
PETAL: A parallel processor for real -time primitive extraction

Kirk Martinez and Don E. Pearson

Department of Electronic Systems Engineering, University,of Essex
Colchester, Essex, CO4 3SQ, England

Abstract

A real -time parallel processor named PETAL is described which has been developed to
extract cartoon primitives from grey -level television images. It is based on a cascaded
look -up table architecture and is controlled by a 68000 microcomputer. It can process
256x256 images at 50 frames /s.

Introduction

We have an interest in the extraction of cartoons or sketches from moving grey -level
images. These cartoons convey a great deal of information about the shape, size, location
and movement of objects in the scene, but require very low data rates. Studies have shown
that 64x64 pel images of this kind contain sufficient information for the deaf to be able
to communicate by signing at a data rate of less than 9.6 kbit /s [1]. More recently we
have been experimenting with the use of such cartoons as primitives from which grey -level
images can be reconstructed [2]; here the application is at slightly higher resolutions
and data rates (up to 64 kbit /s) to areas such as videoconferencing.

To extract economical cartoon representations from television images, a non -linear
convolution operation is required which detects luminance valleys in the image [1]. Our
initial real -time implementation used 3 frame -store boards and a 68000 processor. By
using various methods to gain speed, and some simplifications of the algorithms, we obtained
an output of 6 frames /s with 64x64 pel images. But we could not use a convolution operator
larger than 3x3, although non -real -time tests had shown that 5x5 operators were superior;
these could take up to eight minutes for one 512x256 pel frame (figure 1). An investigation
was then carried out into the use of a signal processor as a sub -processor and speed gains
of a factor of two obtained [3].

These restrictions caused us to become involved in parallel processing architectures in
order to gain increases in speed; we hoped thereby to be able to process larger pictures
at higher frame rates, as well as to use more complex algorithms. Our initial studies [4]
led to a proposal for a simple low -cost real time processor called PETAL. In this contri-
bution we describe a working prototype of PETAL which is capable of processing 256x256 pel
pictures at 50 frames /s in real -time using a 3x3 algorithm. We also mention certain
extensions which will increase its versatility further.

Figure 1 An example of a cartoon extracted from a grey -level image

SPIE Vol 596 Architectures and Algorithms for Digital Image Processing (1985) / 173

PETAL: A parallel processor for real-time primitive extraction

Kirk Martinez and Don E. Pearson

Department of Electronic Systems Engineering, University ,of Essex
Colchester, Essex, CO4 3SQ, England

Abstract

A real-time parallel processor named PETAL is described which has been developed to
extract cartoon primitives from grey-level television images. It is based on a cascaded
look-up table architecture and is controlled by a 68000 microcomputer. It can process
256x256 images at 50 frames/s.

Introduction

We have an interest in the extraction of cartoons or sketches from moving grey-level
images. These cartoons convey a great deal of information about the shape, size, location
and movement of objects in the scene, but require very low data rates. Studies have shown
that 64x64 pel images of this kind contain sufficient information for the deaf to be able
to communicate by signing at a data rate of less than 9.6 kbit/s [1]. More recently we
have been experimenting with the use of such cartoons as primitives from which grey-level
images can be reconstructed [2]; here the application is at slightly higher resolutions
and data rates (up to 64 kbit/s) to areas such as videoconferencing.

To extract economical cartoon representations from television images, a non-linear
convolution operation is required which detects luminance valleys in the image [1]. Our
initial real-time implementation used 3 frame-store boards and a 68000 processor. By
using various methods to gain speed, and some simplifications of the algorithms, we obtained
an output of 6 frames/s with 64x64 pel images. But we could not use a convolution operator
larger than 3x3, although non-real-time tests had shown that 5x5 operators were superior;
these could take up to eight minutes for one 512x256 pel frame (figure 1). An investigation
was then carried out into the use of a signal processor as a sub-processor and speed gains
of a factor of two obtained [3].

These restrictions caused us to become involved in parallel processing architectures in
order to gain increases in speed; we hoped thereby to be able to process larger pictures
at higher frame rates, as well as to use more complex algorithms. Our initial studies [4]
led to a proposal for a simple low-cost real time processor called PETAL. In this contri­
bution we describe a working prototype of PETAL which is capable of processing 256x256 pel
pictures at 50 frames/s in real-time using a 3x3 algorithm. We also mention certain
extensions which will increase its versatilitv further.

Figure 1 An example of a cartoon extracted from a grey-level image

SPIE Vol. 596 Architectures and Algorithms for Digital Image Processing (1985) / 173

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/10/2015 Terms of Use: http://spiedl.org/terms

Algorithms for primitive extraction

Only a small neighbourhood around each pel is needed to determine whether there is a
feature or not. We have experimented with 3x3 and 5x5 pel regions. The 5x5 algorithms are
described elsewhere C1]; a 3x3 extraction algorithm is described below as this was the
one actually implemented. The algorithms were originally designed to run on a 68000
system and thus make use of fast techniques for such a processor: non -linear comparison
techniques and simple arithmetic.

The 3x3 feature extraction operator

This is a simplified description of the algorithm used to detect features in the original
grey level image:

Take a 3x3 region around each pel P:

a b c
h P d
g f e

Then there are two basic stages:

1) for each neighbour (a....h) (referred to later as
check if (neighbour - P) > edgethreshold (difference detections

2) using these results, see if there is a luminance valley at P referred to as the final
if valley then the result = black decision

else result = white

This second stage may involve comparing counters set by the first, for example an N counter
for "northern" differences (a,b,c). The results are usually added to a simple threshold of
the image to give a more realistic representation. A suitable choice of thresholds is
needed to give good results.

PETAL

The requirements of a real -time architecture for these algorithms are low cost, small
size, some flexibility and high speed. These point to a dedicated architecture using
reasonably fast devices and the sufficient use of parallelism.

The prototype PETAL was devised by decomposing a 3x3 algorithm described above into its
independent parts: a window -read, eight large difference detections, and a logical opera-
tion on the eight results. A common method of tapping the raster scan with line delays
was chosen for the window -read. Thus a new window is produced every pel period of 90ns.
It was noted that each of the difference detections could be implemented as a look -up
table, as could the final decision. As these stages are independent they can be pipelined,
which allows 90ns for each stage. This pipelining allows moderately fast devices to be
used (which reduces the package count). Figure 2 shows a simplified diagram of PETAL.

The digital raster scan was obtained from memory- mapped image store -boards, and the
output was fed back to one store -board. The line delays were most affected by the 90ns
time restriction, as they were made from SRAM, using a read -modify -write cycle. In this
technique the address to the SRAM is clocked for each new pel, the old pel read, and the
new one written. The address, which is from a counter, is cycled around a limit which
determined the delay. It was here that fast ASTTL devices were necessary, the rest were
all standard LSTTL. This method requires few devices for each line delay compared to a
shift register technique. Each one can obtain the address count from the same counter and
high density SRAMs can be used. The prototype had 256 pel delays for convenience so it
could only process 256x256 images.

The look -up tables were implemented with single 4kx1 55ns SRAM devices. Each one
required a bus connection to the 68000 for memory mapping (not shown for clarity). This
is switched to high impedance when the system is processing images, and the pipeline
registers are enabled. An initialisation of the look -up tables is required, but afterwards
the system is left to run at real -time rates.

As can be seen in Figure 2, the window scanner provides nine new pels in parallel for
each incoming pel from the store. Neighbour- centre pairs then drive the address inputs of
eight SRAMs. The eight outputs from these drive the last look -up, which produces the
result to be sent to the store board. When a processed image is required, a frame grab
command is sent to the store -board, and it receives processed data from the next frame.
Only one board was needed for the PETAL hardware.

174 / SPIE Vol. 596 Architectures and Algorithms for Digital Image Processing (1985)

Algorithms for primitive extraction

Only a small neighbourhood around each pel is needed to determine whether there is a
feature or not. We have experimented with 3x3 and 5x5 pel regions. The 5x5 algorithms are
described elsewhere [1]; a 3x3 extraction algorithm is described below as this was the
one actually implemented. The algorithms were originally designed to run on a 68000
system and thus make use of fast technigues for such a processor: non-linear comparison
technigues and simple arithmetic.

The 3x3 feature extraction operator

This is a simplified description of the algorithm used to detect features in the original
grey level image:

Take a 3x3 region around each pel P:

Then there are two basic stages:

1) for each neighbour (a....h)
check if (neighbour - P) > edgethreshold

referred to later as
difference detections

2) using these results, see if there is a luminance valley at P (referred to as the final
if valley then the result = black /decision

else result = white /

This second stage may involve comparing counters set by the first, for example an N counter
for "northern" differences (a,b,c). The results are usually added to a simple threshold of
the image to give a more realistic representation. A suitable choice of thresholds is
needed to give good results.

PETAL

The reguirements of a real-time architecture for these algorithms are low cost, small
size, some flexibility and high speed. These point to a dedicated architecture using
reasonably fast devices and the sufficient use of parallelism.

The prototype PETAL was devised by decomposing a 3x3 algorithm described above into its
independent parts: a window-read, eight large difference detections, and a logical opera­
tion on the eight results. A common method of tapping the raster scan with line delays
was chosen for the window-read. Thus a new window is produced every pel period of 90ns.
It was noted that each of the difference detections could be implemented as a look-up
table, as could the final decision. As these stages are independent they can be pipelined,
which allows 90ns for each stage. This pipelining allows moderately fast devices to be
used (which reduces the package count). Figure 2 shows a simplified diagram of PETAL.

The digital raster scan was obtained from memory-mapped image store-boards, and the
output was fed back to one store-board. The line delays were most affected by the 90ns
time restriction, as they were made from SRAM, using a read-modify-write cycle. In this
technigue the address to the SRAM is clocked for each new pel, the old pel read, and the
new one written. The address, which is from a counter, is cycled around a limit which
determined the delay. It was here that fast ASTTL devices were necessary, the rest were
all standard LSTTL. This method reguires few devices for each line delay compared to a
shift register technigue. Each one can obtain the address count from the same counter and
high density SRAMs can be used. The prototype had 256 pel delays for convenience so it
could only process 256x256 images.

The look-up tables were implemented with single 4kxl 55ns SRAM devices. Each one
reguired a bus connection to the 68000 for memory mapping (not shown for clarity). This
is switched to high impedance when the system is processing images, and the pipeline
registers are enabled. An initialisation of the look-up tables is reguired, but afterwards
the system is left to run at real-time rates.

As can be seen in Figure 2, the window scanner provides nine new pels in parallel for
each incoming pel from the store. Neighbour-centre pairs then drive the address inputs of
eight SRAMs. The eight outputs from these drive the last look-up, which produces the
result to be sent to the store board. When a processed image is reguired, a frame grab
command is sent to the store-board, and it receives processed data from the next frame.
Only one board was needed for the PETAL hardware.

/ 74 / SPIE Vol. 596 Architectures and Algorithms for Digital I mage Processing (1985)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/10/2015 Terms of Use: http://spiedl.org/terms

IMAGE

STORE

Raster Scan

68000 Bus

Control

68000

PD : Pel Delay

L T : Look -Up Table

PD P LINE -3 DELAY

PD PD PD

\-/

LINE -3 DELAY

PD PD PD

Pipeline Register

Result
Reg

Figure 2 Simplified diagram of PETAL

Window scanners and look -up tables have been used in VAP [5] and the Cytocomputer [6].
VAP uses six -bit output tables, with each pair cascaded to another, to gradually reduce

the number of bits involved. This was designed for more general neighbourhood operations.
Cytocomputer uses a pipeline of 88 3x3 operators, each of which is a binary function
implemented with 256 byte rams, also for general use. In contrast PETAL was designed for
a specific type of algorithm and uses look -up tables roughly midway between those used in
VAP (4kx6) and Cytocomputer. Some extensions to the PETAL system are presented later in

this paper. These are still based around certain algorithms rather than an attempt to

produce a general machine.

PETAL software

The description of a system would be incomplete without mentioning its software as this

can affect its effective performance so drastically. The driving software, which runs on
the 68000 (8 MHz), is all written in the C language [7] dowloaded from a VAX 11/750. As

the look -up tables and control registers are memory- mapped into the 68000 address space
they can be treated as an array. A register controls whether the look -up tables are
memory- mapped (loading) or linked to the data flow (running). The programmer provides two
functions, one for each set of tables. These process a general input to the corresponding
table (e.g. two pels for the first ones) and give an appropriate result. For example
these (simplified) functions would detect East West valleys:

neigh_func() end_func()

{ {

if (centre - neigh > edge_threshold) if(neigh.bit.n && neigh.bit.$)
return(1); return(BLACK);

else else
return(0); return(WHITE);

} }

then a simple command loads PETAL with the appropriate data:

petal(neigh func, end func);

This petal function steps through all possible inputs to the look -up tables and stores

the result in the appropriate place. The first eight tables are mapped to look like a
4kx8 array, each bit of a byte corresponding to a particular SRAM. As these tables usually

SP /E Vol 596 Architectures and Algorithms for Digital Image Processing(1985) / 175

Pipeline Register

PD : Pel Delay

LT : Look-Up Table

Figure 2 Simplified diagram of PETAL

Window scanners and look-up tables have been used in VAP [5] and the Cytocomputer [6].
VAP uses six-bit output tables, with each pair cascaded to another, to gradually reduce
the number of bits involved. This was designed for more general neighbourhood operations.
Cytocomputer uses a pipeline of 88 3x3 operators, each of which is a binary function
implemented with 256 byte rams, also for general use. In contrast PETAL was designed for
a specific type of algorithm and uses look-up tables roughly midway between those used in
VAP (4kx6) and Cytocomputer. Some extensions to the PETAL system are presented later in
this paper. These are still based around certain algorithms rather than an attempt to
produce a general machine.

PETAL software

The description of a system would be incomplete without mentioning its software as this
can affect its effective performance so drastically. The driving software, which runs on
the 68000 (8 MHz), is all written in the C language [7] dowloaded from a VAX 11/750. As
the look-up tables and control registers are memory-mapped into the 68000 address space
they can be treated as an array. A register controls whether the look-up tables are
memory-mapped (loading) or linked to the data flow (running). The programmer provides two
functions, one for each set of tables. These process a general input to the corresponding
table (e.g. two pels for the first ones) and give an appropriate result. For example
these (simplified) functions would detect East West valleys:

neigh__func()

if (centre - neigh > edge_threshold)
return(1);

else
return(O);

end__f unc()
{
if(neigh.bit.n && neigh.bit. s,

return(BLACK);
else

return(WHITE);

then a simple command loads PETAL with the appropriate data:

petal(neigh_func, end_func);

This petal function steps through all possible inputs to the look-up tables and stores
the result in the appropriate place. The first eight tables are mapped to look like a
4kx8 array, each bit of a byte corresponding to a particular SRAM. As these tables usually

SPIE Vol. 596 Architectures and Algorithms for Digital Image Processing (1985) / 175

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/10/2015 Terms of Use: http://spiedl.org/terms

hold the same data, the initialisation is thus simplified and faster.

The first initialisation takes one or two seconds for the 3x3 algorithm described (it
is obviously algorithm dependent). Clearly other algorithms can be implemented, some
easily, some with alterations (this is the old problem of matching an algorithm to an
architecture). In general, the possible functions performed by PETAL can be expressed as:

result(fl(a,P) , f2(b,P) , f3(c,P), ... f8(h,P))

a....h being the neighbours of the centre pel P
fl...f8 being the neighbour pair functions
each function returning a one bit result

This is fairly restricted but various functions can be implemented, due to the use of
look -up tables. In the case of feature extraction, non -linear thresholds can be investiga-
ted, whereas if the system had been implemented with adder and comparison chips this
flexibility would be lost.

Performance

Once initialised, PETAL produces output at video rates: 50 frames /s (256x256 pel
frames). If it were used to process only one frame, before a change in the algorithm,
then the initialisation time would become dominant. During the initialisation a maximum
of 4096 + 256 possible inputs to the tables must be considered; this is roughly equivalent
to only 6% of the data in one frame. Thus an initialisation followed by processing one
frame would be expected to be around fifteen times faster than the 68000. This is only an
estimate, as only one of the eight pel -pairs normally processed needs consideration during
initialisation. The 68000 takes around 20s to feature extract a 256x256 frame using a 3x3
algorithm written in C. A typical PETAL initialisation is 1.7s, giving a factor of twelve
times faster (for one frame). Continuous processing is thus around 1000 times faster. If
the same algorithm is to be re -used but with one parameter change, then often only a small
part of the look -up tables needs changing: only 4% of the first tables need changing if
the "edge threshold" changes by one. Pre -stored data directly loaded is also a fast
method. Thus by intelligent re- initialisation the look -up scheme loses some of the disad-
vantages of initialisation often quoted for such systems.

PETAL provides a case where speed ratings in terms of MOPS (million operations per
second) etc. are not valid. For example, in terms of look -up operations(excluding the
window scanner) it has a speed of 100 MOPS. In terms of the original ALU operations a
microprocessor would have to carry out, one could say the effective speed was 500 MOPS.

Parallelism in PETAL

Conventional parallelism can be found in PETAL such as pipelining and MIMD [8] type
processing. In order to clearly express how the system achieves speed apart from these
one can say that look -up tables are a form of parallelism with respect to the original
operations that they replace. Like other forms of parallelism they have drawbacks such as
initialisation time and size limitations.

The window scanner provides neighbourhood parallelism [9], in that the neighbourhood
data are presented in parallel. This replaces the serial read operations required on a
von Neumann system [10]. The technique is known as a data -flow approach, as it is the
data which controls the sequence of events, rather than a program.

PETAL extensions

As the basic PETAL design is based around a 3x3 window and the raster scan stream, it
seems logical to make use of this for some related operations. Work is currently in
progress on the implementation of some possible additions to PETAL to make it a more
general processor.

The prototype can only process incoming video. It is also necessary to allow input
from any of the three image stores for operations on stored images. If the line delays
were made with four -bit devices, then the eight -bit width would accommodate data from a
binary image from another store. This means that two 3x3 windows are produced, one binary,
the other grey. Expansion of the final table output to six bits (now known as the grey
neighbourhood operation GREYNOP) allows more information to be output to the store and
grey level results to be obtained. Operations on binary input images such as shrink /expand
can be carried out by another look -up table. This only needs nine inputs, so one bit from
the GREYNOP result can be included to allow binary operations on two images (e.g. mask).
If a 4kx1 SRAM is used, the other two address inputs can be used to select one of four
look -up functions (useful for fast function swapping). A 4kx6 look -up on the centre pels

176 / SPIE Vol 596 Architectures and Algorithms for Digital Image Processing (1985)

hold the same data, the initialisation is thus simplified and faster.

The first initialisation takes one or two seconds for the 3x3 algorithm described (it
is obviously algorithm dependent). Clearly other algorithms can be implemented, some
easily, some with alterations (this is the old problem of matching an algorithm to an
architecture). In general, the possible functions performed by PETAL can be expressed as:

result(fl(a,P) , f2(b,P) , f3(c,P), ... f8(h,P))

a....h being the neighbours of the centre pel P
fl...f8 being the neighbour pair functions
each function returning a one bit result

This is fairly restricted but various functions can be implemented, due to the use of
look-up tables. In the case of feature extraction, non-linear thresholds can be investiga­
ted, whereas if the system had been implemented with adder and comparison chips this
flexibility would be lost.

Performance

Once initialised, PETAL produces output at video rates: 50 frames/s (256x256 pel
frames). If it were used to process only one frame, before a change in the algorithm,
then the initialisation time would become dominant. During the initialisation a maximum
of 4096 + 256 possible inputs to the tables must be considered; this is roughly eguivalent
to only 6% of the data in one frame. Thus an initialisation followed by processing one
frame would be expected to be around fifteen times faster than the 68000. This is only an
estimate, as only one of the eight pel-pairs normally processed needs consideration during
initialisation. The 68000 takes around 20s to feature extract a 256x256 frame using a 3x3
algorithm written in C. A typical PETAL initialisation is 1.7s, giving a factor of twelve
times faster (for one frame). Continuous processing is thus around 1000 times faster. If
the same algorithm is to be re-used but with one parameter change, then often only a small
part of the look-up tables needs changing: only 4% of the first tables need changing if
the "edge__threshold" changes by one. Pre-stored data directly loaded is also a fast
method. Thus by intelligent re-initialisation the look-up scheme loses some of the disad­
vantages of initialisation often quoted for such systems.

PETAL provides a case where speed ratings in terms of MOPS (million operations per
second) etc. are not valid. For example, in terms of look-up operations (excluding the
window scanner) it has a speed of 100 MOPS. In terms of the original ALU operations a
microprocessor would have to carry out, one could say the effective speed was 500 MOPS.

Parallelism in PETAL

Conventional parallelism can be found in PETAL such as pipelining and MIMD [8] type
processing. In order to clearly express how the system achieves speed apart from these
one can say that look-up tables are a form of parallelism with respect to the original
operations that they replace. Like other forms of parallelism they have drawbacks such as
initialisation time and size limitations.

The window scanner provides neighbourhood parallelism [9], in that the neighbourhood
data are presented in parallel. This replaces the serial read operations required on a
von Neumann system [10]. The technique is known as a data-flow approach, as it is the
data which controls the sequence of events, rather than a program.

PETAL extensions

As the basic PETAL design is based around a 3x3 window and the raster scan stream, it
seems logical to make use of this for some related operations. Work is currently in
progress on the implementation of some possible additions to PETAL to make it a more
general processor.

The prototype can only process incoming video. It is also necessary to allow input
from any of the three image stores for operations on stored images. If the line delays
were made with four-bit devices, then the eight-bit width would accommodate data from a
binary image from another store. This means that two 3x3 windows are produced, one binary,
the other grey. Expansion of the final table output to six bits (now known as the grey
neighbourhood operation GREYNOP) allows more information to be output to the store and
grey level results to be obtained. Operations on binary input images such as shrink/expand
can be carried out by another look-up table. This only needs nine inputs, so one bit from
the GREYNOP result can be included to allow binary operations on two images (e.g. mask).
If a 4kxl SRAM is used, the other two address inputs can be used to select one of four
look-up functions (useful for fast function swapping). A 4kx6 look-up on the centre pels

/ 76 / SPIE Vol. 596 Architectures and Algorithms for Digital Image Processing (1985)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/10/2015 Terms of Use: http://spiedl.org/terms

of the two selected images is useful for temporal pre- filtering and other two -image point
operations. If this is located before the window scanner, the input can be pre- filtered
before further processing.

Input and output selectors allow any two inputs and outputs, thus two processes can run
simultaneously; in effect, there are parallel pipelines. A simple counter which could
select one of the image streams could provide counts of a particular value (for histograms),
the number of white /black pels (useful in pattern recognition) and so on. Registers would
control the selectors in all the above.

For feature extraction algorithms these changes will allow an input image to be tempo-
rally pre- filtered, and a cartoon generated simultaneously. Isolated spots could then be
removed by a pass through the binary operator. By collecting suitable information about
the 3x3 neighbourhood and storing it in a frame store, a second pass can use information
outside the normal 3x3 region. It is hoped that simple 5x5 operators can thus be decomposed
into two passes.

The future

Dedicated systems offer very high performance /cost ratios. This suggests that a set of
fundamental image processing operations, implemented as dedicated sub -processors, could
give very high speed while not restricting the possible algorithms. This approach is used
in general computing where, for example, floating -point processors are common. By using
parallelism at a more local level, the problems of programming systems using a more general
parallelism might be reduced. More standardised modular systems could be produced with
this technique, which could allow greater interaction within the image processing field.
This will be facilitated by the growing use of custom and VLSI devices.

Conclusions

We have been involved with the data -rate reduction of moving images to low levels. The
complexity of the algorithms required a very fast processor. General -purpose systems were
found to be too expensive, large and sometimes too slow. This led to the design of a
system utilising parallelism matched to that found in the algorithms. Look -up tables were
found to be flexible and fast enough for our purpose. A data -flow approach was taken and
a video -rate real -time system produced (PETAL).

One type of processor has been considered in detail, for one set of algorithms. It was
found that the strong interaction between the algorithms and hardware produced very high
speed. This demonstrated the trade -off between speed and flexibility. Through slight
relaxations in the hardware -algorithm matching, a useful range of other processes can be
carried out.

References

1. Pearson, D.E. and Robinson, J.A., "Visual Communication at Very Low Data Rates ",
Proc. Institute of Electrical and Electronic Engineers, 73 (4) pp.795 -812, April
1985

2. Hanna, E., Pearson, D.E. and Robinson, J.A., "Low Data -Rate Coding Using Image
Primitives ", Proceedings of the ANRT /SPIE Image Processing Symposium, Cannes,
France, 2 -6 December 1985

3. Mizuno, S., Pearson, D.E., and Robinson, J.A., "Real -time feature -extraction
architecture for moving -picture transmission over telephone lines ", Electronics
Letters, 19 (22) , pp. 949 -950, October 1983

4. Martinez, K. and Pearson, D.E., "Algorithmic Complexity, Speed and Architectural
Parallelism in Low Data -Rate Visual Communication ", Proc. Fourth International
Conference on Digital Processing of Signals in Communications,(62), pp.185 -191,
University of Technology, Loughborough, England, 22 -26 April 1985

5. Keller, H.J., Comazzi, A., and Favre, A., "Fast multi -image interaction and
hierarchical processing, a new video array processor (VAP -80) ", Proc. 6th Inter-
national Conference on Pattern Recognition, Munich, Germany, 1, pp.246,249, 19 -22
Oct. 1982

6. Sternberg, S.R., "Biomedical Image Processing ", IEEE Computer, 6 (1) pp.22 -34, 1983
7. Kernighan, B.W. and Ritchie, D.M., The C Programming Language, Prentice -Hall Inc.,

New Jersey, 1978
8. Flynn, M.J., "Some computer organisations and their effectiveness ", IEEE transac-

tions on Computers, C -21, pp.948 -960, 1972
9. Danielsson, P.E. and Levialdi, S., "Computer Architectures for Pictorial Informa-

tion Systems ", IEEE Computer, 14 (11), op.53 -57, 1981
10. von Neumann, J., Theory of Self- Reproducing Automata, University of Illinois Press,

Urbana, 1966

SPIE Vol 596 Architectures and Algorithms for Digital Image Processing (1985) / 177

of the two selected images is useful for temporal pre-filtering and other two-image point
operations. If this is located before the window scanner, the input can be pre-filtered
before further processing.

Input and output selectors allow any two inputs and outputs, thus two processes can run
simultaneously; in effect, there are parallel pipelines. A simple counter which could
select one of the image streams could provide counts of a particular value (for histograms),
the number of white/black pels (useful in pattern recognition) and so on. Registers would
control the selectors in all the above.

For feature extraction algorithms these changes will allow an input image to be tempo­
rally pre-filtered, and a cartoon generated simultaneously. Isolated spots could then be
removed by a pass through the binary operator. By collecting suitable information about
the 3x3 neighbourhood and storing it in a frame store, a second pass can use information
outside the normal 3x3 region. It is hoped that simple 5x5 operators can thus be decomposed
into two passes.

The future

Dedicated systems offer very high performance/cost ratios. This suggests that a set of
fundamental image processing operations, implemented as dedicated sub-processors, could
give very high speed while not restricting the possible algorithms. This approach is used
in general computing where, for example, floating-point processors are common. By using
parallelism at a more local level, the problems of programming systems using a more general
parallelism might be reduced. More standardised modular systems could be produced with
this technique, which could allow greater interaction within the image processing field.
This will be facilitated by the growing use of custom and VLSI devices.

Conclusions

We have been involved with the data-rate reduction of moving images to low levels. The
complexity of the algorithms required a very fast processor. General-purpose systems were
found to be too expensive, large and sometimes too slow. This led to the design of a
system utilising parallelism matched to that found in the algorithms. Look-up tables were
found to be flexible and fast enough for our purpose. A data-flow approach was taken and
a video-rate real-time system produced (PETAL).

One type of processor has been considered in detail, for one set of algorithms. It was
found that the strong interaction between the algorithms and hardware produced very high
speed. This demonstrated the trade-off between speed and flexibility. Through slight
relaxations in the hardware-algorithm matching, a useful range of other processes can be
carried out.

References

1. Pearson, D.E. and Robinson, J.A., "Visual Communication at Very Low Data Rates",
Proc. Institute of Electrical and Electronic Engineers, 73 (4) pp.795-812, April
1985

2. Hanna, E., Pearson, D.E. and Robinson, J.A., "Low Data-Rate Codinq Using Image
Primitives", Proceedings of the ANRT/SPIE Image Processing Symposium, Cannes,
France, 2-6 December 1985

3. Mizuno, S., Pearson, D.E., and Robinson, J.A., "Real-time feature-extraction
architecture for moving-picture transmission over telephone lines", Electronics
Letters, 19 (22), pp.949-950, October 1983

4. Martinez, K. and Pearson, D.E., "Algorithmic Complexity, Speed and Architectural
Parallelism in Low Data-Rate Visual Communication", Proc. Fourth International
Conference on Digital Processing of Signals in Communications,(62), pp.185-191,
University of Technology, Loughborough, England, 22-26 April 1985

5. Keller, H.J., Comazzi, A., and Favre, A., "Fast multi-image interaction and
hierarchical processing, a new video array processor (VAP-80)", Proc. 6th Inter­
national Conference on Pattern Recognition, Munich, Germany, 1, pp.246,249, 19-22
Oct. 1982

6. Sternberg, S.R., "Biomedical Image Processing", IEEE Computer, 6 (1) pp.22-34, 1983
7. Kernighan, B.W. and Ritchie, D.M., The C Programming Language, Prentice-Hall Inc., New Jersey, 1978 ————————————————————

8. Flynn, M.J., "Some computer organisations and their effectiveness", IEEE transac­
tions on Computers, C-21, pp.948-960, 1972

9. Danielsson, P.E. and Levialdi, S., "Computer Architectures for Pictorial Informa­
tion Systems", IEEE Computer, 14 (11), pp.53-57, 1981

10. von Neumann, J., Theory of Self-Reproducing Automata, University of Illinois Press,
Urbana, 1966

SPIE Vol. 596 Architectures and Algorithms for Digital Image Processing (1985) / 177

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/10/2015 Terms of Use: http://spiedl.org/terms

