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On Homomorphisms of-D Behaviors

Harish Pillai, Jeffrey Wood, and Eric Rogers

Abstract—Different modeling procedures applied to a physical isomorphic behaviors can always be related by a sequence of
system may result in behaviors which are distinct but nevertheless gych operations. Nevertheless, the form of an arbitrary isomor-
share many structural properties. Such behaviors are isomorphic phism of behaviors is very general.

in a sense which we formalize and characterize in this paper. More Th . d as foll In Section Il I
generally, we introduce a natural notion of homomorphisms be- X e pa.per IS arrange gs offows. In section We, reca sorr_1e
tween behaviors of multidimensional systems, generalizing recent basic notions from behavioral theory, and also motivate the dis-
work of Fuhrmann. A generalization of strict system equivalence tinction between abstract and concrete behaviors. In Section IlI
(in the sense of Fuhrmann) is shown to describe the relationship we define homomorphisms and isomorphismabfbehaviors,
between generalized state-space descriptions in theD case. and characterize them by various means. In the case where the
Index Terms—Abstract behavior, behaviors, isomorphism of be- - behaviors are specified by given kernel representations which
haviors, module theory, multidimensional systems, system equiva- haye full row rank, we derive a direct generalization of the zero
lence. left prime and zero right prime conditions which are familiar
from the work of Fuhrmann. Section IV looks at the special
. INTRODUCTION cases of unimodular equivalence and elimination of observable
- . variables, and shows that any isomorphism can be expressed by
gfiprrzcs?:?ii’agfdizriﬁlr 'b(;rf]?nztﬁgﬁ;iisy;tggIgsaneilsgf@tmbining these two operations (essentially a generalization of
prescr y . . 9 Rosenbrock’s strict system equivalence). Then, in Section V we
nondeterministic. For example, in selecting the physical vari- : . . ; :
. -~ " “study isomorphisms of a special type acting on latent variable
ables to be modeled one chooses a basis, often arbitrarily; A& crioti . : o .
. . o . 2+ descriptions of a behavior. This leads to a generalization of strict
may also include for convenience, additional variables which |n

fact can be determined from the others. In the behavioral setti system equivalence in the sense of Fuhrmann, which can be ap-
. . . . &d to any Rosenbrock system matrix and admits a behavioral
one therefore obtains many highly distinct behaviors as mod

. . . m%erpretation. The final Section VI contains various additional
of a single physical system. We expect these behaviors never-

theless to a very large extent to share the same structure. results.
In this paper, we formalize in a natural way, the concept of
two distinct behaviors having ‘essentially the same structure’.
Further, we generalize recent work on 1-D behaviors by Recall [14] that a behavioB of a system is the set of its
Fuhrmann in [5] introducing notions of homomorphisms antlajectories, which we view a subspaceof?, whereW is
isomorphisms between behaviors. The concept of isomorphigime signal space of the system (e@3(R™,R)), andgq is the
essentially is that the ‘modules of observables’ of the tweumber of (dependent) system variables. We consider in this
systems are isomorphic, a standard concept recently degpdper only behaviors defined by linear partial differential equa-
explored in a system-theoretic context by Pommaret atidns with constant coefficients, or the discrete equivalent (dif-
Quadrat [11]; see also [10, 11.2.3, V p. 656]. We also introduderence equations). For a signal space we consider one of the
here a distinction between a concrete behavior (a behaviorfafiowing: in the continuous cas&y = C>*(R™, k) or W =
the usual sense, i.e., contained in some specified traject@y(R", k), or in the discrete cas® = k4" or W = kN",
space) and an abstract behavior (effectively, an isomorphisvherek is eitherR or C. Oberst has shown [8, 2.54] that these
class of behaviors). signal spaces have the important algebraic property of being in-
Two special cases of behavior isomorphism are unimodujactive cogenerators over the ring of partial differential opera-
transformation, and elimination or addition of observable variers k[0/dt1, .. ., d/9t,] (or partial difference operators, anal-
ables. In fact, we show by dualizing a result in algebra that tvagjously). For convenience, we identify this ring with the poly-
nomial ring? = k[z1,...,2,] in n indeterminates (though
Manuscript received July 16, 2001; revised January 15, 2002. This resedienthe discrete casey = k" it is necessary instead to use
was done during the time H. Pillai was an EPSRC-sponsored Research Fellbe Laurent polynomial ring[z1, . .., 2., 2 5, .. .,z ], since
at the University of Southampton, Southampton, U.K. The work of J. Wood W@8en, the shift operators are invertible). Our behaviors are there-
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B C W1, we also use the notatiof3 for the sef{ Aw | w € B}.  which in fact is a differential linear combination of the existing
For brevity we will henceforth refer only to the continuous caseariables, thus changing not only the behavior but the trajec-
It is easily observed that kernel representations are hightyy spaceA? in which it lies. Alternatively, one may change
nonunique. Indeed, any two matricés, R, which have the basis in the space of physical (dependent) variables Such ac-
same row-span (ove®) generate the same set of partial diftions often appear to completely change the behavior; however
ferential equations, so define the same behavior. For the sigal@arly much of the structure must remain the same. In partic-
spaces we have identified, the converse is also true: two matricées, the set of all formal quantities associated with the system,

which define the same behavior must have the same row span, the moduleM, is unchanged. (However, the module of
[8, 2.23,2.48-9,2.61], which is equal to thredule of system system equation8+ generally is changed, though by the clas-
equations sical Schanuel's Lemmaitis in fact determined up to ‘projective
BL— {v € DY | vw = 0 forall w € W11, ) equiva_lence’). Furth_ermore_, _the objéébmp(/\/t,_W) is both _
) _ canonical and meaningful: it is the set of all assignments of sig-
Itis also valuable to consider the factor modBie?/DVYR,  pais to the physical variables (formal quantities) of the system
which we denote byt and refer to as theodule of observ- i, 5 manner which respects the algebraic relationships between
ablesof 5. This module is generated by + BYi=1....4 those quantities. These considerations motivate the following
whereey, ..., e, are the natural basis vectors "¢, The distinction:
module element; + B+ can be identified with the formal " pefinition 1: A concrete behavioris a behavior of the type
quantityw; (note(¢; + vjw = w; foranywv € Bt). M can B — keryR, that is a subset 0fV? for someq, defined by a
now be considered as the module of distinct formal quantitiggegr partial differential operatdk € D91
(“observables”) associated to the system; each element is &, apstract behavior is a set of the typeD(M) =

polynomial combination (conceptually, a differential IineaHOInD(M’W) for some finitely generated>-module M
combination) of the given generating formal quantities. F‘(Fecall that we identify together isomorphic modules, and
examplez; (e +B+) — 2(ey + B*) corresponds to the formal yherefore the corresponding abstract behaviors).

quantity dw, /0, — 2wy, wheret, is the first independent |, the case wher is a presentation aM, or equivalently
variable. This is the approach taken in [10], [11]. In facty is the module of observables Bf we will say that the con-

any finitely generated>-module can be written in the form ¢yt hehaviol3 = ker,y R is amanifestation of the abstract
Dl’q/BL for some behaviof3. In what follows, we make no behaviorD(M)

distinction between isomorphic modules. _ We now summarize the relationships between these concepts
The moduleM is directly related to the behavids, ac- (e that this discussion applies only to signal spatiashich
cording to are injective cogenerators; the picture is complicated by the con-
~ sideration of othe¥V). A (concrete) behavidB implicitly spec-
B = Homp (M, WV). ) ifies an inclusion map : B — W¢?. The dual object is the nat-
Here,w = (w1, ...,w,) € B is identified with the homomor- ural projection map : D¢ — M; that is, concrete behaviors
phism determined by; + BL — w;,i = 1,...,q (an assign- are in one-to-one correspondence with such paws p). Ab-

ment of signals to the formal quantities in a manner consisteiitact behaviors are in one-to-one correspondence with modules
with the system laws). Note however that this correspondenéé themselves (identified of course only up to isomorphism).
is not canonical, as the choice of generatars+ B} of Mis Thus an abstract behavior is essentially an equivalence class
arbitrary. of concrete behaviors, consisting of all concrete behaviors ob-

The central result of Oberst in [8, 2.54], is that the sign&Rined by choosing a generating set of the module of observ-
spaces identified are injective cogenerators. One restaten@iies and embedding the abstract behavior accordingly in a tra-
of this result is thatomp(—, W) is a faithfully exact con- jectory space. A natural problem, to which we devote much of
travariant functor, and therefore we haveategorical duality this paper, is to characterize the concrete behaviors which cor-
between finitely generatefl-modules and behaviors of the type'€spond to the same abstract behavior (we will see that this cor-
discussed above. We are not concerned in the present pdg&ponds to a natural notion of isomorphism).
with the precise meaning of these terms. However, this categorFor most purposes, it is not necessary to make this distinction
ical duality is very powerful, since it allows us to translate anfetween abstract and concrete behaviors and to introduce the
structural statement about modules to a corresponding statenfBAPPINgo etc. However our formalization of these ideas, which
about behaviors, and frequently vice versa. From this duality(ltke the mape) are normally implicit, will be useful in what
is possible to prove that a behavior is controllable if and only fpllows. We will retain the term “behavior” in the usual sense,
the corresponding module of observables is torsionfree, that it-®, t0 mean “concrete behavior”.
autonomous if and only if the corresponding module is torsion,
etc. See [15] for a survey of results of this type. Furthermore, the Background
module theory comes equipped with a comprehensive set of alWe now recall some important concepts and results from the
gorithms for system-theoretic constructions, based on Grébtiggrature which will be useful in what follows. We give refer-
bases or similar techniques. ences only for less well-known results.

However, as discussed in the introduction, a behavior is aRecall that a polynomial matri® is said to bezero right
highly noncanonical model of a given physical system. For egrime (minor right prime ) if it has full column rank and the
ample, one may add an additional physical variable to the modidtals of highest order minors have no common ro@t'inhave
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no common factor irD). A zero right prime matrix is precisely unsurprising answer is that they are isomorphic, in a natural
one which admits a polynomial left inverse. Zero/ minor lefsense now to be introduced.
primeness is defined by transpositionuAimodular matrix is Definition 4: A homomorphismfrom a (concrete) behavior
one which is square with a constant determinant. B C W1 to a concrete behavioB’ C W¢? is a mapping
A polynomial matrixR € D91 is said to be aninimal left ¢ : B — 3’ which is represented by a (linear, constant coeffi-
annihilator (MLA) of another polynomial matriaZ € D¢" if cient) partial differential operatod : W¢ — W< . The homo-
the rows ofR generate all the syzygies (polynomial relations) omorphism is called amonomorphism (epimorphism, isomor-
the rows of the matrix}/. Equivalently, we have the condition phism) when¢ is injective (surjective, bijective respectively).
keryy R = imyM = {w € W?|Jv € W' st.w = Mv}. .Thus a homomorphism of beha\_/iojss B+ B is simply a _
' ' differential operator (rather, an equivalence class of them) which
mapsB to B’. Two behaviorsi3, 3’ are isomorphic precisely
when there are homomorphisms B — B and¢’ : B/ — B
which are mutual inverses. Note that this does not require that
the representing matricesand A’ are mutual inverses.
It is immediate from the Oberst duality that homomorphisms
B — B’ are in one-to-one correspondence with homomor-

We say thatR is aminimal right annihilator (MRA) of M if
RT is an MLA of M7T.

A behaviorB = keryy R is controllable, as defined in [9] for
the continuous case, if and onlyAfis an MLA of some matrix
M (and in this case, clearly = imyyM).

Lemma 2: (e.g., [17]): A polynomial matrixR is an MLA of

M if and only if: phisms M’ — M (note the reversal of direction), wheret
1) Ris an MLA (of some matrix); and M’ are the modules of observables ®fand B’ respec-
2) RM = 0; tively. For if ¢» : M’ — A is a module homomorphism then
3) Rank R + Rank M = q. it can be extended (nonuniquely) to a map D7 +— DL,
Also, a full row-rank matrix is an MLA (of some matrix) if whereq’ andq are the numbers of dependent variable8’iand
and only if it is minor left prime. B, respectively. The map can be represented by a polynomial

The number of free variables of a behavior5 is the max- matrix A, which defines a differential operator frori? to W< ,
imum number such that dependent variables &f can be in- \hich restricts to a behavior homomorphigm 5B — 5. Al-
dependently freely chosen withih This number is denoted by ternatively,¢ can be obtained directly dsomp (1, W). Thus,
m(B), and, for a given kernel representatin= keryy R with  the homomorphisms of behaviors (in the sense of Definition 4)
g columns, equalg — rankR. The numbern(-) is alsoaddi-  are precisely the “duals” of the homomorphisms of the corre-
tive, which signifies that, given an exact sequence of behavig§gonding finitely generated modules. Furthermore, by exactness

0— B, — By — Bs — 0 of the functorHomp(—, W), ¢ is injective if and only ify is
. . . surjective and vice versa. The following lemma is immediate.
(for example wheres, is a subbehavior OB? with factor Bs), Lemma 5: Two concrete behaviors are manifestations of the
we havermn(By) = m(By) +m(Bs). In particular, for any o g, 6 apetract behavior if and only if they are isomorphic.
behaviorsBy, B, € W, we have [13, 2.7)] Proof: Both statements are equivalent to the condition
m(B1 + Bs) + m(B1 N Ba) = m(Br) + m(B2). (4) that the modules of observables of the two behaviors are

A latent variable description of a behaviod3 is a represen- 1S0morphic. o u
tation of the form Since an abstract behavior is a natural abstract model of a ‘real
BB 32 with Ruw = M ¢ 5 system’ which requires no noncanonical selection of physical
= By = {w| 3L with Rw = M £} ®) variablesws, .. ., w, from the infinite number of those avail-

where/{ are thelatent variables. The latent variable descrip- able, the concept of isomorphism as just introduced is also very
tion is calledobservableif M is zero right prime, since this natural, and exactly captures the concept of two behaviors ‘de-
implies that? is uniquely determined (indeed, by a differentiascribing the same system’. Isomorphic behaviors therefore have
operator) fromw. Thefull behavior is the set of solution&s, #)  in all important ways the same structure (see Section 11I-B).
of Rw = M { with respect to the given signal space. We also de- We now finally have the language to speak in precise terms
note by, , the subbehavior of all solutior{8, £), which is the about factor behaviors. Given a behavi®rand sub-behavior
kernel of the projection map,, , — B,,. To eliminate the la- 5’ (i.e., a subset which is also a behavior), the factor space
tent variables, we can apply the algorithm given e.g., in [8, Cds,/5’ admits the structure of an abstract behavior; it is equal
2.38)], : compute an MLAC of M; thenB,, = keryyCR. to D(AM’), where M’ is the submodule of the module of ob-

A special case of elimination is the computationA8 for servables of3 consisting of all observables which are identi-
some differential operatad and behaviol3 = keryyR. We cally zero on3’ [15, Cor. 2]. ThusB/B’ is called thefactor

have [13, Lem. 2.13)]. behavior. The manifestations o8/’ include the behaviors
Lemma 3: A kernel representation odB, 8 = kery R, is  of the form R'3, where R’ is any kernel representation &f
given byC, where(CD) is any MLA of (g)_ (note that the kernel of the surjectigh— R’B is simply 5/,

so thatR'B = B/’ ask-spaces ofD-modules). These con-
crete behaviors live in different trajectory spaces, but are mani-
festations of the same abstract behavior. They are therefore iso-
Having distinguished between concrete and abstract behearphic, and so share many properties such as those listed in
iors, an obvious question is “What is the relationship betwe&ection IlI-B. These properties are effectively properties of the
different manifestations of the same abstract behavior?”. Thbstract behavioB/5’, and for many purposes it is sufficient

I1l. HOMOMORPHISMS ANDISOMORPHISMS OFBEHAVIOURS
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to discuss this factor without specifying a manifestation of it. Finally, suppose that 3c holds, and let € 3’ be arbi-

Fa_ctor behaviors can be used_tp describe succi_nctly many prop- gy, Theny w’ ) € keryy( R -Y ), S0 by supposition

erties, such as set-controllability [13], regular interconnection , 0 , 0 R ) ,

[13] and input decoupling [16], amongst others. there existso with v’ = Aw and0 = Rw, i.e.,w' € AB
as required.

[
Theorem 6 is a generalization of Fuhrmann’s result [5, The-
orem 3.6], which is given for 1D behaviors with full row rank
representations. The only difference from Fuhrmann’s results
Tg, 3.6.1-3.6.3] is in the epimorphism condition; we explore the
full row rank case further in Corollary 9.

i i - Any homomorphisng : B — 3’ can be extended to a map of
1) A:w— Aw defines a homomorphism froli to 5’ if 5 mnjexes (exact sequences):; this can be seen as follow&. Let
and only if there exists a matri € D77 with and R’ be kernel representations Bfand 3’ respectively, and

RA=YR, (6) let Ry be an MLA of R, R{ and MLA of R', R, an MLA of
Ry, R, an MLA of R/, etc. Let the domains ok, Ry, R», etc.
bew! wa W and the domains oft’, R}, R}, etc. be

We now characterize homomorphisms of behaviors in terms
of polynomial matrix properties.

Theorem 6:Let B = kerywR,B = keryR be two
(concrete) behaviors with given kernel representatio
R e D9 R € DY and letA € D4 be a given differen-
tial operator. Then, we have

2) A defines a monomorphism frof to 3’ if and only if

condition (6) holds for somé’, and(é) is zero right W< W4 W Now if A is a polynomial matrix repre-
prime. senting the homomorphisi, andY a corresponding matrix
3) The following are equivalent: with R'A = Y R, we find that
a) A defines an epimorphism froifi to 5'. Y(kerywR;) = Y(imwR) = imwY R
b) Condition (6) holds for som¥, and for anyY” sat- — imy R'A C imwR' = kerwR,.

isfying (6), we have ] } )
Hence, Y defines a homomorphism from the behavior

keryy <R(;/ _RY> = imyy <§) (7) keryyR; = imyR to the behaViOfkerlel = ilan/.
1 Thus there exists another matri with R]Y = ZR;, and
whereR; is a given MLA of R. so on up the sequence of maps. It is convenient to write

c) There exists & € D99 such that (7) is satisfied. Y = A;,Z = A,, etc.; then these maysi;) define a map of
4) A defines the zero map ofi if and only if there exists complexes (rather exact sequences), as described by the exact

L € D79 with A = LR. commutative diagram
Proof: 0BoWwi Byn Biype B2 Reovyne g
1) Adefines ahomomorphism frothito 3’ if and only if A3 61 Al ALl Al A

7

is contained in3’. Equivalently,keryy R C keryy R/ A, j w . n
which by [8, Th. 2.61] is equivalent to the given condition. 0 — B’ — w? Boypal Soype B2 sty g
2) Monomorphisms are precisely the homomorphighfier 9)

which B N keryy A = 0. By for example [15, Th. 9)], this _ _
. . . , There is, of course, a standard dual form in the language of
is equivalent to the zero right primeness(qQf, ). finitely generatedD-modules

3) We begin by showing Note that two operatorg and A define the same map on a

R -Y ] A R 0 behaviors, if and only if their difference is the zero map &h
keryy < 0 R, ) =y <R> + keryy < 0 I) (8)  which from claim 4 of Theorem 6 is equivalent to the formula

, . A=A+ Lo R for someLg. This can easily be extended to
for any R I, A,Y. R, where It is an MLA of g0 conditions on a map of complexegs A;, Ao, ... to give
R. It is clear that each behavior on the rlght_—han&e same map of behaviors as another collectiod, A, . ...
side, and therefore their sum, is con}%meijym tr\‘ln\le obtain the necessary and sufficient condition that there must
left-hand side. Conversely, (fz;) € keryy( 0 R, ), exist matricegL;) with
theny, € kerywR; = imwR, sayy. = Rw, and A; = A+ R._Li_i + LiR; (10)
now0 = Ry — YRw = Ry — R Aw, proving

1 — Aw € keryy R'. Thus for all ¢ > 2. The relationship (10) between the map of com-

plexes(4;) and the map(4,), is well-known in algebra and

<y1 ) — <A> w —+ <y1 — Aw ) called a homotopy (see e.g., [4, A3.6]. The existence of a homo-
Y2 R 0 topy is proved in a noncommutative module-theoretic setting in
establishes the decomposition (8). [10], [11].

Now suppose that is a homomorphism which moreover I\/lote 7: By Theorem 64 is an epimorphism if and only if
is epic, and let” be/a matrix satisfying (6). Then, itis easy R —A isan MLA of (©. ). Several plausible-looking vari-

1
R 0 . 0 R ) R)
to see thakery (", ;) S imw( ), and (8) therefore aiions on this statement are false. Givéni’ and an epimor-

yields condition 3b. It is trivial that 3b;> 3c. phism A from keryy R to keryy R/, it is not necessarily the case
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thatthere exists an; with (' — A;)anMLAof (“),orand, ~ Corollary 9: Suppose thaF = keryyR and5’ = keryy 1,
R and let¢ be a homomorphism fron$ to 3’ represented by a

with R’ A = A; Rand(R’ — A,) zero left prime. For example, differential operator4, so that

take
RA=YR
= (g2)= (3 3)
T\Z2-1)7\1 o0 ' /
%2 for someY. Suppose further that and i’ have full row rank.
R = <Z§ - 1) — < 0 1) R Then, ¢ is an epimorphism if and only ifn(B") = m(B) —
—Z1%2 z 0 m(ker ¢) and alsq/ R’ — Y') is minor left prime.

. o _ Proof: Since R has full row rank, any MLAR; equals
which have the same kernel, add= (1) (trivially an isomor- 0, and the condition in Theorem 6 fgrto be an epimorphism

; . g )
phl.sm). Then, theOmaltnceAl with R'A = A1R2are parame- . comes thatk’ — Y') should be an MLA 0(2). By Lemma
terized by, = (=~ o)+ ERy wherefiy = (z; — 1z1) and 2, and the fact thgtR’ — Y") has full row rank, this is equivalent

Z2

E = (g) is any polynomial matrix. The determinant of thid® the conditions that/t’ —Y") is minor "i‘;‘ prime,.’A = YR,
. s o .

parametricd, is —az1 2 — 3(z2 — 1) — z. By consideration of andfinallyrank('—=Y) = ¢/+g—rank(, ). Applying Lemma

the powers ok, appearing in this expression, it is easy to sho& gives us the required condition en(3) andm(5’). ]

thatA; can never be unimodular. It follows th@®’ — A;) can Corollary 10: With notation and suppositions as in Corollary

A e 9, suppose further that— ¢ = ¢ — ¢’, whereR € D% and
never be an MLA o , for if it were then standard results on™? P ) . N .
ltR) R € Dv:9 . Then,¢ is an isomorphism fron8 to B if and

the determinantal ideals of matrices satisfying such a relation- = 4 . . . y . .
ship would yield that4 be nonunimodular also. Als6r’ — 4;) O™ if () is zeroright prime, andi’ —Y') is zero left prime.
can never be zero left prime and satigf4 = A, R, for if it Proof: Supposep is an isomorphism; theker¢ = 0 and

A, . . .
were then by Lemma 2 it would also have to be an ML/{@!). by Theorem 6{ R) is zero right prime, whereas by Theorem

By Lemma 2, a necessary condition for the epimorphism cog- (R’ — Y) must be a (full row rank) MLA Of(é)' which

dition (7) in Theorem 6 to hold is that the ranks of the two ma-’

. ] means by e.g., [18, Lem. 3] that it is in fact zero left prime.
trices should add up to the number of rows((%), We now Conversely, if these conditions hold then by Theorerm & a

investigate this condition. monomorphism. Sincg — g = ¢ — ¢/, andg = rank R, ¢’ =
Lemma 8: Consider the maps and behaviors as in diagrafank r’, we have thain(B) = m(B'), so by Corollary 9¢ is
(9). The following are equivalent. also epic. n

1) rank( R —-A )4rank( A _ Note thg_t C_orollary 10 spec_ializes in the 1_D case to_ the con-
0 R R dition familiar in Fuhrmann strict system equivalence (in which
2) m(B') = m(AB) (or (B')° C AB, or B'/AB is au- context the conditiog — g = ¢’ — ¢, which effectively means
tonomous). 4 that 8 and B8’ have the same number of free variables, is stan-
3) m(B') = m(B) — m(kery( p))- dard).

)= number of rows of é ).

Proof: Using the identity (4) and (8), we find B. System-Theoretic Properties Shared by Isomorphic

_ A Behaviors
k -

" < o < 0 R )) By Lemma 5, two (concrete) behaviors are isomorphic if and
) A R 0 only if they are manifestations of the same abstract behavior,

=m <1mW <R>> +m <kerW < 0 ])) i.e., if and only if their modules of observables are isomorphic.

y Thus, any property of a concrete behavsarhich can be shown
. A R 0 : A .
—mimw | p N keryy 0 I to be equivalent to some intrinsic property of the modideis

also shared by any isomorphic copy 8f On the other hand,
= rank <£> +m(B') — m(AB). properties ofs Which_depend upon the_ inclus_ion Bfin the tra-
jectory spacéV?, which may be describable in terms.et but
only relative to the maf@!? — M, are not generally preserved
0&1 isomorphism (e.g., the number of outputs).
If ¢ is an isomorphism fron to 3, then the following prop-
erties are shared b§ and3'.

Equivalence of 1. and 2. is now clear from the above equati
Equivalence of 2. and 3. follows from the fact that - ) is ad-
ditive, so thatn(AB) = m(B) — m(ker ¢).

We make the following observations. If the map: B — . . . .
B’ is injective, then condition 1. in the above lemma holds if 1) Controllability of 5. Also, ¢ restricts to an isomorphism

and only ifm(B) = m(B'). Moreover, in the case whet# is from B° to (B')°, as is easily seen from the module-the-
oretic analogue. Similarly, the so-called obstructions to

— <11
0 R ) controllability, /53¢, andB’ /(18’)¢, are isomorphic. Fur-
obtain that a givenl : B — B’ is an isomorphism if and only if thermore, the equivalence classt B¢ of w € B is pre-
it is injective andm(B) = m(B’). cisely the set of trajectories which can be concatenated

controllable ( must itself be an MLA, and we easily
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with w [19], and this is mapped to the equivalence clags. Unimodular Equivalence and Elimination of Observable
of ¢p(w) in B'/p(B')¢. In other words, the diagram Variables

Itis not surprising that unimodularly equivalent behaviors are
isomorphic, i.e., ift/B8 = B, wherel/ is a unimodular matrix,
! . y ! e then3 and 3’ are isomorphic. For such@ is monic (on any
B/B* — B/(B) behavior), and the equation says that the map is epic also. A
commutes. Therefore two trajectories can be concagpecial case of unimodular transformation is change of basis in
nated (with respect to each pair of open sets) if and onlytfie space of dependent variables.
their images under the isomorphism can be concatenatedVe now give another trivial example of isomorphic behav-

(moreover any concatenating trajectory is mapped onygrs. LetB = keryyR and B = kerywR, R = (I 0 ) with
a concatenating trajectory). R ) 0 R_ )

2) Autonomy of3, and more generally the characteristic vaROE Da. TheOn, by Lemma 115 and5 are isomorphic, since
riety. The ideals of minors of any kernel representafion ( * )R = R( ) and(0 Ig)}?. = R(0 I,), with the matrices

of orderg— j, whereg is the number of columns dt, are IQR Iil

also preserved by isomorphism, for ajf¢, Cor. 20.4] (( 0 )) and( 0};' ) being zero right prime. Note that this partic-
3) The number of free variables 6f I, _ ¢ . _ _
4) The uncontrollable pole variety (which describes inpd’c'ar case is essentially the addition/ subtraction to the behavior

decoupling properties [16]), since it is the characteristf @ variable(s) which is identically zero. The dual process is
variety of the obstruction to controllability. that of adding (subtracting) a trivial complex to the projective
5) The Q(D)-space which is the factor a@(D)!7 by the resolution of the modulgvt.
row span ofR over Q(D). This is of interest since the SupPOse now that we are given a behawior= keryy 1,
Q(D)-span of the rowsk is also theQ(D)-span of the whereR is of the formR = (R, R»), descpbmg the equations
rows of (G — I,,), where without loss of generality we £i1w1 + fow, = 0. We can ask the question, “Under what con-
take the firstm variables to be a maximal free set (the inditions is the projection ma — B, , (w1, ws)  wy, an
puts), the remaining variables to be outputs, and the cdfomorphism?”. This projection map is represented by the ma-
responding transfer matri® € Q(D)?~"™. We might trix (£ 0) and so is a homomorphism, at#d, is defined as the
call this subspace ap(D)-¢ thetransfer matrix space. imag_e of this projection, so it is epic. Clearly, the_ kernel of the
The factor isQ(D) @ M, which is entirely determined Map is the seBo .., := {(0,w2) € B}. Thus the projection map
by M and so invariant under isomorphism (however th§ an isomorphism if and only iBo,.,, = 0, i.e., if and only if
transfer matrix space itself is not). the variablesy, areobservablefrom the variablesu; (i.e., w1
6) For any subbehavids; of /3, 3 is set-controllable g, ~determinesuv, uniquely). In matrix terms, this means thiaf is
[13] if and only if 3 is set-controllable ta(/3;). This Z€ro right prime (e.g.,[15, Theorem 9]).

B & B

is due to the fact tha/B, is isomorphic toB’ /¢(By), Recall from the elimination algorithm that a kernel represen-
and set-controllability is characterized by controllabilitfation of 5., is given byB,, = kerwCy Ry, whereC; is an
of this factor [13]. MLA of R,. In the case wher&; is zero right prime, we can
choose&’; to be the lower part of a unimodular matrix satisfying
Cy I :
IV. 1 SOMORPHISMS ANDUNIMODULAR EQUIVALENCE (02 YRy = (0)’ and we obtain

We now look at two special cases of behavior isomorphism, Cy 0 I (I 0
namely unimodular equivalence and elimination of observable Cs (Br Ry) I —CiRy ]  \0 CR
variables. We first state a general result, that we use subse-

quently. Thus, B equalskerw(gl)(R]L Ry), which is unimodularly
Lemma 11:If ¢ : By — By andvy : By — I5; are both in- _ I 20 o

jective homomorphisms of behaviors, then they are in fact bagquivalent tokerw (- ), and therefore we again find

isomorphisms. that B is isomorphic tokery,C> R;. Moreover, this isomor-

Proof: Setr = ¢ o ¢ : By — B;. DefineV; C By,7 € N phism can be decomposed into a unimodular transformation
byV; := 7(V;_1) with Vo = B;. TheV;’s form a descending se- followed by deletion of a zero variable (these two operations
quence of behaviors, with a corresponding ascending sequeace enough), or as removal of a trivial complex. Note that by
V1 of submodules oD*+¢, which must stabilize as the rir§  deleting all observable system variables in this way we obtain a
is Noetherian. Hencé(;_; # V; = V;41 for somei. If ¢ > 0, minimally embedded system in the sense of Kleon and Oberst
then there exista € V;_;\V;. Sow = i~ 1v for somev € B;.  [7].

7(w) = 7'(v) € V;. SinceV; = Viqy, sor(w) = 7)) Another application of these ideas is to latent variable de-
for somev’ € B;. Thusw — 7/(v') € ker 7. But botht) and  scriptions of a behavioB,,: the projection map from the full

¢ are injective and so is injective. Hencew = 7¢(v') € V;, behaviorB,, ¢ to B,, is an isomorphism if and only if the la-
which is a contradiction. It must therefore be that 0, i.e., tentvariables are observable. The natural question to ask nextis
im7T = Vi = Vp = By. Hencer is surjective. Thug) must be whether every full behavioB,, , that is isomorphic td3,, is of
surjective and so is an isomorphism. Repeating the above artius form—that is, do all full behavior8,, , which are isomor-
mentusing”’ = ¢o1), we obtain thap is also anisomorphism. phicto5,, have observable latent variables? It turns out that one
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can have full behavior8,, ( with unobservable latent variableswhich moreover fixesv can be represented by a differential

which are isomorphic t@,,. operator of the form
Example 12: Consider the full behavidB,, , given by latent I 0 w w
variable representation <K A) : <£) = <£/>
1 s) <w> -0 for somek, A.
14 Proof: Let the given homomorphism be represented by
A1 As

of the manifest behavidB,, = kery,0. Clearly, the latent vari- a matrix (
able/ is not observable from the manifest variablgand there-
fore the projection magl 0) : B, — B, iS not an isomor-
phism. Now consider the mafis + 1) : B, — By. Since
Y = 0 satisfies the equatidd(1s+1) = Y (1s), so by Theorem
6, we know that the mafi s+1) is a homomorphism. Again, by (I —A; - LRy)w=w— Ayw— LM{

Theorem 6 it is easy to check that this homomorphism is both =w—Ajw—A£=0 (11).

epic z.;md_momc, tilgrefore an isomorphism. In fact, the NVeTRow, by the elimination algorithm, a kernel representation of
map is given by( ;") : Bu — By Thus, we have a latent 3, is given byCR,, whereC is any MLA of M;. Equation

variable representation of a behavior (with unobservable latdat) then gives ug — A; — LR, = KCR; for somek. We
variables) that is isomorphic to the original behavior. now have

As A4)' Then, we haved;w + A>¢ = w for any

(w,€) € By ¢, S0 in particulatd, By ¢ = 0, or By ¢ € keryy As.
Using [8, 2.61], this implies that there exists Arwith A, =
LM;. Now for any(w, ¢) € B, ¢ we find

I 0\ (A A\ _[(KC+L (Ry — M)
B. Isomorphisms and Extended Unimodular Equivalences Az Ay As Ay ) 0 ! L

In fact, elimination of observable variables, together with uniwhich by the discussion following (9) ensures that the two ma-
modular equivalence, characterize all isomorphisms in the féfices on the left hand side represent the same map.on =
lowing sense. Corollary 15: Given two latent variable descriptions

Theorem 13:Two behaviors8 € W7 andB € W? are B. ., Riw= M/

. . . . N 7 N w, - 1w = 1

isomorphic if and only if the extensiols= B¢ 0¢ andB’ = , ,

0¢ @ B’ are unimodularly equivalent, wheté and0? denote Bye: Ryw= Mt

the zero behaviors imV? andW? respectively. of the same behavid?,,, there exists an isomorphism frafy, ,
Proof: Let B = keryy R and3’ = keryy R', with the cor- to B/, ,, which moreover fixesy, if and only if there exist ma-

responding modules of observablé$ and A1’ It is shown in 7

. . A . .
[3,Ex. 5.33] thatM and M’ are isomorphic if and only if there trices A, K andY’, with (M1 ) zero right prime and such that

exist unimodular matrice& andV with (J\(/)lz —CY) is an MLA of (Az/}l ) (whereCy is any MLA of
1 1
&0 00 M), satisfying the law
0 I, 0 0
Vio oY= o I 0
0 0 ¢ (By = M) | oo 4 | =Y(Bi— M) 12)
Thus, the behaviors with representations Proof: Suppose that an isomorphism egists; then by
7 o 0 0 Lemma 14 it can be represented by a matrix of the form
: I 0 . . .
v 0 I and 0 0 (K A)' Now consider the exact commutative diagram
0 0 I, © 0
0 O 0 R <I>
70
are unimodularly equivalent. The matfixis irrelevant froma 0 — By, — By e S B, — 0
behavioral point of view, since it does not effect the module of l A l I 0 l I
equations. Hence, we obtain the desired result. [ | ) K A
0
V. LATENT VARIABLE DESCRIPTIONS ANDSTRICT SYSTEM , <I> , (10)
EQUIVALENCE 0 — Bypy — B v — By, — 0

13
We now look at maps between latent variable descriptions of (_ ) )
some fixed behavioB = B,. This is a generalization of the APPlying the Snake I—_Temma (e.g.[4, Ex. A3.10]) to this dia-
study of equivalences of generalized or pseudostate represegtam, we have that KA ) B — B{M is injective if
tions as described by the Rosenbrock system matrix. In Sectg)rﬂj only ifA : By — B!

i v th | h ol ¢ behavi o, 1S, and similarly for surjectivity.
V.A we will apply these results to the special case of behaviogg e ¢onclusion then follows from Theorem 6. Conversely, if the

defined by Rosenbrock system matrices. . o I 0 i
Lemma 14:Let (R, — My)(w,f) = 0 and (Ry — conditions of the corollary are sausﬂed,th(efn( A) defines
Mo)(w,#) = 0 be two latent variable descriptions of aa homomorphism fron8,, ¢ to B, ,, which fixesw, and is an

behavior 5. Denote the full behaviors by, . and B, , isomorphism by the same arguments as used in the first half of
respectively. Then, any homomorphism frofy, , to B, ,, the proof. ]
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Note that the matrix4 in (12) is actually an isomorphism Furthermore, sincgis a function ofr andwu, we see that without
from By ¢ to B{w. That the conditions on the existence of aftoss of generality we can tak&. = 0. The equation for a ho-
isomorphism are given entirely in terms df comes from the momorphism now gives us the identity
fact thatBg andB{M, are isomorphic if and only i3,, ( and O. R, 0
B, , are, as explained in the proof of Corollary 15. Note al\?\ﬁTQ -Uy 0 ) o I o
that the conditions given in the corollary can be broken dowglVa W2 -1 0o o I

into monomorphism and epimorphism conditions. ,
— Ql Ql Tl _Ul 0 (17)
R, R i wy -1

. where we see further th&}; must vanish andz; must equal.
Let us now apply our results to the special case of behavijigw, as in the proof of Corollary 15, there is an induced iso-
defined by Rosenbrock system matrices, i.e., behaviors of th@rphismgp,, from B _,to B® _ which we can easily see

A. Isomorphisms and Strict System Equivalence

z’ u=0"
form is represented by the differential operafpr, and the equation
— 150, = Q1]
Bac,u,y = kerw <€ VI[/{ 0]) . (14 2Q Ql '
- holds. Theorem 6, applied &), now gives us the required con-

: ditions on these matrices. It remains to observe that (17), to-
Rosenbrock system matrices fob systems have been well- (47

. ;o ;L .
studied by Pugh and co-workers (e.g., [12]). No assumptions elflr;er with the fact tha; = 0 and &, = 1, gives us the for-

the structure of 7', U, V, W) are needed; hence the result which

follows is an extension of Theorem 4 of Zerz in [18], which <Ql 0) <T1 _U1> - <T2 _U2> <Q7‘ R7‘>

also links Rosenbrock system matrices with behaviors. By iden- U i V2 W2 0 I

tifying (w, y) with the manifest variable), andz with the latent  so that we indeed have that the Rosenbrock systems are GFSSE.
variable?, we see that we have a natural special case of a la-Conversely, suppose that the Rosenbrock systems are
tent variable description. Further, singés an observable vari- GFSSE. Then, from the formula for GFSSE, we can derive an
able, B, ,, , is actually isomorphic to its projectiofi, , onto equation of the form (17), wher@; = 0 andR; = I. This

the (x, w) variables. This projection is given by equation specifies a homomorphisfrfrom B%Y,, to Bf)uy
and moreover this homomorphism clearly fixés y). Now
Byu = kerw(I' = U). (15)  consider the induced mags from BSZL to Bff,)u, and¢o from
(1) (2) ich is rer
Definition 16: Two Rosenbrock systemst,u=0 to B,/ o, the latter of which is represented by the

(T, Ur, Vi, W1, (To, Us, Vo, Ws) are generalized strictly polynomial ma_trixQ,,. Erom_the cpnditions _of GF_SSE, _and by
system equivalent in the sense of Fuhrmann (GFSSH]J Theorem 6 this mappingy is an isomorphism. Sm_c@ f|>_<es
there exist polynomial matrice8y, R, Q,., R, such that (u,y),¢1 fixes u, so we have an exact commutative diagram

of the form
Q 0\(Th -U\_(Tr U2\ (@ R, I
R I)\Vi Wi ) \Va W, 0 I 0 @
— B."l:,'u, Bu — 0

@ 0 — BY ©n
holds, where moreover(%’) is zero right prime, and Lj)o l¢1 lid
1

z,u=0

(T2 ~°YYis an MLA of (Q”) where(; is a given MLA I
0 T ! oV @ 0 (2 (I
Of Tl. 0 —_— B.T’,'IL:O —_— Bm’,'u, PS4 B’u, - 0

The definition of generalized strict system equivalence in thvéhereg, and the identity mapping o8i,, are isomorphisms. It
sense of Fuhrmann is slightly ugly in that the symmetry betweémen follows from the Snake Lemma that is also an isomor-
the conditions on; and @, is broken; however we believe phism, and now it is easy to see thgitself is an isomorphism.
following Note 7 that this is necessary for the full generalityrhis completes the proof. ]
of the results which follow. The preceding result is a generalization of [6, Lem. 5.10] by

Theorem 17:The Rosenbrock systeni®;, Uy, V1, W) and  Hinrichsen and Pratzel-Wolters, which gives coprimeness con-
(15, Us, Vo, Ws) are GFSSE if and only if there is an isomorditions for a homomorphism between 1-D Rosenbrock system
phism from the behavioB!'}, , to the behavioB", ,» Which  matrices to be monic/epic.
furthermore fixeg«, ). Hence GFSSE is an equivalence rela-
tion. VI. FURTHER RESULTS
ey Prtoof.(guppose that there IS an isomorphiggmfrom Finally, we look at various other aspects of homomorphisms

z,u,y 10 B, ,- By Lemma 14, this can be represented by 3,4 isomorphisms of behaviors.
matrix of the form

A. Isomorphic Copies of a Fixed Behavior

Q’I’ R’I‘ S’I‘
o I 0. In the previous sections, we considered the properties of
0o 0 I maps between two behaviors with given kernel representations.
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We now consider the behaviors which can be obtained asd the commutativity laws
isomorphic copies of a given behawor, i.e., we gllow ourselvgs BC— DX AD = CY
to choose the kernel representation of the image behavior RA—YR RB —XR’}
¢(B). This leads to a very rich structure reminiscent of the o o
classical doubly coprime factorization, and is calledcaibly  which give us diagram (18). Finally, given € keryy R we have
unimodular extension by Fuhrmann [5]. Our result here isBAw = (I — DR)w = w so thatA : keryyR — keryy R is
a generalization of Fuhrmann’'s Theorem 3.6.4. We do ntbte right inverse of3 : keryy R’ — keryyRR. The other left/right
require the condition that the given kernel representatioli ofinverse relationships all follow from similar Bézout identitis.
has full row rank. The existence of a diagram of the form (18) is clearly suffi-

Theorem 18:Given a behavioi3 C W7 and a differential cient as well as necessary fdr: B — AB to be an isomor-
operatord : W¢ — W" such thatd : B — ABis an iso- phism. Another characterization farto be an isomorphism is
morphism, one obtains a commutative diagram: shown in (18ata; + B+, ..., a, + B+ generateM, whereay, .. ., a, are
at the bottom of the page whete= 1 + g — ¢,/ = AB and the rows of4 [15, Cor. 4]. Thus, looking for isomorphic copies
¢ : B — B is the isomorphism represented Hy The dia- of a concrete behavior is equivalent to looking for generating
gram is to be understood in the following way: picking eithegets of its module of observables.
horizontal direction<{ or —) and either vertical directiori (or Note that the diagram (18) can be considered as an interpreta-
1), and retaining in the above diagram only the maps pointingiion of any matrix product of the doubly unimodular extension
the chosen directions, we obtain an exact commutative diagrgarm (19)—(20). The magb is the representation as a polyno-
The mapsy, o=, 3,371, ¢ andyy~! are induced, respectively, mial matrix of the inverse homomorphisgt? : B — B, and
from the mapsR’, C, Y, X, R andD, and are mutual inverses asthe other matrices admit interpretations as explained in the dia-
indicated, although none of the corresponding matrix pairs ageam.
necessarily inverses.

Proof: Since the mapd : B — B is an isomorphism, it B. The Space of Homomorphisms

is injective (it is surjgctive by definition oB’).and so, withR ~ We now show how the space of homomorphisms from a given
a kernel representation &, we have a zero right prime matrixpenhaviors3 to another given behavids’ can be computed ex-

(22)

(2)’ which we can embed in a unimodular product plicitly. Essentially, this involves construction of a presentation
of the moduleHomp(AM’, M), which is a standard problem
B D A C I 0 however not usually expressed in. polynomial matrix terms.
<R’ —Y) <R —X) = <0 I) (19) We have seen that homomorphisgsB = keryy R +— B =

keryy R/, R € D91, R € D97 | are characterized by matrices
<A ¢ ) < B/ D ) — <I O) . (20) A such that a matri¥” exists satisfying?’ A = Y R, which we
R =X rR =Y 0 I can rewrite in the following form [2, 2.3]using the Kronecker

Now, by Lemma 3 we obtain the identities product of matrices

col(Y
A(kerywR) = keryw R’ Y(keryy D) = keryy,C (RT @ly -1, R) <C01EA§> =0. (23)
B(kerywR') = keryyR X (keryyC) = keryy D 21
R(keryyA) = keryyY  D(keryyY) = keryy A (21) Here,col(Y) denotes the/g x 1 vector obtained by writing
R'(keryyB) = keryy X  C(keryyX) = keryy B out the columns ot’, in order, in a long column vector, and
0 0
! | !
(]
keryy A = keryyY
T/)_l
! !
R
0 — B — 2% g w9 — kerywD ««— O
U ) BT1lA . XTlY g1l s (18)
0 — B - Wh g W«  keryC o~ 0
T . T
kewB <, kenyX
o
T T

0 0
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similarly for col(A). Therefore, the possible homomorphisms [2] M. Bisiacco and M. E. Valcher, “A note on the direct sum decomposition
are entlrely determined by the nght Syzygles of the matrix of two-dimensional behaviors|EEE Trans. Circuits Syst, Vol. 48, pp.
490-494, Apr. 2001.
. Cox, J. Little, and D. ed/Jsing Algebraic Geometry, Number
T , 3] D. Cox, J. Littl d D. O’Shed/sing Algebraic G Numb
(RPely, -1, R) (24) 185 in Graduate Texts in MathematicsNew York: Springer-Verlag,
1998.
which we can compute by Grobner basis methods Howevet{‘” D. Eisenbud Commutative Algebra with a View Toward Algebraic Ge-
. . . . L . ometry, Volume 150 of Graduate Texts in Mathematidsew York:
there is redundancy in this description of homomorphisms, since Springer_\,e”ag' 1995,
as explained in Section Ill, the same homomorphism of behav{5] P. A. Fuhrmann, “A study of behaviorsSyst. Control Lett.vol. 44, no.

iors can be represen multiple differential rator ma-__ 2 Pp. 127-134, 2001.
ors can be eprese ted by ultiple differentia operato a [6] D. Hinrichsen and D. Pratzel-Wolters, “Solution modules and system

trices A and corre_:sponding matrices. As disc_ussed earl_ier, equivalence,Int. J. Contro| vol. 32, no. 5, pp. 777-802, 1980.
the pair(A, Y') defines the zero map froffi to 3’ if and only if [71 S. Kleon and U. Oberst, “Transfer operators and state spaces for dis-
there exist matrice& and L; with crete multidimensional linear systemg#\tta Applicandae Mathemat-

icae vol. 57, no. 1, pp. 1-82, 1999.
[8] U. Oberst, “Multidimensional constant linear systemégta Appli-
A=LR, Y=RL+LR candae Mathematicaeol. 20, no. 1/2, pp. 1-175, 1990.
[9] H.Pillaiand S. Shankar, “A behavioral approach to control of distributed
systems,’SIAM J. Contr. Optim.vol. 37, no. 2, pp. 388-408, 1998.

whereR, is an MLA of k. Under the Kronecker product repre- [10] J.-F. PommaretPartial Differential Control Theory Dordrecht, The

sentation above, these correspond to syzygies of the form Netherlands: Kluwer, 2001.
[11] J.-F. Pommaret and A. Quadrat, “Equivalences of linear control sys-
Ig ® R R{ QR Ig, o tems,” in Proc. Mathematical Theory of Networks and Systems 2000
Rlel, 0 8 France, 2000.
q [12] A.C.Pugh, S.J.Mclnerney, M. S. Boudellioua, D. S. Johnson, and G. E.

. . . . Hayton, “A transformation for 2-D linear systems and a generalization
for some polynomial vectors, 5. To obtain a precise descrip- of a theorem of RosenbrocKjit. J. Control vol. 71, no. 3, pp. 491-503,

tion of the homomorphism space, we must then factor out such  1998.

: : : 3] P.Rochaand J. Wood, “Trajectory control and interconnection of 1D and
syzygies. Computing a factor of modules is a standard probIerH 2D systems. 'SIAM J. Control Opt.vol. 40, no. 1, pp. 107134, 2001.

easily solvable using Grobner bases. [14] J. C. Willems, “Paradigms and puzzles in the theory of dynamical sys-
In the case wher# is controllable, say tha8 = im,y M, it 5] tems,"l(leEE Tdralns. Augl%mst. Contwol. 36, pp. ﬁ59—294,I l\gar- 1991.
: : : 15] J. Wood, “Modules and behaviorsiiD systems theoryMultidim. Syst.
is much easier to construct all possible malpgor (23) can be Signal Processvol. 11, no. 1-2, pp. 11-48, 2000,
written [16] P. zaris, J. Wood, and E. Rogers, “Controllable and uncontrollable
poles and zeros afD systems,”Math. Control Signal Systvol. 14,
B y . T pp. 281-298, 2001.
( I‘I ®R )C01(A) € HnD(R @ Ig)' (25) [17] E. Zerz, “Coprime factorizations of multivariate rational matrices,”
. Math. Control Signal Systvol. 13, no. 2, pp. 125-139, 2000.
We also have thatR? @ I,,) is an MRA of (M® @ 1), soan  [18] ——, “On strict system equivalence for multidimensional systerin,”
equivalent formula is J. Control voI._73, no. 6, pp. 495—50_4, 20(_)0.
[19] ——, “Extension modules in behavioral linear systems theo¥il-

T ) T , tidim. Syst., Signal Processol. 12, no. 3—4, pp. 309-327, 2001.
0=(M" @I,)(—I,®@R)col(A) = (M* @R )col(A). (26)

To solve this, we need only compute the right syzygigswf ©
R,

A further natural question to ask is: given two behaviSrs
keryy R and B’ = keryy R/, how can one test whether they are
isomorphic? By Lemma 11, this reduces to the ability to test f
the existence of a monomorphism in each direction. Fortunat
from the discussion above we can compute an explicit desc
tion of the space of possible matride$, Y') which describe ho-
momorphisms fron3 to B’, and by parameterizing this space
we obtain a ‘generic homomorphism’. We can then test whet
the parameters can be chosen such that this matrix is zero r
prime. Such an argument in terms of generic maps is used to
test for graded module isomorphism in the Macaulay [1] script
module _iso by D. Eisenbud.
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