatial distribution

reflects stand history, microclimate differences, climate,

sunlight factors as well as competition between individuals

and the chance of success of different species over time

(Coops & Culvenor, 2000). The approach described in this

paper has the potential to provide maps of tree stands from

coarse spatial resolution imagery, which maintain the spatial

pattern of the trees and, therefore, make such information

available for interpretation.

5.2.4. Visualisation

Often, within certain fields of geographical research and

environmental or urban management, the typical spatial

arrangement of a certain land cover feature will be known,

e.g., 1960s housing, savannah trees, animal habitats, without

having a method for visualising such an arrangement. The

approach described in this paper potentially has applications

in solving this problem by providing a visualisation method.

For example, a town planner may have knowledge on the

typical pattern of 1960s housing and a coarse spatial

resolution satellite sensor image of such an area of housing.

By applying the pattern prediction technique described here,

a possible realistic map of the housing could be produced to

aid planning.

5.3. Future work

The pattern prediction technique described in this paper

provides an extension to the spatial clustering method

described in Tatem et al. (2001). Techniques now exist to

carry out super-resolution mapping of land cover targets

both larger and smaller than a pixel, and future work will be

directed towards examining the possibility of combining the

two approaches. A large proportion of remotely sensed

images of land cover will contain features both smaller

and larger than the pixel size, so combination of both

techniques is required for accurate super-resolution land

cover mapping. To cope with complex scenes, the extension

of both techniques to multiple land cover classes must also

be examined. However, the successful results shown in this

paper, along with the potential applications described in

Section 5.2, indicate great potential for such a super-reso-

lution land cover pattern prediction technique.

6. Conclusions

This study has shown that a Hopfield neural network can

be used to predict the location and spatial pattern of class

proportions within each pixel. When examining complex,

disperse land covers composed of subpixel scale features,

the super-resolution pattern prediction technique based on

recreating predefined semivariance measures provides an

accurate and realistic mapping approach.

The unique Hopfield neural network application pre-

sented here represents a robust, efficient, and simple tech-

nique. Results from synthetic and simulated remotely sensed

data show good performance, suggesting that it has the

potential to predict accurately land cover patterns at the

subpixel scale. The combination of the technique with an

existing super-resolution land cover mapping approach,

aimed at features larger than a pixel, potentially leads to a

super-resolution land cover prediction technique capable of

mapping at any scale.
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