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On Homomorphisms ofn-D Behaviors
Harish Pillai, Jeffrey Wood, and Eric Rogers

Abstract—Different modeling procedures applied to a physical
system may result in behaviors which are distinct but nevertheless
share many structural properties. Such behaviors are isomorphic
in a sense which we formalize and characterize in this paper. More
generally, we introduce a natural notion of homomorphisms be-
tween behaviors of multidimensional systems, generalizing recent
work of Fuhrmann. A generalization of strict system equivalence
(in the sense of Fuhrmann) is shown to describe the relationship
between generalized state-space descriptions in theD case.

Index Terms—Abstract behavior, behaviors, isomorphism of be-
haviors, module theory, multidimensional systems, system equiva-
lence.

I. INTRODUCTION

T HE process of describing a physical system by an element
of a prescribed family of mathematical models is generally

nondeterministic. For example, in selecting the physical vari-
ables to be modeled one chooses a basis, often arbitrarily; one
may also include for convenience, additional variables which in
fact can be determined from the others. In the behavioral setting,
one therefore obtains many highly distinct behaviors as models
of a single physical system. We expect these behaviors never-
theless to a very large extent to share the same structure.

In this paper, we formalize in a natural way, the concept of
two distinct behaviors having ‘essentially the same structure’.
Further, we generalize recent work on 1-D behaviors by
Fuhrmann in [5] introducing notions of homomorphisms and
isomorphisms between behaviors. The concept of isomorphism
essentially is that the ‘modules of observables’ of the two
systems are isomorphic, a standard concept recently deeply
explored in a system-theoretic context by Pommaret and
Quadrat [11]; see also [10, II.2.3, V p. 656]. We also introduce
here a distinction between a concrete behavior (a behavior in
the usual sense, i.e., contained in some specified trajectory
space) and an abstract behavior (effectively, an isomorphism
class of behaviors).

Two special cases of behavior isomorphism are unimodular
transformation, and elimination or addition of observable vari-
ables. In fact, we show by dualizing a result in algebra that two
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isomorphic behaviors can always be related by a sequence of
such operations. Nevertheless, the form of an arbitrary isomor-
phism of behaviors is very general.

The paper is arranged as follows. In Section II we recall some
basic notions from behavioral theory, and also motivate the dis-
tinction between abstract and concrete behaviors. In Section III
we define homomorphisms and isomorphisms ofD behaviors,
and characterize them by various means. In the case where the
behaviors are specified by given kernel representations which
have full row rank, we derive a direct generalization of the zero
left prime and zero right prime conditions which are familiar
from the work of Fuhrmann. Section IV looks at the special
cases of unimodular equivalence and elimination of observable
variables, and shows that any isomorphism can be expressed by
combining these two operations (essentially a generalization of
Rosenbrock’s strict system equivalence). Then, in Section V we
study isomorphisms of a special type acting on latent variable
descriptions of a behavior. This leads to a generalization of strict
system equivalence in the sense of Fuhrmann, which can be ap-
plied to any Rosenbrock system matrix and admits a behavioral
interpretation. The final Section VI contains various additional
results.

II. A BSTRACT AND CONCRETEBEHAVIOURS

Recall [14] that a behavior of a system is the set of its
trajectories, which we view a subspace of , where is
the signal space of the system (e.g., ), and is the
number of (dependent) system variables. We consider in this
paper only behaviors defined by linear partial differential equa-
tions with constant coefficients, or the discrete equivalent (dif-
ference equations). For a signal space we consider one of the
following: in the continuous case, or

, or in the discrete case or ,
where is either or . Oberst has shown [8, 2.54] that these
signal spaces have the important algebraic property of being in-
jective cogenerators over the ring of partial differential opera-
tors (or partial difference operators, anal-
ogously). For convenience, we identify this ring with the poly-
nomial ring in indeterminates (though
in the discrete case it is necessary instead to use
the Laurent polynomial ring , since
then, the shift operators are invertible). Our behaviors are there-
fore of the type

(1)

where is a polynomial “kernel representation” ma-
trix and is interpreted according to the usual partial differ-
ential (partial difference) action of on . For a differ-
ential operator (polynomial matrix) and a behavior
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, we also use the notation for the set .
For brevity we will henceforth refer only to the continuous case.

It is easily observed that kernel representations are highly
nonunique. Indeed, any two matrices which have the
same row-span (over ) generate the same set of partial dif-
ferential equations, so define the same behavior. For the signal
spaces we have identified, the converse is also true: two matrices
which define the same behavior must have the same row span
[8, 2.23,2.48–9,2.61], which is equal to themodule of system
equations

for all (2)

It is also valuable to consider the factor module ,
which we denote by and refer to as themodule of observ-
ablesof . This module is generated by ,
where are the natural basis vectors in . The
module element can be identified with the formal
quantity (note for any ). can
now be considered as the module of distinct formal quantities
(“observables”) associated to the system; each element is a
polynomial combination (conceptually, a differential linear
combination) of the given generating formal quantities. For
example, corresponds to the formal
quantity , where is the first independent
variable. This is the approach taken in [10], [11]. In fact,
any finitely generated -module can be written in the form

for some behavior . In what follows, we make no
distinction between isomorphic modules.

The module is directly related to the behavior, ac-
cording to

(3)

Here, is identified with the homomor-
phism determined by (an assign-
ment of signals to the formal quantities in a manner consistent
with the system laws). Note however that this correspondence
is not canonical, as the choice of generators of is
arbitrary.

The central result of Oberst in [8, 2.54], is that the signal
spaces identified are injective cogenerators. One restatement
of this result is that is a faithfully exact con-
travariant functor, and therefore we have acategorical duality
between finitely generated-modules and behaviors of the type
discussed above. We are not concerned in the present paper
with the precise meaning of these terms. However, this categor-
ical duality is very powerful, since it allows us to translate any
structural statement about modules to a corresponding statement
about behaviors, and frequently vice versa. From this duality, it
is possible to prove that a behavior is controllable if and only if
the corresponding module of observables is torsionfree, that it is
autonomous if and only if the corresponding module is torsion,
etc. See [15] for a survey of results of this type. Furthermore, the
module theory comes equipped with a comprehensive set of al-
gorithms for system-theoretic constructions, based on Gröbner
bases or similar techniques.

However, as discussed in the introduction, a behavior is a
highly noncanonical model of a given physical system. For ex-
ample, one may add an additional physical variable to the model

which in fact is a differential linear combination of the existing
variables, thus changing not only the behavior but the trajec-
tory space in which it lies. Alternatively, one may change
basis in the space of physical (dependent) variables Such ac-
tions often appear to completely change the behavior; however
clearly much of the structure must remain the same. In partic-
ular, the set of all formal quantities associated with the system,
i.e., the module , is unchanged. (However, the module of
system equations generally is changed, though by the clas-
sical Schanuel’s Lemma it is in fact determined up to ‘projective
equivalence’). Furthermore, the object is both
canonical and meaningful: it is the set of all assignments of sig-
nals to the physical variables (formal quantities) of the system
in a manner which respects the algebraic relationships between
those quantities. These considerations motivate the following
distinction:

Definition 1: A concrete behavioris a behavior of the type
, that is a subset of for some , defined by a

linear partial differential operator .
An abstract behavior is a set of the type

for some finitely generated -module
(recall that we identify together isomorphic modules, and
therefore the corresponding abstract behaviors).

In the case where is a presentation of , or equivalently
is the module of observables of, we will say that the con-

crete behavior is amanifestation of the abstract
behavior .

We now summarize the relationships between these concepts
(note that this discussion applies only to signal spaceswhich
are injective cogenerators; the picture is complicated by the con-
sideration of other ). A (concrete) behavior implicitly spec-
ifies an inclusion map . The dual object is the nat-
ural projection map ; that is, concrete behaviors
are in one-to-one correspondence with such pairs . Ab-
stract behaviors are in one-to-one correspondence with modules

themselves (identified of course only up to isomorphism).
Thus an abstract behavior is essentially an equivalence class
of concrete behaviors, consisting of all concrete behaviors ob-
tained by choosing a generating set of the module of observ-
ables and embedding the abstract behavior accordingly in a tra-
jectory space. A natural problem, to which we devote much of
this paper, is to characterize the concrete behaviors which cor-
respond to the same abstract behavior (we will see that this cor-
responds to a natural notion of isomorphism).

For most purposes, it is not necessary to make this distinction
between abstract and concrete behaviors and to introduce the
mapping etc. However our formalization of these ideas, which
(like the map ) are normally implicit, will be useful in what
follows. We will retain the term “behavior” in the usual sense,
i.e., to mean “concrete behavior”.

A. Background

We now recall some important concepts and results from the
literature which will be useful in what follows. We give refer-
ences only for less well-known results.

Recall that a polynomial matrix is said to bezero right
prime (minor right prime ) if it has full column rank and the
ideals of highest order minors have no common root in(have
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no common factor in ). A zero right prime matrix is precisely
one which admits a polynomial left inverse. Zero/ minor left
primeness is defined by transposition. Aunimodular matrix is
one which is square with a constant determinant.

A polynomial matrix is said to be aminimal left
annihilator (MLA) of another polynomial matrix if
the rows of generate all the syzygies (polynomial relations) on
the rows of the matrix . Equivalently, we have the condition

s.t.

We say that is aminimal right annihilator (MRA) of if
is an MLA of .

A behavior is controllable, as defined in [9] for
the continuous case, if and only if is an MLA of some matrix

(and in this case, clearly ).
Lemma 2: (e.g., [17]):A polynomial matrix is an MLA of
if and only if:

1) is an MLA (of some matrix);
2) ;
3) .
Also, a full row-rank matrix is an MLA (of some matrix) if

and only if it is minor left prime.
The number of free variables of a behavior is the max-

imum number such that dependent variables of can be in-
dependently freely chosen within. This number is denoted by

, and, for a given kernel representation with
columns, equals . The number is alsoaddi-

tive, which signifies that, given an exact sequence of behaviors

(for example where is a subbehavior of with factor ),
we have . In particular, for any two
behaviors , we have [13, 2.7)]

(4)

A latent variable description of a behavior is a represen-
tation of the form

with (5)

where are thelatent variables. The latent variable descrip-
tion is calledobservable if is zero right prime, since this
implies that is uniquely determined (indeed, by a differential
operator) from . Thefull behavior is the set of solutions
of with respect to the given signal space. We also de-
note by the subbehavior of all solutions , which is the
kernel of the projection map . To eliminate the la-
tent variables, we can apply the algorithm given e.g., in [8, Cor.
2.38)], : compute an MLA of ; then .

A special case of elimination is the computation of for
some differential operator and behavior . We
have [13 , Lem. 2.13)].

Lemma 3: A kernel representation of , is

given by , where is any MLA of .

III. H OMOMORPHISMS ANDISOMORPHISMS OFBEHAVIOURS

Having distinguished between concrete and abstract behav-
iors, an obvious question is “What is the relationship between
different manifestations of the same abstract behavior?”. The

unsurprising answer is that they are isomorphic, in a natural
sense now to be introduced.

Definition 4: A homomorphism from a (concrete) behavior
to a concrete behavior is a mapping
which is represented by a (linear, constant coeffi-

cient) partial differential operator . The homo-
morphism is called amonomorphism (epimorphism, isomor-
phism) when is injective (surjective, bijective respectively).

Thus a homomorphism of behaviors is simply a
differential operator (rather, an equivalence class of them) which
maps to . Two behaviors are isomorphic precisely
when there are homomorphisms and
which are mutual inverses. Note that this does not require that
the representing matricesand are mutual inverses.

It is immediate from the Oberst duality that homomorphisms
are in one-to-one correspondence with homomor-

phisms (note the reversal of direction), where
and are the modules of observables ofand respec-
tively. For if is a module homomorphism then
it can be extended (nonuniquely) to a map ,
where and are the numbers of dependent variables inand

, respectively. The map can be represented by a polynomial
matrix , which defines a differential operator from to ,
which restricts to a behavior homomorphism . Al-
ternatively, can be obtained directly as . Thus,
the homomorphisms of behaviors (in the sense of Definition 4)
are precisely the “duals” of the homomorphisms of the corre-
sponding finitely generated modules. Furthermore, by exactness
of the functor is injective if and only if is
surjective and vice versa. The following lemma is immediate.

Lemma 5: Two concrete behaviors are manifestations of the
same abstract behavior if and only if they are isomorphic.

Proof: Both statements are equivalent to the condition
that the modules of observables of the two behaviors are
isomorphic.

Since an abstract behavior is a natural abstract model of a ‘real
system’ which requires no noncanonical selection of physical
variables from the infinite number of those avail-
able, the concept of isomorphism as just introduced is also very
natural, and exactly captures the concept of two behaviors ‘de-
scribing the same system’. Isomorphic behaviors therefore have
in all important ways the same structure (see Section III-B).

We now finally have the language to speak in precise terms
about factor behaviors. Given a behaviorand sub-behavior

(i.e., a subset which is also a behavior), the factor space
admits the structure of an abstract behavior; it is equal

to , where is the submodule of the module of ob-
servables of consisting of all observables which are identi-
cally zero on [15, Cor. 2]. Thus is called thefactor
behavior. The manifestations of include the behaviors
of the form , where is any kernel representation of
(note that the kernel of the surjection is simply ,
so that as -spaces or -modules). These con-
crete behaviors live in different trajectory spaces, but are mani-
festations of the same abstract behavior. They are therefore iso-
morphic, and so share many properties such as those listed in
Section III-B. These properties are effectively properties of the
abstract behavior , and for many purposes it is sufficient
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to discuss this factor without specifying a manifestation of it.
Factor behaviors can be used to describe succinctly many prop-
erties, such as set-controllability [13], regular interconnection
[13] and input decoupling [16], amongst others.

A. Representations of Homomorphisms

We now characterize homomorphisms of behaviors in terms
of polynomial matrix properties.

Theorem 6: Let be two
(concrete) behaviors with given kernel representations

, and let be a given differen-
tial operator. Then, we have

1) defines a homomorphism from to if
and only if there exists a matrix with

(6)

2) defines a monomorphism from to if and only if

condition (6) holds for some , and is zero right

prime.
3) The following are equivalent:

a) defines an epimorphism from to .
b) Condition (6) holds for some , and for any sat-

isfying (6), we have

(7)

where is a given MLA of .
c) There exists a such that (7) is satisfied.

4) defines the zero map on if and only if there exists
with .

Proof:

1) defines a homomorphism fromto if and only if
is contained in . Equivalently, ,
which by [8, Th. 2.61] is equivalent to the given condition.

2) Monomorphisms are precisely the homomorphismsfor
which . By for example [15, Th. 9)], this

is equivalent to the zero right primeness of .

3) We begin by showing

(8)

for any , where is an MLA of
. It is clear that each behavior on the right-hand

side, and therefore their sum, is contained in the

left-hand side. Conversely, if ,

then , say , and
now , proving

. Thus

establishes the decomposition (8).
Now suppose that is a homomorphism which moreover
is epic, and let be a matrix satisfying (6). Then, it is easy

to see that , and (8) therefore

yields condition 3b. It is trivial that 3b 3c.

Finally, suppose that 3c holds, and let be arbi-

trary. Then, , so by supposition

there exists with and , i.e.,
as required.

4) Both conditions are equivalent to: .

Theorem 6 is a generalization of Fuhrmann’s result [5, The-
orem 3.6], which is given for 1D behaviors with full row rank
representations. The only difference from Fuhrmann’s results
[5, 3.6.1–3.6.3] is in the epimorphism condition; we explore the
full row rank case further in Corollary 9.

Any homomorphism can be extended to a map of
complexes (exact sequences); this can be seen as follows. Let
and be kernel representations ofand respectively, and
let be an MLA of and MLA of an MLA of

an MLA of , etc. Let the domains of , etc.
be and the domains of , etc. be

Now if is a polynomial matrix repre-
senting the homomorphism, and a corresponding matrix
with , we find that

Hence, defines a homomorphism from the behavior
to the behavior .

Thus there exists another matrix with , and
so on up the sequence of maps. It is convenient to write

, etc.; then these maps define a map of
complexes (rather exact sequences), as described by the exact
commutative diagram

(9)

There is, of course, a standard dual form in the language of
finitely generated -modules.

Note that two operators and define the same map on a
behavior , if and only if their difference is the zero map on,
which from claim 4 of Theorem 6 is equivalent to the formula

for some . This can easily be extended to
give conditions on a map of complexes to give
the same map of behaviors as another collection
We obtain the necessary and sufficient condition that there must
exist matrices with

(10)

for all . The relationship (10) between the map of com-
plexes and the map , is well-known in algebra and
called a homotopy (see e.g., [4, A3.6]. The existence of a homo-
topy is proved in a noncommutative module-theoretic setting in
[10], [11].

Note 7: By Theorem 6, is an epimorphism if and only if

is an MLA of . Several plausible-looking vari-

ations on this statement are false. Given and an epimor-
phism from to , it is not necessarily the case
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that there exists an with an MLA of , or an

with and zero left prime. For example,
take

which have the same kernel, and (trivially an isomor-
phism). Then, the matrices with are parame-

terized by where and

is any polynomial matrix. The determinant of this

parametric is . By consideration of
the powers of appearing in this expression, it is easy to show
that can never be unimodular. It follows that can

never be an MLA of , for if it were then standard results on

the determinantal ideals of matrices satisfying such a relation-
ship would yield that be nonunimodular also. Also,
can never be zero left prime and satisfy , for if it

were then by Lemma 2 it would also have to be an MLA of .

By Lemma 2, a necessary condition for the epimorphism con-
dition (7) in Theorem 6 to hold is that the ranks of the two ma-

trices should add up to the number of rows of ; we now

investigate this condition.
Lemma 8: Consider the maps and behaviors as in diagram

(9). The following are equivalent.

1) number of rows of .

2) (or , or is au-
tonomous).

3) .

Proof: Using the identity (4) and (8), we find

Equivalence of 1. and 2. is now clear from the above equation.
Equivalence of 2. and 3. follows from the fact that is ad-
ditive, so that .

We make the following observations. If the map
is injective, then condition 1. in the above lemma holds if

and only if . Moreover, in the case where is

controllable, must itself be an MLA, and we easily

obtain that a given is an isomorphism if and only if
it is injective and .

Corollary 9: Suppose that and ,
and let be a homomorphism from to represented by a
differential operator , so that

for some . Suppose further that and have full row rank.
Then, is an epimorphism if and only if

and also is minor left prime.
Proof: Since has full row rank, any MLA equals

0, and the condition in Theorem 6 forto be an epimorphism

becomes that should be an MLA of . By Lemma

2, and the fact that has full row rank, this is equivalent
to the conditions that is minor left prime, ,

and finally . Applying Lemma

8 gives us the required condition on and .
Corollary 10: With notation and suppositions as in Corollary

9, suppose further that , where and
. Then, is an isomorphism from to if and

only if is zero right prime, and is zero left prime.

Proof: Suppose is an isomorphism; then and

by Theorem 6, is zero right prime, whereas by Theorem

6, must be a (full row rank) MLA of , which

means by e.g., [18, Lem. 3] that it is in fact zero left prime.
Conversely, if these conditions hold then by Theorem 6,is a
monomorphism. Since , and

, we have that , so by Corollary 9, is
also epic.

Note that Corollary 10 specializes in the 1D case to the con-
dition familiar in Fuhrmann strict system equivalence (in which
context the condition , which effectively means
that and have the same number of free variables, is stan-
dard).

B. System-Theoretic Properties Shared by Isomorphic
Behaviors

By Lemma 5, two (concrete) behaviors are isomorphic if and
only if they are manifestations of the same abstract behavior,
i.e., if and only if their modules of observables are isomorphic.
Thus, any property of a concrete behaviorwhich can be shown
to be equivalent to some intrinsic property of the module, is
also shared by any isomorphic copy of. On the other hand,
properties of which depend upon the inclusion ofin the tra-
jectory space , which may be describable in terms of but
only relative to the map , are not generally preserved
by isomorphism (e.g., the number of outputs).

If is an isomorphism from to , then the following prop-
erties are shared by and .

1) Controllability of . Also, restricts to an isomorphism
from to , as is easily seen from the module-the-
oretic analogue. Similarly, the so-called obstructions to
controllability, , and , are isomorphic. Fur-
thermore, the equivalence class of is pre-
cisely the set of trajectories which can be concatenated
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with [19], and this is mapped to the equivalence class
of in . In other words, the diagram

commutes. Therefore two trajectories can be concate-
nated (with respect to each pair of open sets) if and only if
their images under the isomorphism can be concatenated
(moreover any concatenating trajectory is mapped onto
a concatenating trajectory).

2) Autonomy of , and more generally the characteristic va-
riety. The ideals of minors of any kernel representation
of order , where is the number of columns of, are
also preserved by isomorphism, for any[4, Cor. 20.4]

3) The number of free variables of.
4) The uncontrollable pole variety (which describes input

decoupling properties [16]), since it is the characteristic
variety of the obstruction to controllability.

5) The -space which is the factor of by the
row span of over . This is of interest since the

-span of the rows is also the -span of the
rows of , where without loss of generality we
take the first variables to be a maximal free set (the in-
puts), the remaining variables to be outputs, and the cor-
responding transfer matrix . We might
call this subspace of thetransfer matrix space.
The factor is , which is entirely determined
by and so invariant under isomorphism (however the
transfer matrix space itself is not).

6) For any subbehavior of is set-controllable to
[13] if and only if is set-controllable to . This
is due to the fact that is isomorphic to ,
and set-controllability is characterized by controllability
of this factor [13].

IV. I SOMORPHISMS ANDUNIMODULAR EQUIVALENCE

We now look at two special cases of behavior isomorphism,
namely unimodular equivalence and elimination of observable
variables. We first state a general result, that we use subse-
quently.

Lemma 11: If and are both in-
jective homomorphisms of behaviors, then they are in fact both
isomorphisms.

Proof: Set . Define
by with . The ’s form a descending se-
quence of behaviors, with a corresponding ascending sequence

of submodules of , which must stabilize as the ring
is Noetherian. Hence, for some . If ,
then there exists . So for some .

. Since , so
for some . Thus . But both and

are injective and so is injective. Hence, ,
which is a contradiction. It must therefore be that , i.e.,

. Hence is surjective. Thus must be
surjective and so is an isomorphism. Repeating the above argu-
ment using , we obtain that is also an isomorphism.

A. Unimodular Equivalence and Elimination of Observable
Variables

It is not surprising that unimodularly equivalent behaviors are
isomorphic, i.e., if , where is a unimodular matrix,
then and are isomorphic. For such a is monic (on any
behavior), and the equation says that the map is epic also. A
special case of unimodular transformation is change of basis in
the space of dependent variables.

We now give another trivial example of isomorphic behav-

iors. Let and with

. Then, by Lemma 11 and are isomorphic, since

and , with the matrices

and being zero right prime. Note that this partic-

ular case is essentially the addition/ subtraction to the behavior
of a variable(s) which is identically zero. The dual process is
that of adding (subtracting) a trivial complex to the projective
resolution of the module .

Suppose now that we are given a behavior ,
where is of the form , describing the equations

. We can ask the question, “Under what con-
ditions is the projection map , an
isomorphism?”. This projection map is represented by the ma-
trix and so is a homomorphism, and is defined as the
image of this projection, so it is epic. Clearly, the kernel of the
map is the set . Thus the projection map
is an isomorphism if and only if , i.e., if and only if
the variables areobservablefrom the variables (i.e.,
determines uniquely). In matrix terms, this means that is
zero right prime (e.g.,[15, Theorem 9]).

Recall from the elimination algorithm that a kernel represen-
tation of is given by , where is an
MLA of . In the case where is zero right prime, we can
choose to be the lower part of a unimodular matrix satisfying

, and we obtain

Thus, equals , which is unimodularly

equivalent to , and therefore we again find

that is isomorphic to . Moreover, this isomor-
phism can be decomposed into a unimodular transformation
followed by deletion of a zero variable (these two operations
are enough), or as removal of a trivial complex. Note that by
deleting all observable system variables in this way we obtain a
minimally embedded system in the sense of Kleon and Oberst
[7].

Another application of these ideas is to latent variable de-
scriptions of a behavior the projection map from the full
behavior to is an isomorphism if and only if the la-
tent variables are observable. The natural question to ask next is
whether every full behavior that is isomorphic to is of
this form—that is, do all full behaviors which are isomor-
phic to have observable latent variables? It turns out that one
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can have full behaviors with unobservable latent variables
which are isomorphic to

Example 12: Consider the full behavior given by latent
variable representation

of the manifest behavior . Clearly, the latent vari-
able is not observable from the manifest variable, and there-
fore the projection map is not an isomor-
phism. Now consider the map . Since

satisfies the equation , so by Theorem
6, we know that the map is a homomorphism. Again, by
Theorem 6 it is easy to check that this homomorphism is both
epic and monic, therefore an isomorphism. In fact, the inverse

map is given by . Thus, we have a latent

variable representation of a behavior (with unobservable latent
variables) that is isomorphic to the original behavior.

B. Isomorphisms and Extended Unimodular Equivalences

In fact, elimination of observable variables, together with uni-
modular equivalence, characterize all isomorphisms in the fol-
lowing sense.

Theorem 13:Two behaviors and are
isomorphic if and only if the extensions and

are unimodularly equivalent, where and denote
the zero behaviors in and , respectively.

Proof: Let and , with the cor-
responding modules of observables and . It is shown in
[3,Ex. 5.33] that and are isomorphic if and only if there
exist unimodular matrices and with

Thus, the behaviors with representations

and

are unimodularly equivalent. The matrix is irrelevant from a
behavioral point of view, since it does not effect the module of
equations. Hence, we obtain the desired result.

V. LATENT VARIABLE DESCRIPTIONS ANDSTRICT SYSTEM

EQUIVALENCE

We now look at maps between latent variable descriptions of
some fixed behavior . This is a generalization of the
study of equivalences of generalized or pseudostate representa-
tions as described by the Rosenbrock system matrix. In Section
V.A we will apply these results to the special case of behaviors
defined by Rosenbrock system matrices.

Lemma 14: Let and
be two latent variable descriptions of a

behavior . Denote the full behaviors by and
respectively. Then, any homomorphism from to

which moreover fixes can be represented by a differential
operator of the form

for some .
Proof: Let the given homomorphism be represented by

a matrix . Then, we have for any

, so in particular , or .
Using [8, 2.61], this implies that there exists anwith

. Now for any we find

(11)

Now, by the elimination algorithm, a kernel representation of
is given by , where is any MLA of . Equation

(11) then gives us for some . We
now have

which by the discussion following (9) ensures that the two ma-
trices on the left hand side represent the same map on.

Corollary 15: Given two latent variable descriptions

of the same behavior , there exists an isomorphism from
to which moreover fixes , if and only if there exist ma-

trices and , with zero right prime and such that

is an MLA of (where is any MLA of

), satisfying the law

(12)

Proof: Suppose that an isomorphism exists; then by
Lemma 14 it can be represented by a matrix of the form

. Now consider the exact commutative diagram

(13)

Applying the Snake Lemma (e.g.,[4, Ex. A3.10]) to this dia-

gram, we have that is injective if

and only if is, and similarly for surjectivity.
The conclusion then follows from Theorem 6. Conversely, if the

conditions of the corollary are satisfied, then defines

a homomorphism from to which fixes , and is an
isomorphism by the same arguments as used in the first half of
the proof.
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Note that the matrix in (12) is actually an isomorphism
from to . That the conditions on the existence of an
isomorphism are given entirely in terms ofcomes from the
fact that and are isomorphic if and only if and

are, as explained in the proof of Corollary 15. Note also
that the conditions given in the corollary can be broken down
into monomorphism and epimorphism conditions.

A. Isomorphisms and Strict System Equivalence

Let us now apply our results to the special case of behaviors
defined by Rosenbrock system matrices, i.e., behaviors of the
form

(14)

Rosenbrock system matrices forD systems have been well-
studied by Pugh and co-workers (e.g., [12]). No assumptions on
the structure of are needed; hence the result which
follows is an extension of Theorem 4 of Zerz in [18], which
also links Rosenbrock system matrices with behaviors. By iden-
tifying with the manifest variable , and with the latent
variable , we see that we have a natural special case of a la-
tent variable description. Further, sinceis an observable vari-
able, is actually isomorphic to its projection onto
the variables. This projection is given by

(15)

Definition 16: Two Rosenbrock systems
are generalized strictly

system equivalent in the sense of Fuhrmann (GFSSE)if
there exist polynomial matrices such that

(16)

holds, where moreover is zero right prime, and

is an MLA of , where is a given MLA

of .
The definition of generalized strict system equivalence in the

sense of Fuhrmann is slightly ugly in that the symmetry between
the conditions on and is broken; however we believe
following Note 7 that this is necessary for the full generality
of the results which follow.

Theorem 17:The Rosenbrock systems and
are GFSSE if and only if there is an isomor-

phism from the behavior to the behavior , which
furthermore fixes . Hence GFSSE is an equivalence rela-
tion.

Proof: Suppose that there is an isomorphismfrom
to . By Lemma 14, this can be represented by a

matrix of the form

Furthermore, sinceis a function of and , we see that without
loss of generality we can take . The equation for a ho-
momorphism now gives us the identity

(17)

where we see further that must vanish and must equal .
Now, as in the proof of Corollary 15, there is an induced iso-
morphism from to , which we can easily see
is represented by the differential operator, and the equation

holds. Theorem 6, applied to , now gives us the required con-
ditions on these matrices. It remains to observe that (17), to-
gether with the fact that and , gives us the for-
mula

so that we indeed have that the Rosenbrock systems are GFSSE.
Conversely, suppose that the Rosenbrock systems are

GFSSE. Then, from the formula for GFSSE, we can derive an
equation of the form (17), where and . This
equation specifies a homomorphismfrom to ,
and moreover this homomorphism clearly fixes . Now
consider the induced maps from to , and from

to , the latter of which is represented by the
polynomial matrix . From the conditions of GFSSE, and by
Theorem 6, this mapping is an isomorphism. Since fixes

fixes , so we have an exact commutative diagram
of the form

where and the identity mapping on are isomorphisms. It
then follows from the Snake Lemma that is also an isomor-
phism, and now it is easy to see thatitself is an isomorphism.
This completes the proof.

The preceding result is a generalization of [6, Lem. 5.10] by
Hinrichsen and Prätzel-Wolters, which gives coprimeness con-
ditions for a homomorphism between 1-D Rosenbrock system
matrices to be monic/epic.

VI. FURTHER RESULTS

Finally, we look at various other aspects of homomorphisms
and isomorphisms of behaviors.

A. Isomorphic Copies of a Fixed Behavior

In the previous sections, we considered the properties of
maps between two behaviors with given kernel representations.
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We now consider the behaviors which can be obtained as
isomorphic copies of a given behavior, i.e., we allow ourselves
to choose the kernel representation of the image behavior

. This leads to a very rich structure reminiscent of the
classical doubly coprime factorization, and is called adoubly
unimodular extension by Fuhrmann [5]. Our result here is
a generalization of Fuhrmann’s Theorem 3.6.4. We do not
require the condition that the given kernel representation of
has full row rank.

Theorem 18:Given a behavior and a differential
operator such that is an iso-
morphism, one obtains a commutative diagram: shown in (18)
at the bottom of the page where and

is the isomorphism represented by. The dia-
gram is to be understood in the following way: picking either
horizontal direction ( or ) and either vertical direction (or
), and retaining in the above diagram only the maps pointing in

the chosen directions, we obtain an exact commutative diagram.
The maps and are induced, respectively,
from the maps and , and are mutual inverses as
indicated, although none of the corresponding matrix pairs are
necessarily inverses.

Proof: Since the map is an isomorphism, it
is injective (it is surjective by definition of ) and so, with
a kernel representation of, we have a zero right prime matrix

, which we can embed in a unimodular product

(19)

(20)

Now, by Lemma 3 we obtain the identities

(21)

and the commutativity laws

(22)

which give us diagram (18). Finally, given we have
so that is

the right inverse of . The other left/right
inverse relationships all follow from similar Bézout identities.

The existence of a diagram of the form (18) is clearly suffi-
cient as well as necessary for to be an isomor-
phism. Another characterization for to be an isomorphism is
that generate , where are
the rows of [15, Cor. 4]. Thus, looking for isomorphic copies
of a concrete behavior is equivalent to looking for generating
sets of its module of observables.

Note that the diagram (18) can be considered as an interpreta-
tion of any matrix product of the doubly unimodular extension
form (19)–(20). The map is the representation as a polyno-
mial matrix of the inverse homomorphism , and
the other matrices admit interpretations as explained in the dia-
gram.

B. The Space of Homomorphisms

We now show how the space of homomorphisms from a given
behavior to another given behavior can be computed ex-
plicitly. Essentially, this involves construction of a presentation
of the module , which is a standard problem
however not usually expressed in polynomial matrix terms.

We have seen that homomorphisms
, , are characterized by matrices

such that a matrix exists satisfying , which we
can rewrite in the following form [2, 2.3]using the Kronecker
product of matrices

(23)

Here, denotes the vector obtained by writing
out the columns of , in order, in a long column vector, and

(18)
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similarly for . Therefore, the possible homomorphisms
are entirely determined by the right syzygies of the matrix

(24)

which we can compute by Gröbner basis methods. However
there is redundancy in this description of homomorphisms, since
as explained in Section III, the same homomorphism of behav-
iors can be represented by multiple differential operator ma-
trices and corresponding matrices. As discussed earlier,
the pair defines the zero map from to if and only if
there exist matrices and with

where is an MLA of . Under the Kronecker product repre-
sentation above, these correspond to syzygies of the form

for some polynomial vectors . To obtain a precise descrip-
tion of the homomorphism space, we must then factor out such
syzygies. Computing a factor of modules is a standard problem
easily solvable using Gröbner bases.

In the case where is controllable, say that , it
is much easier to construct all possible maps, for (23) can be
written

(25)

We also have that is an MRA of , so an
equivalent formula is

(26)

To solve this, we need only compute the right syzygies of
.

A further natural question to ask is: given two behaviors
and , how can one test whether they are

isomorphic? By Lemma 11, this reduces to the ability to test for
the existence of a monomorphism in each direction. Fortunately,
from the discussion above we can compute an explicit descrip-
tion of the space of possible matrices which describe ho-
momorphisms from to , and by parameterizing this space
we obtain a ‘generic homomorphism’. We can then test whether
the parameters can be chosen such that this matrix is zero right
prime. Such an argument in terms of generic maps is used to
test for graded module isomorphism in the Macaulay [1] script
module iso by D. Eisenbud.
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