Architectural Design of a Multi-Agent System for Handling
Metadata Streams

Don Cruickshank Luc Moreau

David De Roure

Department of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ UK

{dgc,L.Moreau,dder}Qecs.soton.ac.uk

ABSTRACT

We have designed a multi-agent architecture to deliver meta-
data streams synchronously with multimedia streams over
a wide-area network. To this end, we have devised a simple
protocol for synchronising agents to a media clock. This pro-
tocol defines the concept of a deadline, after which servers
can drop data because it can no longer reach clients in time.
We also introduce a new concept of a contract as a first-class
entity representing a successful subscription; a contract is
used by agents as a session identifier during the navigation
of streams. Quality of service is a vital element of this ar-
chitecture because of the need to deliver metadata on time.
As a result, our architecture supports various communica-
tion protocols, including UDP, RMI, SSL, or multicast. This
resulted in a return to a more declarative form of speech
acts, totally orthogonal to a notion of virtual communica-
tion channel used to manage the quality of service of com-
munication.

1. INTRODUCTION

The international television programme ‘Big Brother’ takes
place in a specially built house that contains many cameras
and microphones. Contestants are placed in the house and
are periodically evicted by a voting system that involves the
house members and the viewing public. Besides television
updates, the house is viewable by a fixred number of contin-
uous video streams across the Internet; each stream is indi-
vidually produced, carrying salient content from the available
cameras and microphones, and is delayed by a few seconds
to enable some basic editing.

This scenario involves multiple live multimedia data str-
eams, together with extra information added in real time
by the production activities. The positions of the cameras
and of the contestants provide additional data, needed to
make sense of the streams, and the status of the voting pro-
cess might also be conveyed. Commentary may make refer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AGENTS’01 May 28-June 1,2001, Montréal, Québec, Canada.

Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

ence to earlier scenes and related resources. Subtitling can
also be provided. All this information about the multimedia
streams is metadata; metadata enables the understanding of
other data, and itself must have a common structure to be
understood. We note from this scenario that this metadata
is continuous, is necessarily synchronised to the multimedia
streams and can be carried in separate network flows rather
than embedded in the multimedia data. Using the meta-
data, we can repurpose the multimedia streams for multiple
applications; for example, the end user can customise their
viewing. The user’s actions may themselves result in addi-
tional metadata.

The automation of the metadata production and process-
ing is a distributed problem which yields naturally to the
agent paradigm. We have conceived a distributed architec-
ture, based on clients with which users may interact and
servers responsible for delivering streamed media and meta-
data streams. We have adopted the agent paradigm to build
such an architecture because it provides us with the flexibil-
ity required by our target applications: (i) We envision
metadata to be generated by a vast number of distributed
competing agents [17]. (i) We expect clients to adapt
their behaviour according to the user’s needs; the use of
agents (and user models) has been advocated for such inter-
facing tasks [14]. (44i) Clients are expected to be proactive
and may initiate the downloading of new metadata streams,
and process metadata on the fly (such as filtering, merging,
etc.). (iv) Finally, high-level negotiation between clients
and server may be used for dealing with payment or negoti-
ating access to servers.

The processing of live metadata is not a traditional ap-
plication of software agents, and it raises a number of chal-
lenges. Broadly we need to map some aspects of multimedia
and metadata transmission into the agent communication
framework, effectively using the agent communication lan-
guage to provide the functionality of a control channel and
to convey metadata. Although the agent communication
layer is not intended to carry multimedia data per se, indi-
vidual agents might process this data. The purpose of this
paper is to describe the new concepts that we introduce in
our multi-agent system in order to deal with these streams
of metadata; they can be summarised as follows:

1. The design of a synchronisation protocol and associ-
ated ontology allowing clients to synchronise metadata
servers with a media clock and servers to determine
when real-time data need to be dropped.

2. A concept of a contract as a first-class embodiment
of a successful subscription, and its use as a session
identifier.

3. A communication infrastructure based on a concept of
performatives orthogonal to a notion of startpoint/end-
point, used to manage the quality of services of com-
munication.

4. A communication framework able to support various
communication protocols, including UDP, RMI, SSL, or
multicast.

These concepts are all being implemented in SoFAR (the
SOuthampton Framework for Agent Research), a Java-based
multi-agent framework [17].

This paper is organised as follows. In Section 2, we de-
scribe further applications requiring metadata streams. We
use these to draw a set of requirements, which we present in
Section 3. On the basis of these requirements, we have de-
signed an agent infrastructure, first overviewed in Section 4;
next, the salient contributions of our agent architecture are
presented in Section 5. We then describe the implementa-
tion in the SoFAR agent framework in Section 6 and discuss
our results in Section 7.

2. METADATA STREAMS

The following three scenarios further motivate the need for
metadata streams and form the basis for our requirements:

1. A live news broadcast can be augmented with meta-
data carrying information about the news items. This
could include catalogue information for news footage,
information about rights to use the material, subtitles
and links to associated resources such as online doc-
uments. Agents can use the metadata to filter new
items or bring them to the user’s attention, translate
subtitles and perform appropriate searches and cus-
tomisation.

2. A musician might transmit a digital audio stream from
their instrument to an agent which provides a syn-
chronous stream of MIDI data. Another agent could
match the MIDI data against a database in order to
provide accompaniment, related music or relevant hy-
permedia links. Note that in this example, one agent
receives multimedia data and produces metadata. We
have exercised this scenario using a search engine based
on melodic pitch contours [2].

3. A teacher might record a presentation so that students
can view it retrospectively, in which case the replay is
live but there is elapsed time during which metadata
can be created for subsequent streaming. Metadata in-
cludes references to other teaching resources, perhaps
in the form of synchronised hypermedia links which
the user’s agent could choose to follow according to
personal preferences.

The first scenario resembles the ‘Big Brother’ scenario
but with greater diversity of sources; it emphasises use of
both live material and library footage. In the second, an
agent processes multimedia data to produce metadata which
could in fact be regarded as a live multimedia stream in its

own right; the scenario could extend to synchronous collab-
oration with other musicians and agents. In contrast, the
metadata in the third scenario need not be live but could
in principle be downloaded in advance of replay; however,
there might still be metadata generated on-the-fly by the
audience in the form of annotations and links.

3. REQUIREMENTS

In this section, we draw a series of requirements from the
scenarios, which helped us design our new agent architec-
ture. We focus on a network of agents that deliver meta-
data streams to multimedia clients. We have not attempted
to design a system that transmits media streams using an
agent communication language because protocols and so-
lutions for streaming media across networks already exist,
such as the Java Media Framework [13]. As the media is
played to the user, the respective agents collaborate to get
metadata transferred to the multimedia client, so that the
client can mix the metadata in to produce a value-added
media stream.

It is a requirement of our scenarios that our application
must be able to run over a wide area network, such as the
Internet, and we anticipate the provision of “quality of ser-
vice” (QoS) support using the techniques now becoming es-
tablished (such as resource reservation, or differentiated ser-
vices). We have identified different quality of service needs:
reliable communications (typically TCP based) will be as-
sumed for non-streamed message exchanges between agents.
On the subject of metadata streams, on-time delivery is pre-
ferred over reliable delivery; therefore, less reliable proto-
cols such as UDP could be adopted for metadata streaming.
The mechanism for transferring metadata should not be re-
stricted by low grade backchannels: the streams may be
transmitted from a satellite, and may require a lower band-
width device, such as a modem connection, for the receiver
to communicate with the sender. Furthermore, the deliv-
ery of metadata cannot be stalled by a requirement of user
to service agent communication during normal operation,
where a normal operation is defined as watching a chan-
nel without switching channels or without navigating (fast
forward, rewind) within the channel.

In any case, whatever the protocol, we do not assume
negligible communication latency, nor do we assume that
latency in one direction of a particular route is equivalent
to latency in the other direction. Each pair of agents that
share a synchronised communication channel is made aware
of the time difference between them. Should certain pieces
of metadata take too much time to obtain, then it is better
for the server to realise that they cannot be delivered on
time, and to simply drop those pieces of metadata from the
stream.

It is important to understand that we consider live sce-
narios in addition to pre-recorded programmes. In a live
scenario, metadata on the media is being created at the
same time as the media is being created, and is also viewed
by the audience all at the same time. We are investigating
a system where each of these can occur as part of a pipeline
of processes; a viewer can watch the Big Brother house as
a continuous programme, and receive metadata that relates
to the programme whilst the media is still being filmed at
the house. If we were to restrict ourselves to pre-recorded
material, we would only need to transfer an archived block
of metadata to the user agents at the start of transmission.

4. ARCHITECTURE OVERVIEW

In this section, we present the network architecture and
terminology to suit our requirements of Section 3.

The overall architecture is shown in Figure 1. The me-
dia server is a network server that delivers a media stream
to a multimedia client. The multimedia client displays the
stream with annotations based on the stream of metadata
received from the metadata agent network. We show that
the media server is separate from the network of agents.
The solid lines in the diagram denote streams of data, and
the dotted lines denote agent matchmaking.

Media Metadata
Server Agent network

Registry /
Matchmaking

Multimedia
Client

Figure 1: Architectural Overview

The user has control over the playback of the media source,
so any navigation that the user invokes on the streamed me-
dia is also sent to the agent network. In a multicast environ-
ment, we assume that caching of the media stream occurs
between the originating source and the multimedia client,
so that navigation requests of one user do not interfere with
other users.

In Figure 2, we investigate the components of the agent
network. The metadata streams, shown as solid lines, are
each associated with a producer and a consumer of meta-
data. In the context of metadata streams, we will refer to
the producer of a metadata stream as a service agent. The
consumer is referred to as a user agent. In the figure, we
show that one of the service agents acts as a user agent for
another service agent. Furthermore, the multimedia client
is also a user agent that receives the metadata stream.

Service
Agent

/

Service Service
Agent Agent

Registry /
Matchmaking

User
Agent

Figure 2: Agent Network

In the network, there are a number of network nodes that
are separated from each other in terms of locality and la-
tency. We rely on the notion of a registry to allow agents
within the network to advertise services. Agents that re-

quire a service will ask the registry for a list of agents with
the requested capability.

Communication between agents that reside on different
network nodes may cross physical or organisational bound-
aries. An organisation that generates the metadata might
deliver to an intermediary (e.g. an internet service provider)
to add value to their service, rather than directly to end
users.

S. MULTI-AGENT DESIGN

The behaviour of our architecture may be summarised
as follows. Using a matchmaking mechanism, user agents
discover and select metadata servers, from which they sub-
scribe to metadata streams. Each successful subscription es-
tablishes a session between a user agent and a service agent.
Within each session, the user agents have the ability to syn-
chronise the metadata stream using a synchronisation pro-
tocol. In this section, we present the novel aspects of our
architecture: (i) a new synchronisation protocol, (i)
a concept of a deadline for service agents to deliver meta-
data, (i) a concept of a contract for session handling, (iv)
a view of performatives orthogonal to the notion of virtual
channel for handling quality of service. In Section 6, we
will describe their concrete realisation in the SoFAR agent
framework.

5.1 The Synchronisation Protocol

We define the synchronisation protocol as a sequence of
actions by which a user agent that receives synchronised
metadata can give the service agent some indication about
the network latency from the service agent to itself. The
synchronisation protocol that we describe does not depend
on a global clock, but rather on the time difference between
a known clock on the server and the media clock on the user
agent.

We opted for just in time delivery, according to which the
server sends data to the user just in time for it to be used.
Delivering metadata just in time gives us two properties.
Firstly, we reduce the storage overheads required by user
agents, as user agents are required to pre-buffer less data.
Secondly, user agents can expect meta-data to be more re-
active; the period of time between an event occurring and
the resulting metadata arriving at the user agent is reduced.

The difference between the known clock on the service
agent and the clock on the user agent remains constant, be-
cause they progress at the same rate. Once the time differ-
ence is derived, the user agent can inform the service agent
of that difference, and the server can then stream metadata
to the user without the need for user to service agent com-
munication.

The sequence of events that are used to determine the
service to user agent latency is shown in Figure 3. Three
timelines represent the media clock, the user clock, both on
the user agent, and the server clock. The user clock and
the server clock are synchronised with each other, because
they are supposed to progress at the same rate. The media
clock and the user clock may differ by a speed ratio, noted
p, typically decided by the user; in our example the ratio is
2, indicating that the user is viewing the media at twice the
speed.

The user agent sends a first message requesting the service
agent to send back the server clock value, sstime. As soon as
the user agent receives the reply, it records its clock value as

User Server

Media Agent Agent
Clock Clock Clock
0 100 200
Umedia
Sstime
10 205
Ustime
20 110
subscn-p tion
i
Ssend
N\ehadam e
ur‘ec ® l
Myready Uready user

Figure 3: Synchronisation Protocol

Ustime. In Figure 4, we call o the difference between these
two clocks, which takes into account the network latency
between the service agent and the user agent.

Q = Ustime — Sstime (User-Server Clock Diff.)
Urec = Ssend T Q (User Receiving Time)
Uready = Urec + luser (User Ready Time)
Mready = (Uready — Umedia) X p (Media Ready Time)
0 = (Wmedia,luser, @, p) (Synchronisation Tuple)

Figure 4: Synchronisation Equations

Using this information, the service agent can now deter-
mine when a message is received by the user agent u,e. when
sent by the server at time sg.nq. Besides the latency, the
user agent may need some lead time (lyser) to allow further
processing on metadata between their reception and the dis-
playing of results to the user. We define u,cqqy as the time
(on the user agent clock) by which data are ready, when sent
by the service agent at Ssend-

In itself, the user agent time is not very useful to the
service agent: the service agent wishes to determine when it
is suitable to send a piece of metadata related to a specific
time on the media. The user agent knows about the media
that it is receiving, so it can determine what the user clock
value would be if the media clock is at zero (Umedia). In
Figure 3, Umediq is 100 because the media clock is zero at
that time on the user agent.

Provided the service agent receives the synchronisation
quadruple Umedia, luser, @ and p, named §in Figure 4, from
the user agent, the service agent can now determine by what
time on the media clock a message would be ready to be
displayed by the user agent myeady-

For example, in Figure 3, @ = 110 — 205 = —95. For
a lead time lyser = 10, and a send time Sgenqg = 230, we
obtain %reqqy = 230 — 95 + 10 = 145. And therefore the
corresponding media time is Myeqdy = (145 — 100) * 2 = 90.

We have shown how the service agent can be informed

of the time difference between itself and a user agent. In a
busy network, the user agent might find that the network
performance changes over a long period of time. In an im-
plementation of this protocol, the user agent would need to
regularly request the server time from the service agent to
reflect changes in network latency. By communicating the
synchronisation quadruple 5 the user agent will be able to
keep the service agent synchronised to the media played.

5.2 Real-Time Aspect

There is a real-time dimension in our scenarios because
metadata is expected to be delivered to clients synchronously
with multimedia streams. Our notion of real-time is directly
derived from the synchronisation protocol of Section 5.1.

Let us consider a piece of metadata which concerns a sec-
tion of the media, represented by an interval [mstart, Mendl,
expressed in media clock. Thus the service agent can deter-
mine if it is too late for sending a message containing this
metadata to the user agent. It just needs to compare myeady
(obtained from the server send time Sseng) With meyq.

late? = Myecady > Mend

If a message has become too late, then the service agent
knows that it can be dropped. Alternatively, the service
agent can use the same equations to schedule the work of
other agents that produce metadata, so that metadata be-
comes available to the service agent, in time for delivery to
the user agent.

5.3 Sessions and Contracts

A subscription is the action by which an agent declares
its interest in receiving some message related to a specified
topic. If a server answers positively to a subscription act,
it commits itself to inform the subscribee about facts that
match its interest. A server issues a contract as a result of
the subscription act and as a proof of its commitment.

The role of a contract is threefold: (i) The contract is
a first-class embodiment of a successful subscription, and a
proof of the server’s commitment to deliver data to a client;
should the server fail to deliver, the contract could be used as
evidence in a conflict resolution procedure. (7i) A success-
ful subscription essentially creates a session between a client
and server, and a contract also acts as a session identifier;
the contract may be used by the client to control the session.
(#i) If a client wishes to stop the arrival of a stream, it just
has to terminate the associated contract. If contracts are
shared and exchanged by agents, they are able to detect the
termination, between distributed agents, of the subscription
procedure; in other words, from the server’s point of view,
a subscription will terminate only when all associated con-
tracts have been terminated.

In our agent architecture, we use subscription as the mech-
anism to initiate a metadata stream to a user agent. A ses-
sion should be distinguished from a conversation, as defined
in FIPA [5]. A session may be seen as a sub-conversation with
a specific quality of service, possibly using a totally different
communication protocol.

From a technical point of view, our idea of contract bears
a strong resemblance to leases introduced in Java RMI [12]
and popularised by Jini [18]. Our Java implementation of
contracts is in fact based on leases; they are also useful for
handling client crashes.

5.4 Message Intent vs. Message Transport

Subscription and contracts are the mechanism by which a
client and a server agree to establish a session in which meta-
data is delivered to the client as a stream of messages. Meta-
data is streamed according to a quality of service, which has
to be negotiated between the client and the server. For
instance, metadata could be streamed either as UDP data-
grams, or in a QoS-enabled network, or even on a secure
socket layer. The key aspect is that the required quality
of service is not known at design-time, but it will only be
decided at run-time.

We believe it is important that an agent framework does
not prescribe the means through which communicative acts
actually take place, but instead it does specify their inten-
tion; this philosophy allows a declarative style for commu-
nications, which facilitates the reusability of components.
Therefore, we have based communications on speech act
theory [21]. We have identified a minimal set of perfor-
matives which represent the most common communication
patterns, such as querying, informing, registering, subscrib-
ing or requesting. Other forms of communicative acts must
be defined by composing the primitive ones.

In order to specify the required quality of service, we in-
troduce a further mechanism, orthogonal to the concept of
performative. A communication between two agents is based
on a “virtual link” defined by a startpoint and an endpoint,
which are concepts borrowed from the communication li-
brary Nexus [6]. An endpoint identifies an agent’s ability
to receive messages using a specific communication proto-
col; it extracts messages from the communication link and
passes them on to the agent. A startpoint is the other end
of the communication link, from which messages get sent to
an endpoint. There may be several startpoints for a given
agent, each acting as a representative (or proxy) of the agent
at remote locations. Vice-versa, several endpoints may be
associated with a startpoint, which allows some form of mul-
ticasting.

We shall note that we have adopted speech acts similarly
to standard agent communication languages KQML [4] and
FIPA[5]; however, we only define a minimal set of these, cor-
responding to the most frequent communication patterns.
Therefore, we do not support domain specific performatives,
such as forwarding messages, but instead we express them
by using our basic performatives and a suitable communi-
cation ontology. In addition, any quality of service aspect
for communication, such as digital signatures, encryption
or even QoS negotiation and transport protocol selection is
handled with the startpoint/endpoint mechanism.

6. IMPLEMENTATION

In this section, we describe the realisation of our agent
architecture for handling metadata streams, and the exten-
sions we introduced in SoFAR (the SOuthampton Framework
for Agent Research) for that purpose.

6.1 Ontology

Here we define an ontology for metadata streams, their
synchronisation and their navigation. In the synchronisa-
tion protocol, the service agent returns to the user agent
the server clock value expressed as an absolute time; the
associated relation appears in Figure 5.

A piece of metadata that relates to a certain period of
time within an identifiable stream is represented by using

the relationship described in Figure 5. Temporal-metadata
is related to a multimedia stream, specified by its identi-
fier, perhaps a URI, and an indication of when the metadata
is relevant; the start and end times are given in terms of
the media clock. In addition, the synchronisation quadruple
5, noted “Delta” in Figure 5, contains all the parameters
required by the synchronisation protocol.

The complete temporal-metadata entity allows agents to
exchange pieces of temporal metadata with respect to a
deadline. A service agent that has been informed of a dead-
line, via a subscription or a navigation request, can then set
a deadline for its own sources.

given by -
Server Clock

contains
Metadata
related to
}/ Multimedia Stream ID

starts
Media Clock

-]__ends |
l Media Clock | |_Temp

with delta

with alpha with latency

User Clock

Delta

User Clock

media started with speed

with bias

relates to

igation Req Contract

Figure 5: Ontology for temporal metadata

The user agent may navigate through the media stream
by use of fast forwarding or rewinding the media stream.
Actions like these require a recalculation of the 5 quadruple,
and the service agent needs to be informed of its new value.

6.2 Communication Model Implementation

Practically, when an agent A; wishes to perform a speech
act with another agent Az, A; activates the corresponding
method on a startpoint of As. The startpoint creates a
communication context object, serialises the data, sends it
to the endpoint, which deserialises the data and passes it
to the agent As. When the speech act produces a result, it
is returned back, via the endpoint, to the startpoint; it is
then returned as the result of the method invocation on the
startpoint. (Note that there is also an asynchronous variant
of the performatives.)

SOFAR supports multiple communication mechanisms, all
accessible through the startpoint/endpoint paradigm. Typi-
cally, an agent will have an endpoint for each communication
protocol it wishes to support. Its peers will choose the asso-
ciated startpoint according to the desired quality of service
for their interaction. For the purpose of delivering meta-
data streams, we support Java Remote Method Invocation,
secure socket layer based communications and UDP (based
on the Ninja implementation of RMI [24]). Ninja also sup-
ports proper multicast which we wish to investigate along
with QoS-enabled communications provided by IPv6.

6.3 Protocol Implementation

We now turn to the conversation between agents that syn-
chronise and exchange temporal metadata. Using the FIPA
convention for protocol representation [5], Figure 6 shows
the communication of the server time request conversation
from the user agent’s perspective. The user agent may per-
form the server time request act at any time, and does not
require a contract with the service agent beforehand.

request
server time

inform
server time

Figure 6: User Agent Server Time

The user agent may request the server time as often as it
wishes. The user agent is free to draw its own conclusion
on a suitable & quadruple for use with a particular agent,
such as second guessing variance in network latency. To
perform this, an agent might simply take an average from a
number of samples, or perhaps predict variance in latency
from previous experience.

It is important to note that the server must send its answer
to a server time request via the same kind of network route
that the metadata will take. An implication of this is that
over a UDP channel, the server time result might not be
received by the user agent. Components of the underlying
network are liable to drop UDP packets under heavy load
conditions. In this case, the user agent may decide that
after a certain period of time, the answer is deemed to be
lost. If the service agent does not reply to a number of
server time requests, it might decide that the quality of the
respective metadata stream will behave similarly, and look
for another service agent.

subscribe
[
[\ |
not understood inform refuse
contract reason
I |
request unsubscribe inform
new delta metadata
L |

Figure 7: User Agent Transitions

Figure 7 shows the exchange of messages during a sub-
scription from the perspective of the user agent. The user
agent initiates the conversation by requesting a subscription
to the service agent. The subscription is in the form of a
temporal-metadata entity, which contains only a multimedia
stream ID and a & quadruple. Upon receipt of a contract,
the user agent is ready to receive temporal-metadata entities
that match the original subscription, but with the remaining
fields filled in by the service agent.

The user agent is capable of two acts: a navigation request

or to break the contract. If the media that is played to the
user has changed in play speed, then the user agent requests
the service agent to accept a new 5 quadruple. The effect
of this action to the incoming metadata stream can only
occur as quickly as the round-trip time between the two
agents, thus any metadata that is received during this period
may not be useful to the user agent. The subscription is
terminated by breaking the contract with the service agent.
Similarly with the navigation request, metadata may still
arrive for a short period after the breaking of the contract.

The round-trip delay in metadata stream control, in con-
junction with unexpected variance in network latency, means
that the user agent can receive metadata that is already late
or perhaps too early (rewinding, for example) to sensibly
use. Thus a realistic user agent implementation will filter
out incoming metadata that is not usable for its purpose.

If the user agent, during normal play conditions, realises
that a significant proportion of metadata is late, then it is
able to adjust the 5 quadruple accordingly.

The server agent’s perspective of a subscription is shown
in Figure 8. Once a subscription is accepted and the con-
tract is received by the user agent, the service agent can
send metadata from other sources, or from a local cache of
metadata.

accept
subscription

inform refuse
contract reason
[|
request unsubscribe inform
new delta metadata

Figure 8: Service Agent Transitions

The architecture we have adopted in our implementation
uses the notion of a hypermedia link service [3], which re-
solves the source anchor of a link to all the possible desti-
nations by querying a link database (‘linkbase’) to identify
relevant links. Links may be regarded as metadata. In our
implementation, the service agent requested metadata from
a linkbase and stored the results in the local cache of the
service agent. For a subscription, the following occurs. At
regular intervals, the cache is examined, and any metadata
that is close to the late? predicate is sent to the user agent.
Metadata that is already late is still added to the cache, in
case the user agent rewinds the metadata stream.

Our experience of the protocol showed us that both the
user and service agent are capable of making intelligent deci-
sions on metadata delivery, as both are able to determine the
lateness of entities in the metadata stream. In addition to
video streams, our implementation works equally well with
audio streams.

7. FUTURE AND RELATED WORK

Metadata streaming is a new application domain for multi-
agent systems, and there is relatively little related work.
Multi-agent systems have previously been applied to the
configuration and management of networks, for example for

ATM networks in [8, 10, 15, 19]. In [11], agents are used
in determining the spanning tree for multicast routing; this
takes advantage of mobility, which we have not addressed in
this paper but is a subject of current work within the soFAR
framework. With respect to quality of service, Hashimoto et
al [9] propose a ‘flexible multimedia system’ for multimedia
teleconferencing, applying negotiation protocols. The sup-
port for negotiation and collaboration in multi-agent sys-
tems is one of our motivations for adopting this paradigm
for metadata streams but is beyond the scope of this paper.

The synchronisation protocol that we propose helps ser-
vice agents to determine when metadata is too late and need
to be dropped and when to schedule the search or the cre-
ation of metadata. Research on how agents can schedule
their work in order to meet real-time deadlines [7, 22] could
be used to define service agents.

With respect to streams and signalling associated with
synchronisation, there are two relevant standards that have
influenced our thinking. Network Time Protocol (NTP) [16]
provides a more comprehensive solution to clock synchroni-
sation and discusses issues of skew and drift between clocks.
Real Time Streaming Protocol [20] provides a framework
for controlled, on-demand delivery of real-time data. Like
our system, RTSP does not carry the multimedia data itself,
but rather the signalling information needed to provide ‘net-
work remote control’. These messages can also be mapped
into our performatives, and this in fact forms the basis of a
demonstrator system which is currently under development.

The actual metadata conveyed in our system is opaque
but in practice will typically be in XML format; in interop-
erating with existing systems we are adopting the Resource
Description Format (RDF) developed by the World Wide
Web Consortium [23].

Having designed and built this infrastructure for deliver-
ing metadata over wide-area networks, a number of funda-
mental research issues have to be addressed, and we discuss
some of them in the rest of this section.

Scope of Service Discovery - Advertisement. In an wide
area network, we need mechanisms to control the scope of
discovery and advertisement of capabilities. We consider
that the agent framework might extend across the Internet,
comprising of thousands of nodes separated by varying net-
work latencies. We cannot expect a user agent to search
every node for potential servers, nor can we expect a service
agent to advertise a service to every node. Either of these
would result in a solution that would not scale.

We are investigating techniques such as hierarchical reg-
istry organisation and the use of Jini [18] to provide a scal-
able and controllable mechanism by which resources may be
advertised and found.

Service agents may also want to control which user agent
accesses a metadata stream; multi-agent negotiation [1] could
be a means to provide the required level of control. Further-
more, agents would possibly wish to preserve the authentic-
ity if not the privacy of the transmitted metadata; digital
signatures and encryption techniques may be used for that
purpose.

Multiple Clients. A single service agent may deliver data
streams to several user agents. In particular, a single multi-
cast stream could be sent to several user agents. In such a
case, it becomes difficult for individual user agents to control

the synchronisation. Clever caching strategies may have to
be introduced for that purpose, in particular when clients
have a limited caching capability.

Mobility. We are also considering the possibility of user
and service agents migrating from node to node. If agents
move about, then the route between them changes in term of
physical locations, and possibly network latency times. We
need to be able to renegotiate the synchronisation between
the agents. We would certainly like to consider a scenario
where a service agent tries to move closer to multiple user
agents by using only local knowledge of the network.

8. CONCLUSION

In this paper, we have applied the multi-agent paradigm
to a new type of application over the Internet, namely the
delivery of metadata streams. From the requirement of this
application, we have devised a synchronisation protocol and
associated ontology, which allow user agents to navigate and
synchronise metadata streams. Our investigation in the
quality of service has led us to conceive a communication
architecture, where the communication intent expressed as
a performative is completely orthogonal to the notion of vir-
tual communication link, used to specify the required qual-
ity of service. We have implemented our prototype into the
SOFAR agent framework, which supports multiple types of
communication protocols.

9. ACKNOWLEDGMENTS

This research is supported by EPSRC project “HyStream”
reference GR/M84077/01. The authors are grateful to Kevin
Page of the IAM Research Group for insightful discussions
about continuous metadata, and to colleagues at BT Labo-
ratories for their collaboration in this research project.

10. REFERENCES

[1] M. Beer, M. d’Inverno, M. Luck, N. R. Jennings,

C. Preist, and M. Schroeder. Negotiations in
multi-agent systems. Knowledge Engineering Review,
14(3):285-289, 1999.

[2] Steven G. Blackburn and David C. De Roure. A tool
for content based navigation of music. In Proceedings
of ACM Multimedia 98, pages 361-368, September
1998. ISBN: 1-58113-036-8.

[3] L.A. Carr, D.C. De Roure, H.C. Davis, and W. Hall.
Implementing an open link service for the world wide
web. World Wide Web Journal, 1(2), 1998.

[4] T. Finin, Y. Labrou, and J. Mayfield. Software
Agents, J. Bradshaw, Ed., chapter KQML as an Agent
Communication Language. MIT Press, 1997.

[6] FIPA: Foundation for Intelligent Physical Agents.
http://drogo.cselt.stet.it/fipa/.

[6] Ian Foster, Carl Kesselman, and Steven Tuecke. The
Nexus Approach to Integrating Multithreading and
Communication. Journal of Parallel and Distributed
Computing, 37:70-82, 1996.

[7] Alan Garvey and Victor Lesser. A Survey of Research
in Deliberative Real-Time Artificial Intelligence.
Technical report, Unviersity of Massachusetts, 1993.

(8]

[10]

[11]

[12]

[13]

M. A. Gibney and N. R. Jennings. Dynamic resource
allocation by market-based routing in
telecommunications networks. In 2nd Int. Workshop
on Multi-Agent Systems and Telecommunications,
pages 102-117, 1998.

Koji Hashimoto, Yoshitaka Shibata, and Norio
Shiratori. Agent-orented flexible multimedia system
considering organization and gos functions. In
Proceedings of the Tenth International Workshop on
Database and Ezpert Systems Applications, pages
662—666, Florence, Italy, September 1998. IEEE
Computer Society.

Alex L. G. Hayzelden, John Bingham, and Zhiyan
Luo. A multiagent approach for distributed broadband
network management. In Proceedings of the Fourth
International Conference on The Practical Application
of Intelligent Agents and Multi-Agent Technology,
pages 179-192, London, UK, April 1999.

Stefan G. Hild and Jorg H. Bischof. Agent-based
multicast routing. In Proceedings of the Third
International Conference on The Practical Application
of Intelligent Agents and Multi-Agent Technology,
pages 57-81, London, UK, March 1998.

Java Remote Method Invocation Specification,
November 1996.

Java Media Framework API.
http://java.sun.com/products/java-media/jmf/,
1995.

Pattie Maes. Agents that Reduce Work and
Information Overload. Communications of the ACM,
37(7):31-40, July 1994.

M. Miller, D. Krieger, N. Hardy, C. Hibbert, and

E. Tribble. An Automated Auction in ATM Network
Bandwidth. In Market-Based Control. A Paradigm for
Distributed Resource Allocation, pages 96—125. World
Scientific, 1996.

[16]

[17]

18]

[19]

23]

[24]

David L. Mills. Network time protocol (version 3)
specification, implementation. Request for Comments
RFC1305, Network Working Group, March 1992.

Luc Moreau, Nick Gibbins, David De Roure, Samhaa
El-Beltagy, Wendy Hall, Gareth Hughes, Dan Joyce,
Sanghee Kim, Danius Michaelides, Dave Millard, Sigi
Reich, Robert Tansley, and Mark Weal. SOFAR with
DIM Agents: An Agent Framework for Distributed
Information Management. In The Fifth International
Conference and Ezhibition on The Practical
Application of Intelligent Agents and Multi- Agents,
pages 369388, Manchester, UK, April 2000.

Scott Oaks and Henry Wong. Jini In a Nutshell.
O’Reilly, 2000.

Jide Odubiyi, George Meekins, Song Huang, and
Tracy Yin. Proteus*—adaptive polling system for
proactive management of ATM networks using
collaborative intelligent agents. In Proceedings of the
third annual conference on Autonomous Agents, pages
402-403, 1999.

H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
Streaming Protocol (RTSP). Request for Comments
RF(C2326, Network Working Group, April 1998.

John Searle. Speech Acts: An Essay in the Philosophy
of Language. Cambridge University Press, 1969.
Ignacio Soto, Mercedes Garijo, Carlos A. Iglesias, and
Manuel Ramos. An Agent Architecture to fulfill
Real-Time Requirements. In Autonomous Agents
2000, Barcelona, Spain, 2000.

W3C. Resource Description Framework (RDF) Model
and Syntax Specification. Recommendation
REC-rdf-syntax-19990222, World Wide Web
Consortium, February 1999.

Matt Welsh. Ninja. A scalable Internet services
architecture.

http://www.cs.berkeley.edu/ “mdw/proj/ninja/, 1999.

