An Approach To Combining B and Alloy

Leonid Mikhailov and Michael Butler

Department of Electronics and Computer Science
University of Southampton
Highfield, Southampton, SO17 1BJ
United Kingdom
mjb@ecs.soton.ac.uk

Abstract. In this paper we propose to combine two software verifica-
tion approaches, theorem proving and model checking. We focus on the
B-method and a theorem proving tool associated with it, and the Alloy
specification notation and its model checker “Alloy Constraint Anal-
yser”. We consider how software development in B can be assisted using
Alloy and how Alloy can be used for verifying refinement of abstract
specifications. We demonstrate our approach with an example.

Keywords : B-method, Alloy.

1 Introduction

The approaches to creating verifiably correct systems can be divided in two
broad categories: a top down approach when developers start with an abstract
specification and gradually refine it to an executable implementation, which is
guaranteed to be correct with respect to the specification, and a bottom up ap-
proach when developers attempt to implement a specification straight away and
later on undertake a verification effort to make sure that their implementation
complies to the specification.

The first approach is usually based on some sort of refinement calculus. Showing
that a certain refined specification or, in fact, a final implementation complies to
the corresponding abstract specification usually involves proving a lot of prop-
erties. Theorem proving is a very tedious process involving keeping in mind a
multitude of assumptions and transformation rules. To help with this task a
number of general purpose theorem provers exist, such as PVS, HOL, etc. [13,
6]. Such theorem provers usually have some automated tactics such as GRIND
in PVS which attempt to prove the set goal automatically. As most of the re-
finement calculi (and formalisations of programming notations) are formulated
in undecidable logics (first and higher order logics) proving all goals automati-
cally is impossible. Thus the tool usually produces several subgoals that it didn’t
manage to resolve automatically and asks user guidance and assistance. The user

by applying the set of rules and theorems available in the system attempts to
prove the remaining goals.

With the second approach the specifiers usually formulate a number of liveness
and safety properties that the implementation is supposed to comply to. It is, of
course, possible to apply general purpose theorem provers for this purpose. How-
ever a different verification technique, generally referred to as "model checking”
is quite prominent with this approach. The general idea of model checking can
be briefly expressed as follows: a program in its abstract representation, and the
verification properties to be checked are formulated in some formalism based on
logic. Next these formulas are submitted to the tool which tries to find a counter
example violating the formulated verification conditions [9,7, 10, 5].

Both theorem proving and model checking have advantages and disadvantages.
The main advantage of theorem proving is that it permits to reason about infinite
domains which are the most interesting in practice. A disadvantage is that a
significant amount of highly qualified labour is required to verify even a relatively
simple program. With theorem proving at times it can be difficult to say whether
a property does not prove because the assumptions are not sufficiently strong or
just some extra effort and ingenuity is required.

Model checking is much more applicable for finite domains, although there is
a lot of ongoing research trying to apply this method to infinite domains. In
general, for infinite domains, while model checking can find a counter example
demonstrating that the specification is contradictory in one way or another, it
may not prove that the specification is correct. In this respect model checking is
similar to testing, which also cannot prove the program correct. However what
both of these approaches (model checking and testing) can do is to increase
our confidence in the system. Another shortcoming of model checking is that it
is usually applied for verifying consistency of a rather high level specifications,
while ultimately everybody is interesting in the correctness of the software im-
plementing these specifications. Obviously, while a specification can be perfectly
correct, the implementation may not be correct. Verifying correctness of the
executable programs with respect to their specifications is a topic of ongoing
research.

In this paper we propose to combine these two approaches to verification, with
the goal being to benefit from the advantages of both theorem proving and model
checking. In particular we consider combining the B method and a corresponding
tool with the Alloy specification notation and its constraint analyser. The B
method is a top down development approach which is supported by industry-
strength tools, which integrate a theorem prover for verifying the correctness
of the specification and its refinements [1]. The Alloy specification notation is
state-based and is supported by the Alloy constraint analyser, which is a finite
state model checker [8,9]. We briefly present these specification and verification
methods in the following sections. An earlier version of this paper has appeared in

proceedings of the 6th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 2001) [12].

The main idea discussed in this paper is as follows. Complete formal proof of all
proof obligations generated by the B tool is often practically infeasible. Often a
proof obligation cannot be proved for the simple reason that it is not true. That
can happen, for example, because a specification of an operation is not logically
strong enough. Or, simply, the specification of an operation can be erroneous.
The realisation of impossibility to prove a certain proof obligation usually brings
about a realisation that certain amendments can be made to the specification,
which would generate additional conjuncts in the hypothesis, permitting proof of
the obligation. At times, however, a developer can experience difficulties proving
a particularly tricky property, although sufficient hypothesis are present. Distin-
guishing between these two situations is important, as significant resources can
be wasted on trying to show unprovable goals.

Once the B tool has generated proof obligations we try to run an automated
theorem prover supplied with the tool. It usually leaves some of the obligations
unproved. Our idea is that before actually trying to prove these obligations
interactively, we translate them into the Alloy language and run the Alloy con-
straint analyser on them. Counter examples that the Alloy constraint analyser
can generate are usually suggestive. When a developer realizes how a certain
instantiation of variables of the counter example invalidates the property under
consideration, it becomes clear which amendments can be made to the specifica-
tion to exclude the counter example. This suggest a certain debugging process,
which most certainly has a shorter cycle than when interactive prover is used for
finding error. Once the Alloy constraint analyser cannot find a counter example
for a sufficiently large instantiation of the domains, it is a good indication that
the verified property is probably correct. The developer can then return to the
B interactive prover with confidence that this property should be possible to
prove. Translation between B specification notation and Alloy is manual at the
moment. However, in case certain modification and additions would be made to
the Alloy specification notation, such translation could be done automatically in
both directions.

We proceed as follows. First, we briefly review specification and verification
methods of B and Alloy. We then present a “Student Grades Database” example
specification in B and its translation into Alloy. Next, we consider how one
can verify consistency and refinement of B machine operations using the Alloy
constraint analyser. Finally, we discuss the modifications and changes that have
to be introduced into the Alloy specification notation to facilitate automatic
translation of B specifications and proof obligations into Alloy. We conclude by
reviewing related work and outlining directions of future research.

2 Summary of the Used Formalisms

Let us now briefly present the formalisms of B and Alloy and the development
methods associated with them.

2.1 The B Specification and Verification Method

The B method has an associated specification notation, the so-called Abstract
Machine Notation (AMN). This specification notation is classified as a state-
based notation and is quite similar to such well-known formal notations as Z and
VDM [14, 16]. Compared to the specification notation of Z, AMN is more appeal-
ing to programmers, as it includes such familiar constructs as assignment and
IF THEN ELSE along with nondeteministic specification statements
such as nondeterministic choice ANY . We briefly introduce the necessary
subset of AMN as we present an example.

The B method has three development stages: the specification, the refinement,
and the implementation. Development in the B method is centred around the
concept of machines: an abstract machine - MACHINE, a refinement machine
—REFINEMENT , and an implementation machine - IMPLEMENTATION.
Machines are similar to modules encapsulating their internal state. Machines
provide a section for initialising their internal state and operations for accessing
and manipulating it.

The developer starts off with translating an informal specification into an ab-
stract

MACHINE, which is allowed to use only an abstract subset of all available
statements in AMN. As a part of the abstract machine specification, the devel-
oper has to introduce an invariant, which should be established by initialisation
and should hold before and after the execution of all operations of this machine.
When the developer submits the produced specification to the tool, it generates
a number of theoretically justified verification conditions that are sufficient to
establish that the specification is not contradictory, or, in other words, consis-
tent.

Next, the developer defines a REFINEMENT machine which, in general, is
similar to the abstract specification machine, but is usually more deterministic.
The refinement machine must include an invariant which usually consists of two
parts, the part restricting the variables introduced in a refinement step, and the
so-called “gluing invariant” relating these variables and their counterparts in the
corresponding abstract machine. When the refinement is submitted to the tool,
the latter generates a number of proof obligations sufficient to establish that
the refinement is consistent and that it correctly implements the corresponding
specification. The development process can include a chain of REFINEMENT's
transitively refining the abstract machine with the last refinement in the chain
- an IMPLEMENTATION machine. The IMPLEMENTATION machine

maps directly to a programming language such as C or Ada. In this paper,
we only focus on the features of abstract machines and refinements which are
relevant to our discussion.

As soon as some proof obligations are generated, the developer can try to dis-
charge them using an automated theorem prover incorporated in the tool, which
attempts to discharge the generated proof obligations. Typically, there is a num-
ber of proof obligations that the automated prover cannot discharge, so the
developer can switch the prover to an interactive mode and attempt to prove
the remaining proof obligations manually.

The B method is supported by two commercially available tools, B-Toolkit de-
veloped and distributed by B-Core company, UK [2], and AtelierB developed
and distributed by Steria, France [15]. In general, the tools are quite similar and
each of them excels in slightly different aspects of the method. Accordingly, in
the following discussion we refer to both of them as “the tool”.

2.2 The Alloy Specification and Verification Method

The Alloy specification notation and the Alloy Constraint Analyser are the re-
search products of Daniel Jackson and his colleagues at MIT [8,9]. The Alloy
specification language (to which we further refer as Alloy) is also state-based
like B. An Alloy specification usually contains several sections. One of the oblig-
atory sections is for variable declaration, where variables can be declared as
either atoms, subsets of declared domains, or relations of various kinds con-
necting these sets and/or domains. Declaration of the variables can be arranged
so that the specification would have an implicit invariant restricting the set of
possible states in which these variables can be present. In addition, in another
section of the specification, the developer can write down an arbitrary number of
named explicit invariants that further restrict the state. The developer can also
write down a named assertion containing an arbitrary logical formula expressed
on the variables of this specification. In yet another section of the specification,
the developer can write down named operations modifying variables declared in
the specification. Operation specifications describe a relation between pre- and
post-states of the variables, similar to operation schemas of Z.

Verification with Alloy typically proceeds in the following manner. After the
developer has recorded the variables and all implicit and explicit invariants re-
stricting the set of states the variables can be in, he or she can write down
some conjectures about the relation between the declared variables in the form
of named assertions. It is then possible to submit such an assertion to the Alloy
constraint analyser which tries to find a counter example invalidating the as-
sertion. The Alloy constraint analyser does this by converting the assertion, all
related variable declarations, and appropriate invariants to a boolean formula,
negating it and submitting it to one of several available general purpose boolean
solvers. The chosen solver, in turn, tries to find an instantiation of the variables

in the submitted formula making it true. Naturally, to make this process finite,
the user of the Alloy constraint analyser is asked to indicate the dimensions of
the participating domains.

The developer can also verify the operations defined in the specification against
any or all of the invariants. For this, the developer has to mark an operation he
or she wants to verify against a particular invariant, and the analyser then tries
to find an example instantiation of the variables which satisfies the invariant
before an execution of the operation but does not satisfy it after. Internally, the
analyser achieves this in a manner similar to verifying assertions.

We briefly introduce the subset of the Alloy specification language necessary for
our purposes as we present the example.

It is important to mention that at the moment Alloy does not provide any
support for verifying implementations or refined specifications on compliance
with the original specification. In this paper we discuss how such features can
be introduced to Alloy.

3 Example of Specifications in B and Alloy

In this section we follow the outline of our verification method briefly described
in the introduction. Rather than discussing the method on an abstract level,
we chose to demonstrate it with an example. Due to numerous restrictions and
shortcomings of the Alloy specification notation, we chose a rather simple exam-
ple of specifying a database of student grades. Yet, verifying this specification
arises a multitude of interesting issues that we discuss below.

3.1 Specifying a Student Grades Database in B

Suppose that we would like to create a simple database containing information
about students and their grades. On an abstract level, such a database can
be modelled as a partial function. The B specification of such a model can be
represented as an abstract machine DbAbstr, as shown in Fig.1.

This machine introduces two new domains, which are declared in the section
SETS:

STUDENTS and GRADES. These domains are the fixed sets sometimes re-
ferred to as deferred sets, as the developer only needs to give them a concrete
representation in the implementation.

The next section of the B specification contains declarations of the variables,
which hold the state of the machine. In our case, this is the variable abstDb.

The INVARIANT section holds the invariant of the machine. In general, an
invariant is a predicate which is established by the initialisation of state variables

MACHINE DbAbstr
SETS
STUDENTS ; GRADES
VARIABLES
abstDb
INVARIANT
abstDb € STUDENTS + GRADES
INITIALISATION
abstDb := &
OPERATIONS
append(st , gr) =
PRE
st € STUDENTS A gr € GRADES A st ¢ dom (abstDb)
THEN
abstDb := abstDb U { st — gr }

END
END

Fig. 1. The abstract machine DbAbstr

and holds before and after execution of all operations declared in the machine. In
B, an invariant usually includes predicates that give a type to the state variables
declared in the VARIABLES section. In our machine, abstDb is constrained
to be a partial function from the deferred set STUDENTS to the deferred set
GRADES.

In the next section INITIALISATION, all variables of the machine must be
initialized. Thus, abstDb is assigned an empty set.

As follows from the name of the next section, it contains the definitions of all
operations defined for this machine. To illustrate our idea, it is sufficient to pro-
vide only one operation. Therefore, the machine DbAbstr only has an operation
append, for adding records about students’ grades into the database. This op-
eration has a precondition verifying the types of the corresponding parameters
and also checking that the submitted student is not already in the database, i.e.
in the domain of the partial function abstDb. In B, the outcome of an operation
is only defined in those states where its precondition evaluates to true.

As soon as the definition of the DbAbstr machine is complete, we can run the
type checker, the proof obligation generator, and the automated theorem prover
on it. Because of the simplicity of DbAbstr, the automated theorem prover of
the tool can resolve one hundred percent of the generated proof obligations.

Now let us consider a refinement of our student database. In this refinement,
shown in Fig.2-3 we implement the student database as a connected list of nodes.

REFINEMENT DbConcr
REFINES DbAbstr
SETS
LINKS
CONSTANTS
nil
PROPERTIES
nil € LINKS
VARIABLES
stDb , grDb , next , head
INVARIANT
stDb € LINKS »~ STUDENTS A
grDb € LINKS + GRADES A
next € LINKS » LINKS A
head € LINKS A
dom (stDb) = dom (grDb) A
dom (grDb) = dom (next) A
(next = @ A head = nil vV
(nil € ran (next) A nil & dom (next) A head € dom (next))) A
(next # & =
V 2z . (2z € LINKS A zz € ran (next) = head — 2z € next™)) A
V link1 . (link1 € dom (stDb) = abstDb (stDb (link1)) = grDb (linkl)) A
dom (abstDb) = ran (stDb)
INITIALISATION
stDb , grDb , next | head := & , & , T, nil

Fig. 2. The refinement machine DbConcr

The clause REFINEMENT declares that the machine is intended to be a
refinement of another machine. In the next section of the refinement machine,
the developer has to indicate which exactly machine it refines, in our case it is
DbAbstr. Similarly to abstract machines, refinements can also declare deferred
sets. In our case, we declare a new set LINKS that will serve as a domain of all
links available for building a linked list. Next, the developers can declare some
constants original to the refined specification, so we declare a constant nil that
is used for marking the end of the list. The clause PROPERTIES is used for
constraining the declared constants, in particular, the developers must indicate
the type of the constants: nil is an element of the domain LINKS.

Next, we declare variables stDb ,grDb , next , and head that are used for imple-
menting a linked list. As can be seen from the upper part of the invariant, stDb
is declared as a partial injective function associating LINKS with STUDENTS.
Note that, as the function is injective, there can be no two different links refer-

OPERATIONS
append(st , gr) =

PRE
st € STUDENTS A gr € GRADES A st & ran (stDb)
THEN
ANY I WHERE [l € LINKS — dom (next) — { nil }
THEN
IF next =< THEN
head =11 ||
next :== { Il — nil } ||
stDb ;= { ll — st } |
grDb :={ll — gr }
ELSE
stDb(ll) == st ||
grDb(ll) = gr |
ANY zz , next] WHERE
zz € dom (next) A zz — nil € next A
next!] € LINKS » LINKS A
YV yy . (yy € LINKS A yy € dom (next) — { =z } =
next! (yy) = next (yy)) A
next! (zz) =1 A
next! (1) = nil
THEN
next := nextl
END
END
END
END
END

Fig. 3. The refinement machine DbConcr (continued)

ring to the same student. On the other hand, ¢grDb is declared not as injective
function, but simply as a partial function from LINKS to GRADES — clearly,
several students could have received the same grade on an exam. The function
next represents the linked list itself, and is injective, which helps us later to state
that the list is really linked, i.e. all of its nodes can be reached from its head.

The invariant in a refinement can, in general, be divided into three parts. The
first one describes the types of the variables declared in the refinement. The sec-
ond one describes the relations between the variables declared in the refinement

that are true after the initialisation of these variables and remain true before
and after execution of all operations of this machine. In our case, this part of
the invariant can be subdivided into three conjuncts. The first one states that
the domains of stDb, grDb , and next are equal. This condition guarantees that
students and their grades will be attached to the links connected in the list.
The second one states that either the list is empty and head is equal to nil or
head is in the domain of next and head is not equal to nil and nil is not in
the domain but is in the range of next. This conjunct describes the structure of
the list, i.e. the list is either empty and the head is pointing to nil, or the list
starts from head and is terminated by nil. The third conjunct states that the list
must always be properly connected, i.e. starting from the head, it should always
be possible to reach the terminating nil. This is expressed by stipulating that
any tuple such that its first element is head and its second element is any one
belonging to the range of next must belong to the reflexive transitive closure of
the function next.

Finally, the third part of the invariant represents a so-called “gluing invariant”
which explains how the state of the abstract machine is represented in terms of
the variables of its refinement. In our case it suffices to state that for all links in
the domain of stDb, the grade recorded in abstDb (in the machine DbAbstr) for
the student associated with a link in stDb (in the machine DbConcr) is equal to
the grade associated with this link in grDb (in the machine DbConer). It is also
necessary to add that for all records in the abstract database there is a link in
the concrete one. We achieve this by stating that the domain of abstDb is equal
to the range of stDb.

As follows from the name of the following section, the variables are initialized in
it. All functions are assigned empty sets and the head is assigned nil .

On the concrete level, definitions of operations become more elaborate. Precondi-
tions of the operations can only be logically weakened, and they can be expressed
on the variables of this refinement machine. Consider the refined append op-
eration. First, we create a temporary variable Il which represents a new link to
be inserted into the list next. This variable is assigned a value that is arbitrarily
chosen from LINKS, is not equal to nil, and is a fresh value, i.e. it is not in the
domain of next.

When appending a new student/grade record to the linked list, there can be two
distinct cases, when initially the list is empty and when it is not. In the first
case, we assign to mext a tuple [l — nil, thus making next represent a list with
one element [, terminated by nil. We also make head to point to I/l and associate
a supplied student and grade with the link [l. If the linked list is not empty,
we associate the supplied student and grade with the new link [l. After this, we
create two temporary variables zx and mext!, where zz is assigned to refer to
the last element in the list before nil and nexti is a copy of next in all the links
except for the one zz is pointed at. In next!, zz is pointing not to nil, but to
the new link [/, which, in turn, points to nil. In fact, next! describes a new state

10

of the function next. Thus the definition of the operation append concludes with
the assignment of this new value nezt! to next.

For a reader well familiar with the style of B specifications, the specification
presented above may appear to be somewhat convoluted, as it is quite easy
to significantly shorten the definition of the refined append . The style of the
specification presented above is motivated by the restrictions of the Alloy speci-
fication notation. We discuss these restrictions in the concluding section, as well
as the modifications that it would be necessary to make to Alloy in order to
permit for more natural specifications in B.

The refinement machine DbConcr presented in Fig.2 and Fig.3 appears to be
correct, i.e. the definition of the operation append is consistent with respect to the
invariant of the refinement, and also append appears to be a proper refinement
of its counterpart in DbAbcst. But is it really correct? To be able to verify this
conjecture in Alloy, we first need to consider how we can formalise the machine
DbConcr in Alloy.

3.2 Translating the Student Grades Database to Alloy

Consider the Alloy specification presented in Fig.4 and Fig.5. In the section
domain, we declare three domain sets with familiar names: STUDENTS, GRADES,
and LINKS. The keyword fixed is used to indicate that the marked set is un-
changeable, remaining invariable before and after all operations. The next section
contains the declaration of state variables. Unlike in AMN, the Alloy variable
declaration not only lists the variables, but also describes their type, and par-
tially introduces an invariant. For instance, stDb is declared as a partial injective
function from LINKS to STUDENTS. The arrow -> is used for constructing general
relation types.

To constrain a variable to be a relation of a particular kind, such as an injective
function, the domain and the range of the relation can be restricted using the
so-called multiplicity characters. In the case of stDb, the multiplicity character
used is ? which, when attached to the name of the set in the variable declaration,
makes it to have zero or one element. As 7 is attached to both the domain and
the range of stDb signifying that for each element in the domain of stDb there is
at most one element in its range and the other way around, i.e. stDb is injective.

In this specification, we also use the multiplicity character !, which makes a set
to have exactly one element. More information on multiplicity characters and
the Alloy specification notation in general can be found in [8].

In Alloy, domain-valued variables are modelled as subsets of domains rather
than elements of domains, and relational image rather than function application
is used to apply relations to values. Unique values are represented by singleton
sets.

11

model DbConcr {

domain { fixed STUDENTS, fixed GRADES, fixed LINKS}
state {

stDb : LINKS? -> STUDENTS?

domStDb : LINKS

ranStDb : STUDENTS

grDb : LINKS -> GRADES?

domGrDb : LINKS

next : LINKS? -> LINKS?

head : LINKS!

domNext : LINKS

ranNext : LINKS

nil : fixed LINKS!

nextl : LINKS? -> LINKS?

domNextl : LINKS

ranNextl : LINKS
}
def domStDb { domStDb = {1 : LINKS | some 1.stDb}}
def ranStDb {ranStDb = {st : STUDENTS | some st. stDb}}
def domGrDb {domGrDb = {1 : LINKS | some 1l.grDb}}
def domNext {domNext = {1 : LINKS | some 1.next}}
def ranNext {ranNext = {1 : LINKS | some 1. next}}
def domNextl {domNextl = {1 : LINKS | some 1l.nextl}
def ranNextl {ranNextl = {1 : LINKS | some 1. nextil}}
cond emptyList {all 1 : LINKS | no l.next}

inv StatelInv {
domStDb = domGrDb && domGrDb = domNext
(emptyList && head = nil ||
((nil in ranNext) && '(nil in domNext) &&
(head in domNext)))
(lemptyList ->
(all zz : LINKS | zz in ranNext -> zz in head.*next))

}

op init{
all 1 : LINKS | no 1.stDb’ && no 1l.grDb’ && no 1l.next’
head’ = nil }

Fig. 4. The Alloy representation of DbConcr

A declaration of the kind domStDb : LINKS declares domStDb to be a subset of
the domain LINKS. The operator : is used in Alloy to indicate a subset relation
while declaring a variable, and the operator in is used for this purpose in other
parts of the specification. The variable domStDb : LINKS serves an auxiliary
purpose only, as the machine DbConcr does not have a counterpart for it. This

12

op append(st : STUDENTS!, gr : GRADES!) {
! (st in ranStDb)
some 11 : LINKS - domNext - nil |
(emptyList -> head’ = 11 && 1ll.next’ = nil &&
11.stDb’ = st && 1l.grDb’ = gr &&
(all 1 : LINKS - 11 | no l.next’ &%
no 1.stDb’ && no 1.grDb’)) &&
(lemptyList ->
11.stDb’ = st &&
11.grDb’ = gr &&
some xx : domNext | xx.next = nil &%
(all yy : LINKS | yy : (domNext - xx)
-> yy.nextl = yy.next) &&
xx.nextl = 11 && 1l.nextl = nil &&
(all 1 : LINKS | l.next’ = l.nextl) &&
(all 1 : LINKS - 11 | 1.stDb’ = 1.stDb &&
1.grDb’ =1.grDb) &&
head’ = head)

Fig. 5. The Alloy representation of DbConcr (Continued)

variable is necessary because Alloy does not have a function dom which would
return a domain of a given relation. To circumvent this problem of Alloy, we
have to declare the variable domStDb and constrain it using the definition

def domStDb { domStDb = {1 : LINKS | some l.stDb}}

which makes domStDb to be equal to the set of such links whose image of stDb
is non-empty. Note the usage of the operator dot (.), which is used for taking
an image of a set through a relation.

An Alloy term 1.stDb is equivalent to a B term stDb(1).! The auxiliary variable
ranStDb represents the range of the function stDb and is defined similarly to
domStDb. In the definition of ranStDb note the usage of the ~ operator, which
takes the inverse of the function. As stDb is defined as an injective function, its
reverse is a function as well. The other variables whose name starts with dom
or ran represent, respectively, domains or ranges of the corresponding functions
and are all defined in a similar manner.

The variable grDb is represented as a partial function, while next is a partial
injective function. There is also a declaration of the variable head, which is a
one element set, and a variable nil which is marked with the keyword fixed
turning it into a constant.

! Should stDb be a general relation, the Alloy term 1.stDb would translate into
stDb[{1}] in B.

13

The state of the variables can be further constrained using any number of named
invariants. In our case, we have only one invariant StateInv, which is, in fact,
a translation of the invariant of the machine DbConcr, apart from the typing
conjuncts. As Alloy prohibits comparisons of structured sets and has no prede-
fined constant for an empty set, we had to introduce a condition emptyList,
which in B terms is next = @. In Alloy, *next represents the reflexive transitive
closure of the function next. At this point a careful reader could have noticed
that the “gluing” part of the DbConcr invariant does not have a counterpart
in StateInv. As Alloy does not support the notion of refinement directly, the
invariant of an Alloy model can only refer to the variables defined in this model,
while the gluing invariant refers to the variables of DbAbstr as well. The gluing
invariant is of no significance for verifying consistency of the concrete append
which is the topic of the next section. However, it is crucial for verifying the
correctness of a refinement step. We discuss how to specify a gluing invariant in
Alloy in Section 4.2.

The Alloy specification notation does not include a reserved construct for initial-
isation of variables. However, we can formalise the initialisation section of the
DbConcr machine as an operation init of Alloy. It states that for all elements in
the set LINKS the image of these elements through stDb, grDb and next is equal
to the empty set. In addition, the new value of head is equal to the predifined
constant nil. Clearly this operation establishes StateInv.

The definition of the operation append in Alloy is, practically, a straightforward
translation of its B counterpart. Alloy does not have programming language
statements like “IF THEN ELSE 7 neither does it have an assignment
statement. Instead, an operation in Alloy must be described as a relation be-
tween initial (unprimed) and resulting (primed) states of the variables. A B
specification is built on an assumption that only the variables explicitly modi-
fied in the specification change, and all the other variables remain unchanged.
In Alloy, however, it is necessary to explicitly mention that all the variables that
were not modified in the definition of an operation remain in the initial state.

As was already mentioned, it is impossible (at the moment) to compare struc-
tured sets in Alloy. Thus, we cannot say next := {ll — nil}, but we should say
that the image of 11 through next is equal to nil, or 11.next’ = nil. The defi-
nition of the operation append in the refinement machine DbConcr is formulated
using a temporary variable next1. As in Alloy it is impossible to quantify over
relations, we had to introduce this temporary variable in the state declaration.
As the only invariant binding mezt! is the one making it an injective partial
function from LINKS to LINKS, this is the same as stating that there exists some
nextl in the definition of the operation.

It should be noted that not only the style of the B specification presented in
this paper was motivated by the need to translate it directly to Alloy, but the
style of Alloy specifications was adjusted for this purpose as well. In particular, a
specification written in a pure Alloy style instead of using partial functions would

14

rather use total functions. Therefore, domain expressions would not usually be
used.

At the moment the translation from B to Alloy is done by hand. However,
undoubtedly, the translation between AMN and the Alloy specification notation
could be made automatic if Alloy were extended with several features. We will
discuss these features in the concluding section of the paper.

4 Verifying Properties in Alloy

Let us now return to the question of whether the specification of the method
append is correct. First, we take a look at operation consistency, and then con-
sider the correctness of a refinement step.

4.1 Verifying Operation Local Consistency

If we submit append along with StateInv to the Alloy constraint analyser and
indicate that the domains should be instantiated with only three elements, the
analyser generates the counter example presented in Fig.62. The counter example
clearly violates the invariant, since after execution of the operation, domNext’
contains nil, which contradicts one of the conjuncts in the invariant. Returning
to the specification of append, it is fairly easy to spot the error. The part of
the specification which deals with the case when the list is not empty describes
what should be the value of the list next1 at all the links in the domain of next
and also at the new link 11 we have added. This condition does not exclude,
however, that next1 can have other links. Thus, the Alloy constraint analyser is
free to introduce nil into the domain of next1, which violates StateInv.

This problem can be traced back to our B specification. To establish consistency
of an operation with respect to the machine invariant the B tool generates a proof
obligation stating that the invariant conjoined with the operation’s precondition
implies the invariant expressed on the new values of the variables. In our case,
one of the generated proof obligations would state that the invariant and the
precondition of append imply that nil is not in the domain of next!. How-
ever, the counter example found by the Alloy constraint analyser demonstrates
that these assumptions are not strong enough for resolving this obligation. All
attempts to prove such an obligation would be futile.

To fix the problem, we additionally need to state that the list next1 should only
be larger than next by one element 11:

domNextl = domNext + 11

2 We have only left the values of the relevant variables for clarity

15

Analyzing append vs. Statelnv ...
Scopes: GRADES(3), LINKS(3), STUDENTS(3)
Conversion time: 10 seconds
Solver time: 13 seconds
Counterexample found:
Domains:
LINKS = {nil,LO,L1}
Sets:
domNext = {LO}
domNextl = {nil,LO,L1}
domNext’ {nil,LO,L1}
Relations:
next = {LO -> nil}
nextl = {nil -> LO, LO -> L1, L1 -> nil}
next’ = {nil -> LO, LO -> L1, L1 -> nil}
Skolem constants:
11 = L1

Fig. 6. The counter example for the operation append

Indeed, this amendment is sufficient to resolve the problem. Now the developer,
equipped with the confidence reinforced by the fact that the Alloy constraint
analyser cannot find any counter examples, can return to proving the subgoals
dealing with the consistency of the operation.

It is also possible to check the consistency of an operation in a different manner.
Instead of translating the definition of a B operation into Alloy, it is sufficient
to translate the proof obligations generated by the B tool as Alloy assertions
and run the Alloy constraint analyser on them similarly to verifying operation
refinement as described in the next section.

4.2 Verifying Operation Refinement

The definition of an operation in a refinement machine can be consistent with
respect to the local invariant, i.e. the part of the invariant referring only to
the variables of the refined machine. However, at the same time the relation
between it and its abstract counterpart can be other than refinement. Some
of the proof obligations generated by the tool during verification are directed
at establishing that abstract and concrete definitions of operations are, in fact,
in the refinement relation. We propose to translate such proof obligations into
Alloy named assertions in order to check that these proof obligations are indeed
provable. Alloy assertions are the logical predicates expressed using the variables
of an Alloy specification that are supposed to evaluate to true in any state the
variables can be in. Accordingly, the tool attempts to find a state invalidating
the predicate in the assertion.

16

The debugging process that we propose is then as follows. The counter example
generated by the analyser can hint at modifications that must be made either
to the invariant of the refinement or to the definition of an operation in B. The
developer then should make these modifications to the B specification, regen-
erate the proof obligations, run an automated theorem prover on them, and in
case any are left, translate the remaining to Alloy as assertions and repeat the
debugging cycle again until the Alloy constraint analyser is unable to generate
a counter example in a reasonably large scope. To become one hundred per cent
certain that the refinement machine is, in fact, in the refinement relation with
its abstract counterpart, the developer can then go on and prove the remaining
proof obligations using an interactive theorem prover.

There is, however, a complication. As we have already mentioned, the Alloy
specification notation does not provide any support for defining abstract specifi-
cations and their refinements separately. In order to express the “gluing” part of
the DbConcr’s invariant, we have to combine all the definitions of abstract state
and the definitions of its concrete implementation in the same model. Therefore,
we should extend our model with the definitions for the partial function abstDb
and its domain domAbstDb. The last one is defined similarly to all the other
definitions of domains of functions.

abstDb : STUDENTS -> GRADES?
domAbstDb : STUDENTS

We should also extend the invariant StateInv to include the “gluing” conjuncts:

all linkl : domStDb | link1.stDb.abstDb = linkl.grDb
all st : STUDENTS | some st. stDb <-> some st.abstDb

To demonstrate our approach to verifying refinement, let us now return to our
example. To demonstrate our approach to verification, we first need to introduce
an error in the definition of DbConcr’s append that would not invalidate the
consistency of the operation with respect to the invariant of the refinement
machine, yet would break the refinement relation.

In the B method, the refinement machine can only be proved to be in a refinement
relation with its abstract counterpart if all operations of the refinement machine
preserve the gluing invariant. In our example, it states that for all links in the
domain of stDb, the grade recorded in abstDb (in the machine DbAbstr) for
the student associated with a link in stDb (in the machine DbConcr) is equal
to the grade associated with this link in grDb (in the machine DbConcr). It is
also states that the domain of abstDb is equal to the range of stDb. Obviously,
this invariant would be violated, should we erroneously associate the submitted
student not with the submitted grade but with some other wrong grade in append
of DbConcr (see Fig.7).

Naturally, we would need to introduce the constant wrong in the clause CONSTANTS
of the machine and give its type in the clause PROPERTIES. If we now subject

17

append(st , gr) =

PRE
st € STUDENTS A gr € GRADES A st ¢ ran (stDb)
THEN
ANY I WHERE Il € LINKS — dom (nest) — { nil }
THEN
IF nest =@ THEN
head =1l ||

next := { Il — nil } ||

stDb := { ll — st } ||

grDb := { Il — wrong }
ELSE

.. continuation as in Fig.2

Fig. 7. A fragment of the erroneous definition of the operation append invalidating the
refinement relation

the refinement machine to the standard steps of type checking, proof obligation
generation, and automated theorem proving, we will be left with several proof
obligations, of which “append.22” is of particular interest (see Fig.8).

The proof obligation “append.22” effectively states that the gluing invariant
must hold after the execution of append. It must hold under the assumptions
that are extracted from the PROPERTIES and INVARIANT clauses of
the DbAbtr and DbConcr machines and also from the precondition of the append
operation of this machines and the local information available from the definition
of append in DbConcr.

To verify such a proof obligation in Alloy, we can represent it as a named as-
sertion. When submitted to the constraint analyser, the latter tries to verify
whether the predicate in the assertion is true in all states restricted by all in-
variants of the model. Therefore, while translating a B proof obligation to Alloy,
we can omit all those conjuncts on the left hand side of the implication that are
repeating the INVARIANTSs and PROPERTIES of the abstract and con-
crete machines already represented in the state declaration and the invariants
of the Alloy model. The obligation “append.22” can be translated as an Alloy
assertion, as presented in Fig.9.

Unfortunately, at the moment the Alloy specification notation is not sufficiently
rich to always permit a one-to-one translation of B. Alloy does not permit to use
set operations such as intersection, union, etc. on structured sets (i.e. relations).
Neither it is possible to compare structured sets. In a way, in Alloy it is impossible
to state that “a certain relation is such and such”, it is only possible to state “a

18

go(append.22)
7¢Component properties”” A

”‘Previous components properties’™ N

7‘Previous components invariants’” N
7‘{Component Invariant’ A

”‘append preconditions in previous components’” N

7“append preconditions in this component’™ A
st € ran (stDb) A
”‘Local hypotheses’ N
Il € LINKS AUl ¢ dom (next) A Ul # nil A
next # & A zz € dom (next) A zz — nil € next A
next] € LINKS + LINKS A nextl ' € LINKS + LINKS A
dom (next!) = dom (mext) U { Il } A
YV yy . (yy € LINKS A yy € dom (next) — { =z } =
next! (yy) = next (yy)) A

next! (zz) =1 A next! (1) = nil A
linkl € dom (stDb <+ { Il — st }) A
7‘Check that the invariant
(Mlink1. (link1: dom(stDb) = abstDb(stDb(link1)) = grDb(link1)))
is preserved by the operation - ref 4.4, 5.5
=
(abstDb U {st — gr}) ((stDb <+ {ll— st }) (linkl))

= (grDb < { Ul — wrong }) (linkl)

Fig. 8. The proof obligation “append.22”

certain relation satisfies these properties”, and these “properties” should always
be expressed elementwise. Therefore, to express our proof obligation in Alloy, we
have to perform a case analysis on the domains of the functions participating in
the right hand side of the goal.

The constraint analyser easily finds a counter example demonstrating that the
assertion P022 is not always true, i.e. that the submitted grade gr is not always
equal to the constant wrong. If the developer now reverses the definition of
append operation to its state before we introduced the “wrong” error and goes
through the entire proposed debugging cycle, then the Alloy constraint analyser

19

assert P022 {
all st : STUDENTS, gr : GRADES, 11 : LINKS, xx : LINKS, linkl : LINKS |
! (st in ranStDb) &&
! (st in domAbstDb) &&
1 (11 in domNext) &&
11 '= nil &&
! emptylList &&
xx in domNext &&
xx.next = nil &&
domNextl = domNext + 11 &&
(all yy : LINKS | yy : domNext && yy !=xx -> yy.nextl = yy.next) &&
xx.nextl = 11 &&
11.nextl = nil &&
linkl in domStDb + 11 ->
(1inkl in (domStDb - 11) -> (1linkl.stDb in domAbstDb ->
(link1 in (domGrDb - 11) -> link1l.stDb.abstDb = linkl.grDb))) &&
(1ink1l in (domStDb - 11) -> (linkl.stDb in domAbstDb ->
(link1 in 11 -> linkl.stDb.abstDb = wrong))) &&
(linkl in (domStDb - 11) -> (linkl.stDb in st —>
(link1 in (domGrDb - 11) -> gr = linkl.grDb))) &&
(linkl in (domStDb - 11) -> (linkl.stDb in st —>
(1inkl in 11 -> gr = wrong))) &&
(1ink1l in 11 -> (st in domAbstDb ->
(linkl in (domGrDb - 11) -> st.abstDb = linkl.grDb))) &&
(link1l in 11 -> (st in domAbstDb ->
(1inkl in 11 -> st.abstDb = wrong))) &&
(1ink1l in 11 -> (st in st ->
(link1l in (domGrDb - 11) -> gr = linkl.grDb))) &&
(linkl in 11 -> (st in st -> (linkl in 11 -> gr = wrong)))

Fig. 9. The proof obligation “append.22” translated to Alloy

will be unable to find a counter example for the corresponding assertion in a
sizable scope.

5 Conclusions and Related Work

As was mentioned above, both B and Alloy are state-based formalisms. Alloy,
rather like Z, describes state changes in terms of pre and post states and is also
formalised in the first order logic. While the B notation was designed to resem-
ble an imperative programming language syntax, the subset of the language that
can be used in abstract MACHINEs and REFINEMENTS is essentially just
syntactic sugar for first order logic expressions on the pre and post states of vari-

20

ables. Accordingly, a translation from B to Alloy would be rather straightforward
if Alloy did not have certain features.

The ability to work with relations as with sets of tuples appears to be the most
important of these features. Alloy should permit all standard operations for ma-
nipulating ordinary sets, such as set comparison, set union, set difference, etc.
In the absence of this feature, not only specifications are much longer, but also
it is impossible to directly express properties of updated relations. This short-
coming of Alloy is apparent in our translation of the proof obligation append.22.
Also, Alloy should permit quantifying over relations, as under certain conditions
the B tool can generate proof obligations having quantification over relational
variables. An introduction of the usual functions dom and ran for taking domain
and range of a relation, as well as a constant @ would significantly simplify the
resulting Alloy specifications, as it would be possible then, for instance, to de-
scribe the domain of a constructed function. Finally, the absence of integers (or
even of any finite subset of natural numbers) and arithmetic is a very severe
restriction of the current Alloy implementation, making it inapplicable to the
majority of practical cases. From our communication with Alloy developers it
appears that the next version of Alloy will address most of these issues.

The idea to combine theorem proving with model checking is not new as such.
For instance, an objective of Symbolic Analysis Laboratory (SAL) project of
SRI International’s Computer Science Laboratory [3] is to provide integrated
combination of static analysis, model checking and theorem proving techniques
for verification of concurrent systems. SAL framework features an intermedi-
ate language which serves as a medium for representing the state transition
semantics of systems described in Java or Esterel. It also serves as a common
representation for driving back-end tools such as PVS theorem prover [13] and
SMV model checker [11]. The SAL framework, however, is geared towards ver-
ifications of concurrent systems formalisable as transition systems, while in our
approach we apply the Alloy constraint analyser for verification of state-based
B specifications.

The fact that a significant development effort can be wasted trying to prove false
conjectures during formal software development was observed by Juan Bicarregui
and Brian Matthews in [4]. They suggest using automatic theorem proving tech-
nology in refutation of proof obligations in order to find faulty proof obligations.
Although refuting the proof obligation indicates a fault in design, it does not, in
itself, helps to identify the source of the problem. The authors propose to use a
model generator on the negation of a faulty proof obligation to find a counter
example. This, in a way, is similar to the procedure used by Alloy for finding
counter examples. Our work on combining B and Alloy, therefore, can be seen
as a logical continuation of the direction of research outlined in [4], even though
we were not aware of this work at the moment our paper was finished.

Currently, the translation from B to the Alloy specification notation is done by
hand. To allow for an automatic translation, the Alloy specification language has

21

to be extended with the features we just mentioned. In principle, we perceive two
major ways in which the described approach to verification can be implemented
as a tool. The first way is to add Alloy-like features into tools supporting the B
method. At the moment, such tools are supplied as integrated sets of utilities for
type checking, proof obligation generation, specification animation, and theorem
proving. Naturally, a utility permitting for model checking proof obligations
would integrate nicely with such tools. In practice, it is often infeasible to adhere
to a completely formal development, as theorem proving is a very tedious and
lengthy process employing highly qualified personnel. Therefore, the B method
is often applied in a so-called “soft” manner, i.e. some of the steps of the method
are omitted or validated only informally. For instance, developers might decide to
informally review the remaining proof obligations which the automated theorem
prover did not manage to resolve. Of course, this approach can compromise the
correctness of the resulting system as it is rather easy to overlook an error. In
this respect, should a B tool support a model checker similar to Alloy, it would
help significantly to avoid errors and, in a way, make such an application of the B
method “harder”. Obviously, however, verifying proof obligations with a model
checker should not discourage the developers from trying to prove the remaining
proof obligations interactively. In fact, from the theoretical standpoint, even if
a model checker would permit to verify a property on finite subsets of infinite
domains, theorem proving must still be used to make certain that the property
holds on the entire domain. At the moment we are involved in a project of
building a Prolog-based tool for animation and model checking of general B
machines in a manner similar to Alloy’s.

The second way of implementing the suggested approach to verification as a
tool is to add B-like features to the Alloy constraint analyser. In particular,
Alloy can be extended to permit for verifying refinement. This would amount to
extending the Alloy specification language with special notation for specifying
abstract and refined models. The Alloy constraint analyser could be extended
with a verification condition generator. Such an extension would open an entirely
new scope of potential applications for Alloy.

Acknowledgements

We would like to thank Daniel Jackson for the comments he has provided on an
earlier version of this paper. The anonymous referees also helped to improve the

paper.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

22

10.
11.

12.

13.

14.
15.

16.

. B-Core (UK) Limited, Oxon, UK. B-Toolkit, On-line manual., 1999. Available at

http://www.b-core.com/ONLINEDOC/Contents.html.

S. Bensalem, C. Mufioz, S. Owre, H. Ruef; J. Rushby, V. Rusu, H. Saidi,
N. Shankar, E. Singerman, and A. Tiwari. An overview of SAL. In C. M. Hol-
loway, editor, LFM 2000: Fifth NASA Langley Formal Methods Workshop, pages
187-196, Hampton, VA, June 2000. NASA Langley Research Center.

J. C. Bicarregui and B. M. Matthews. Proof and refutation in formal soft-
ware development. In 3rd Irish Workshop on Formal Software Development,
www.ewic.org.uk, July 1999. British Computer Society, Electornic Workshops in
Computing.

Formal Systems (Europe) Ltd. Failures-Divergence Refinement — FDR2 user man-
ual, October 1997. Available at http://www.formal.demon.co.uk.

M. Gordon. Introduction to the HOL system. In M. Archer, J. J. Joyce, K. N.
Levitt, and P. J. Windley, editors, Proceedigns of the International Workshop on
the HOL Theorem Proving System and its Applications, pages 2—-3, Los Alamitos,
CA, USA, Aug. 1992. IEEE Computer Society Press.

G. J. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,
23(5):279-295, May 1997.

D. Jackson. Alloy: A lightweight object modelling notation. MIT Lab for Computer
Science, July 2000.

D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa : the alloy constraint analyser. In
Proc. International Conference on Software Engineering, Limerick, Ireland, June
2000.

K. MacMillan. The SMV Language. Cadence Berkeley Labs, 1999.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell
Massachusetts, 1993.

L. Mikhailov and M. Butler. Combining B and Alloy. In Proceedings of
FMICS’2001, pages 29-45, Paris, July 2001. INRIA.

N. Shankar and J. M. Rushby. PVS Tutorial. Computer Science Laboratory, SRI
International, Menlo Park, CA, Feb. 1993. Also appears in Tutorial Notes, Formal
Methods Europe ’93: Industrial-Strength Formal Methods, pages 357-406, Odense,
Denmark, April 1993.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1987.

Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 1996.
Available at http://www.atelierb.societe.com/index_uk.html.

M. Woodman and B. Heal. Introduction to VDM. McGraw-Hill, 1993. ISBN
0-07-707434-3.

23

