TRANSPARENT MIGRATION OF MOBILE AGENTS

Luc Moreau, Victor Tan and Nick Gibbins
Department of Electronics and Computer Science,
University of Southampton,
L.Moreau,hktv99r,nmg97r@ecs.soton.ac.uk

Abstract

SOFAR, the SOuthampton Framework for Agent Research, is used to build a pervasive information
system, which provides context-adapted information to mobile users. Mobile agents are used as in-
termediaries between mobile users and the fixed infrastructure, migrating to locations with resources
adapted to their objectives. SOFAR is equipped with an algorithm for tracking mobile agents and for
transparently routing messages to them, without assuming the existence of any fixed or centralised
control. In this paper, we present the algorithm and describe how it was integrated in the declarative
style of SOFAR communications. Then, we present the agent meeting room: the realisation, in the
agent framework, of a mechanism by which mobile users may exchange information during meetings.

1 Introduction

The target computing architecture for the coming years is that of computing devices carried by people
and interacting with their environment using ad-hoc networking technologies. Many projects have started
studying this environment, such as ubiquitous computing at Xerox [29], or wearable computing at MIT
[25]. A common assumption is that mobile users may be connected to the network via wired or wireless
means, and many maintain only intermittent connectivity with the network.

At Southampton, our aim is to design and build the architecture that will provide mobile users with
the information they need, depending on their location, the time, or the presence of other mobile users
in the environment. The pervasive information fabric [8] is the name we give to such an environment,
which provides context-adapted information to mobile users.

The notion of agents is regarded as particularly suited for such a task. The AT community defines an
agent as an entity situated in some environment and capable of flexible, autonomous actions in order to
meet its design objectives [13]. Amongst others, the work of Maes [16] and Sycara [6] has popularised the
idea that agents are particularly suited to provide users with customised information. We have coined
the term “DIM Agent” to denote Distributed Information Management processes, which autonomously
find, filter and present information adapted to the user [7, 21].

On the other hand, over the last few years, the notion of mobile agent has emerged as a new concept
in the distributed computing community. A mobile agent is a running program that autonomously
decides to change location in order to continue its execution in an environment with better resources.
Software mobility is regarded as an evolution of the client-server paradigm [14], allowing computations
to migrate to environments with resources more suited to their goals.

Our vision of mobile agents is that of itinerant and autonomous programs that execute their task in
synergy with mobile users: a mobile agent is the representative of a mobile user operating in locations
providing resources adapted to its objectives. Mobile agents start their existence on mobile devices,
migrate to the infrastructure, interact with user-carried devices, and are able to return results to mobile
devices when and if required by their specific goals.

Over the last two years, we have designed and built SOFAR, the SOuthampton Framework for Agent
Research [21]. We regard this framework as the ubiquitous agent infrastructure coordinating the activi-
ties of information management agents. The design of SoFAR was influenced by ideas from the distributed
computing, and in particular by the communication model of Nexus [11]. Not unlike the “computational
grid” [10], which connects high-performance computing centers, we want to build an “agent grid”, which
connects information sources in the pervasive information fabric.

The goal of this paper is to describe the design of mobile agents in SoFAR. Our approach is charac-
terised by the following salient features. (i) Communications are declarative and structured according
to speech acts; there is a single interface for communicating with agents, whether fixed or mobile. (ii)



There are two ways of communicating with mobile agents. In the location-aware mode, messages are
sent to a location; if the receiver has migrated, the communication fails. In the location-transparent
mode, messages are routed transparently to mobile agents, wherever they are. (7i) A location tracking
mechanism for mobile agents provides information used to route messages to them; the tracking and
routing algorithms do not assume any fixed or centralised control, which makes our approach suitable
to a pervasive computing environment,. (iv) Agents operate on behalf of users, and sorar allows
permissions to be granted to agents and users separately.  (v) Ontologies have been developed for
mobility-related concepts, in particularly to deal with meetings of users.

This paper is organised as follows. In Section 2, we introduce the fundamental ideas of SoFAR
regarding the non-mobile facet of the framework. Then, in Section 3, we describe the algorithms for
tracking agents and routing messages, and their integration in SOFAR. As agents act on behalf of users,
we present in Section 4 how the association between agents and users is maintained in the framework.
In Section 5, we describe the agent communication patterns that we use to build the meeting room [1],
which is the mirror, in the agent world, of a meeting between users. Finally, we compare our contribution
with related work, before concluding the paper.

2 SoFAR Overview

In this Section, we describe the three essential ideas that were adopted in SOFAR in order to make it
a generic agent framework: (i) declarative communications, (i) multiple communication modules
based on the generic startpoint/endpoint approach, (iii) systematic use of ontologies. (Further details
and discussion of the design can be found in [21].)

SOFAR does not prescribe the means through which communicative acts actually take place, but it does
specify their intention. In SOFAR, communications are declarative and based on speech act theory [26]. A
minimal set of performatives has been defined, representing the most common communication patterns,
such as querying, informing, registering, subscribing or requesting. Other forms of communicative acts!
must be defined by composing the primitive ones.

A speech act is associated with a communication context, which includes information about the act
of communication itself such as the sender, receiver, time of sending, message identifier and conversation
thread. This clearly differentiates our approach from distributed object systems, because an agent
may use this information in order to reject messages, to discriminate between senders, or to determine
which thread of conversation a message belongs to. We believe that communication contexts are vital
information needed by agents in order to be able to exhibit autonomous behaviour.

During the design phase, we have integrated some of the ideas of the distributed computing commu-
nity in the framework. In particular, ideas from Nexus [11], the communication layer of Globus and the
“computational grid” [10] are at the heart of SoFAR.

A communication between two agents is based on a “virtual link” defined by a startpoint and an
endpoint. An endpoint identifies an agent’s ability to receive messages using a specific communication
protocol; it extracts messages from the communication link and passes them on to the agent. A startpoint
is the other end of the communication link, from which messages get sent to an endpoint. There may be
several startpoints for a given agent, each acting as a representative (or proxy) of the agent at remote
locations. Vice-versa, several endpoints may be associated with a startpoint, which allows some form of
multicasting.

Practically, when an agent A; wishes to perform a speech act on another agent A, A; activates the
corresponding method on a startpoint of As. The startpoint creates a communication context object,
serialises the data, sends it to the endpoint, which deserialises the data and passes it to the agent As.
When the speech act produces a result, it is returned back, via the endpoint, to the startpoint; it is
then returned as the result of the method invocation on the startpoint. (Note that there is also an
asynchronous variant of the performatives.)

The content of the messages sent between agents are terms in a simple knowledge representation
language. These terms are implemented as serialisable Java objects, and are organised into ontologies

1We shall note that SoFAR uses speech acts like standard agent communication languages KQML and FIPA; however,
SOFAR defines a minimal set of these, corresponding to the most frequent communication patterns.



(implemented as Java packages) which model particular problem domains.

3 Mobility Support

Mobile agents are programs able to migrate their code and state to new locations in order to make use
of resources that are adapted to their task. Communicating with mobile agents is not a trivial problem
because communication and migration are not atomic and may occur concurrently. SOFAR provides a
location aware communication mechanism, which directs messages to fixed locations; if the recipient is
no longer present, a failure occurs.

We have also designed another communication method that transparently routes messages to mobile
agents; this mechanism hides the tedious details of tracking an agent and forwarding messages to it. In
this Section, we first present the algorithm that we designed and then overview its implementation. In
essence, the algorithm uses forwarding pointers combined both with a technique to collapse chains of
pointers and with timestamps to prevent cyclic routing.

3.1 Algorithmic Foundations

Communications between SOFAR mobile agents rely on a new distributed algorithm that does not assume
the existence of any fixed or centralised control. We believe that such an approach makes SOFAR an ideal
candidate for an agent-based pervasive environment. The algorithm has been extensively studied in a
previous publication [20], including its formalisation and its proof of correctness. We present here the
essence of the algorithm and its integration in SOFAR.

Our assumption is that the algorithm is used at the application level (or more precisely at the agent
level); we therefore require message delivery to be reliable. A mobile agent is associated with a timestamp,
which is incremented at every migration. We use the term platform to refer to a host where mobile agents
can migrate to and pursue their execution. Each platform maintains a table containing knowledge about
mobile agents’ positions and the timestamps they had when they were at these positions.

The algorithm has two components: a distributed directory service and a message router. Figure 1
describes the principles of the distributed directory service, which is responsible for maintaining infor-
mation about the position of mobile agents in the system. There are three types of messages: AGENT,
ACK and INFORM, respectively representing a migrating agent, the acknowledgement of its safe arrival,
and location information propagation. In the text, we conventionally use numbers in bracket to refer to
their correspondent in figures, where they identify successive messages and their respective effect on the
local knowledge of a platform.
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Figure 1: Distributed Directory Service

Initially (1), we consider an agent A, with timestamp ¢ on platform P;, which is aware of the agent’s
presence. When agent A decides to migrate, it informs its platform of its departure, which in turn
updates its local knowledge (2); at this point, platform P; is only aware of the agent’s departure, and is
not required to know its destination yet. When agent A arrives at a new platform, the platform updates



its local knowledge (3); note that the timestamp has now increased by one unit. In order to keep a trace
to the agent, its previous location must informed by an acknowledgement message, specifying its location
and timestamp (4). Timestamps are used to avoid race conditions between several acknowledgement
messages arriving at a same platform; the receiver of a message updates its local knowledge if the local
timestamp is smaller than the received timestamp. (Timestamps are an essential requirement of this
algorithm because they prevent the formation of cycles in tables [20].)

This simple algorithm, combining agent migration, acknowledgement and timestamps, maintains
enough information about the successive locations of mobile agents to be able to route messages to them;
however, this approach leaves a trail of forwarding pointers that increases the cost of communication as
agents migrate. Therefore, we use a further extra message, called INFORM, which propagates knowledge
about agents locations between platforms. A range of strategies is available from lazy information
propagation to eager broadcast. The latter is clearly not acceptable in a Internet wide context. In [20],
we have established that it is safe to send such INFORM messages at any moment, from any platform, to
any platform, because timestamps prevent cycle formation. In [23], we show that such INFORM messages
may be piggy-backed on regular messages.

The message router is the component of the communication library that is responsible for reliably
delivering messages between mobile agents. Its principle is summarised in Figure 2; it only deals with
messages exchanged between mobile agents, and it utilises the local knowledge acquired by platforms
using the distributed directory service.
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Figure 2: Message Routing

When an agent B wishes to send a message to agent A, it requests its platform to send the message
on its behalf (1). Let us assume that platform P> knows that agent A was on P; when it had timestamp
t, but in fact agent A has already left P, for another platform (2). The message is sent to platform P;
as the agent is in transit, messages cannot be delivered to it, and therefore have to be accumulated (3).
Once agent A reaches its new location P; and acknowledges its migration (4), messages accumulated on
Py can be forwarded to P3 (5). On the latter platform, agent A is known to be local and messages may
be delivered (6).

In summary, platforms adopt the following algorithm. For any incoming message aimed at an agent
A, the message will be delivered to A if A is known to be local. If A is in transit, the message will be
enqueued, until the agent’s location becomes known; otherwise, a message is forwarded to the agent’s
known location.

3.2 Implementation

As described in Section 2, SOFAR supports multiple communication mechanisms, all accessible through the
startpoint/endpoint paradigm. Each communication module is identified by its name and must register
its existence with a Communication class. New communication modules can be added dynamically,
provided the permissions to do so have been granted. Each communication module must define three
classes that respectively implement the interfaces startpoint, endpoint and boot (to be explained).



As a “server”?, an agent chooses the communication mechanisms it wishes its clients to use. Commu-

nication mechanisms are simply selected by their name; currently, SOFAR supports Java Remote Method
Invocation (RMmI), shared memory (SHM), transparent routing for mobile agents (MOB) and secure socket
layer based communications (SSL). For each of them, a triple containing a startpoint, an endpoint and
a “boot object” must be returned by the corresponding communication module. Endpoints are kept
private in an agent’s implementation and are unforgeable. Startpoints may be exported and used by
“clients”. A “client” may choose the most suitable communication mechanism to interact with a server,
among those selected by the server.

The boot object is used to bootstrap the communication and possibly to parameterise the protocol;
for instance, with RMI, the bootstrap mechanism is the RMI-registry, and possible customisations involve
the RMI port and machine.

The implementation of the transparent routing algorithm for mobile agents follows the same principle.
A startpoint acts as a proxy to a mobile agent, and forwards speech acts to an endpoint. It is the
endpoint’s role to decide if a performative may be passed onto an agent locally, or if it should be
forwarded. When an agent migrates, its associated endpoint becomes a message forwarder to a new
endpoint created at the new agent’s location. (Note that the old endpoint only becomes a forwarder after
the new position has been acknowledged, as described in Section 3.1.) SOFAR relies on our implementation
of Mobile Objects in Java [23], providing mobile endpoints, piggy backing of INFORM messages, and
automatic clearing of routing tables.

In SoFAR, all agents are defined as a subclass of the NullAgent abstract class, providing, amongst
others, a method to select communication mechanisms. Mobile agents are defined as a subclass of
MobileNullAgent, which provides two methods migrate and restart. The method migrate initiates a
migration to another platform, by requesting the current platform to transport the agent to the remote
platform. As a result, the current agent state is serialised, passed to the remote platform, deserialised
and reactivated by invoking the method restart. This form of migration is usually called weak migration

[3].

3.3 Ontologies

Just as agents may have particular capabilities and characteristics, so too do platforms. A platform may
have access to certain data resources by virtue of its network location, or be able to provide agents with
an interface to a library of native code, or be located on a machine in a given physical location, or be run
by a certain user. By reasoning about these platform capabilities, agents are given the ability to make
informed decisions about which platforms they had best migrate to in order to achieve their objectives.

Each platform contains an agent that can describe the services provided by the platform, which are
not necessarily the same as those offered by the agents present on the platform. The platform agent is
owned by the user who started (and so owns) the platform.

We provide ontologies for a number of common domains, and these provide a foundation for describing
platforms. (They are summarised in the left hand side of Figure 3; the right hand side will be explained

in Section 5.2.)
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Figure 3: Ontologies for Platforms and for Meetings

21t is convenient to call the provider of a service a server and its user a client, even though one should not forget that
agents act in a peer-to-peer manner.



4 User and Agent Identity

Agents operate on behalf of users, and this information must be managed by the framework so that
permissions to perform “sensitive” operations may be granted to agents, depending on the users they
are working for. In this Section, we present how SOFAR represents and manages users identities.

4.1 Agent Launching

The platform, which is a location where agents may be executed, is in practice a JvM that is able to
process requests for starting up agents and for handling incoming mobile agents. Agents are started
using an agent launcher. The agent launcher has access to an agent database, identifying agents, their
classname, their codebase (i.e. the urls where their code can be downloaded from). Users identify the
agent they want to start up, the platform where the agent must be activated, and optional arguments to
be passed to the agent. The agent launcher sends a request to the platform, containing the user identity,
the agent class name, its codebase and optional arguments.

When a platform receives such a request, it creates a new dynamic class loader, which loads the
agent class from the specified codebase, and invokes its main method with the optional arguments. The
launch is successful if the platform has the permission to start this agent from this codebase on behalf
of this user. (The mechanism for granting permissions is explained below.)

When a platform receives a request for an incoming migrating agent, it reactivates its state, provided
that this agent has the permission to be executed for its user, and of course, that the platform was able
to load the code for the agent.

Note that agents may also be created by other agents: the created agent inherits from its parent the
identity of the user that launched it.

4.2 Identity Awareness

SOFAR uses a certain number of mechanisms to ensure that agents do not have the ability to fake their
identity or the identity of the user they work for. In this section, we present these mechanisms; they
will be complemented by cryptographic techniques, which are currently under investigation, in order to
authenticate (and possibly encrypt) the interlocutors of communication acts.

Granting Permissions to Users Using the JvM as the ubiquitous platform where agents can run
causes interesting problems as far as user’s identity is concerned. As agents perform actions on behalf
of users, we would expect two instantiations of a same agent class to be given rights that may differ
according to the user they are working for. It is therefore essential that an agent framework identifies the
users who launch agents. Such a requirement is imposed by a range of applications, such as those that
charge users for their service, or that manage the access to secure information; our system programmers
had similar requirements because they want users to be accountable for their agents.

Unfortunately, the model of access control supported by Java does not take users into account.
Stack inspection [28] is the mechanism that determines whether sensitive operations may be allowed.
Permissions are allocated, via the policy manager, to classes’ codebases and signatures. The stack
inspection algorithm grants permissions to perform an operation if it is permitted by the codebase or
the signature of all the methods that have an activation frame in the current stack. This is a low-level
mechanism which offers very fine-grained control; we want to extend it to take users into account. Note
that class signing is not a solution because it does not identify the user that is executing an agent, but
the one who signed the code.

Our approach to this problem is to make sure that any code activated in SOFAR, sets up, at the
bottom of the stack, a frame whose codebase uniquely identifies the user that is running the agent. By
using the default Java policy management, we are able to grant permissions on a user-by-user basis.
Such a user activation record has to be installed when a new thread is created, i.e. in three cases: (i)
when an agent is launched, (%) when an agent migrates, or (%) when messages are received.

Platforms handle the first two cases. Following the request to launch an agent by the agent launcher,
an agent is activated in a new thread, with a user-specific activation frame. Similarly, after receiving



the request to restart a migrating agent, a platform executes its restart method after creating a
user-specific activation frame. In both cases, the receiving platform has to trust the request’s emitter
to correctly identify the user that launched the agent. Authentication may be used to correctly identify
platforms and users that launch agents, but clearly, proper trust management [4] has to be investigated.

Endpoints handle the third case: they receive messages, and activate their handler in a new thread
after creating a user-specific activation record. As opposed to the first two cases, the user’s identity is
not propagated by the request emitter, but is given by the user that launched the receiving agent.

Agent Identity It is a requirement of SOFAR that all agents are defined as a subclass of the system
class NullAgent. NullAgent is responsible for creating a read-only data structure that identifies an
agent; it contains: the identity of the user that launched the agent, the agent’s class, the J3vM where it
was activated, and a (locally) unique identifier.

Sender Identity Using the communication context, the recipient of a message can determine its
sender. The framework must be able to prevent agents from faking the identity of a sender. This
functionality is delegated to startpoints.

A startpoint acts as a proxy for an agent. A speech act with an agent is performed by calling the
associated method on the agent’s startpoint. The startpoint is responsible not only for communicating
the argument of the speech act to the agent (via its endpoint), but also for defining the sender’s identity.

A startpoint contains a transient field, which must be initialised in order to perform communications
with its associated endpoint. The only way to initialise a startpoint is by using a protected method of
NullAgent that initialises the startpoint with the agent’s identity. This guarantees that if a communi-
cation is initiated by a startpoint, it necessarily contains the identity of the sender agent. (Note that
an agent cannot request another agent to initialise a startpoint on its behalf, because communicating
startpoints resets the transient field®.)

Note that this mechanism does not prevent an attacker operating outside the framework from faking
the identity of an agent of the framework. The solution to this problem is to use cryptographic techniques
in order to authenticate the sender as a properly defined SOFAR agent.

5 Agents Communication Patterns

An agent framework must provide instantiable communication patterns [1] representing frequently used
mobile agent interactions. The three patterns described in the next section can be used for any type
of agents, and in particular for mobile agents that support transparent routing of messages. They are
followed by an abstraction of the meeting room scenario.

5.1 Registration — Subscription — Relay

Every agent knows of one registry agent which it can use to advertise its capability, or to find out about
the capabilities of other agents. Registration is the speech act by which an agent declares to the registry
agent its capability to handle specific messages. If the registry answers positively to a registration act,
it commits itself to advertise the registered capability and to return it to agents which ask matching
queries.

As a proof of its commitment, the registry issues a contract as a result of the registration act. As
long as the contract remains live, the registry will retain the advertised capability. Conversely, if the
agent that registered the capability desires to stop its advertising, it just has to terminate the associated
contract.

Subscription is the speech act by which an agent declares its interest in receiving specific messages. If
a subscription manager answers positively to a subscription act, it commits itself to inform the subscribee

30ur assumption is that the communication layer uses serialisation, which resets transient fields. A communication
that does not use serialisation would break this invariant. Therefore, initialisation of communication module is subject to
a security check, for which a permission has to be granted by the platform.
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Figure 4: The Meeting Room Scenario

about facts that match its interest. As a proof of its commitment, the subscription manager also issues
a contract as a result of the subscription act.

Contracts are first-class objects that may be shared and exchanged by agents. They are used to
detect the termination [27], between distributed agents, of the registration or subscription procedures.

While the subscription manager is used to selectively multicast facts to a set of agents, depending
on their preferences, the relay agent blindly multicasts information to a set of member agents. With the
relay agent, an agent does not declare its interest by a subscription act, but instead members must be
handled by a third agent. The relay agent is able to propagate queries to all the members, and collate
and return results back to the querant: it therefore offers a pattern for querying groups of agents.

5.2 The Meeting Room

Our motivation is to build an agent infrastructure for the pervasive information fabric [8], the ubiquitous
environment that brings to the user the information they need as a function of their location, the time,
or the presence of other mobile users. A particular example is the meeting room scenario, for which we
have prototyped an implementation in SOFAR.

Imagine you arrive at a meeting. Using the local ad-hoc networking infrastructure, the computing
device you carry starts interacting with those of your counterparts in the room. Documents related to the
meeting are exchanged by the devices, e.g. minutes of the previous meeting, but also personal annotations
on documents, remarks. These documents and cross-references, i.e. hyper-links, constitute a hyperweb,
which was created by the presence of some users in the meeting room, and which can be browsed by each
user.

The scenario is an illustration of the pervasive information fabric that shows how “ad-hoc hyperdoc-
uments” may be created. In this paper, we do not focus on the creation of links between documents,
which is the subject of another publication.

As we regard mobile users and mobile agents as complementary, our route to build the meeting room
scenario is to create a virtual meeting room for mobile agents. Our implementation builds upon the
basic premise of a meeting as presented in [1], and extends it to incorporate other concepts which mirror
typical real-life environments. In particular, we introduce the idea of public and private meetings, the
constraints of starting and ending times for a meeting, and finally the idea of associating agents directly
with users. A public meeting can be attended by any agents aware of its existence, whereas a private
meeting can only be attended by “invited” agents. We have implemented an ontology (right-hand side
of Figure 3) which allows agents to communicate about these aspects of a meeting.

For a private meeting, an agent (A in Figure 4) has to make a request to a booking agent (a permanent
agent on all platforms in the system) to set up a meeting, providing the list of agents that are “invited”
to attend. Assuming agent B is invited, it then migrates over to the platform where the meeting is held,
where its presence is validated. The booking agent then spawns the meeting manager, with whom agent
B registers itself, receiving a contract in return. Subsequent arriving agents are validated and registered



in a similar manner. Invited agents may query the meeting manager to obtain the list of participating
agents that have arrived so far.

The meeting commences either when the starting time is reached (weak attendancy), or when all
invited agents have arrived and registered with the meeting manager (strong attendancy). In either
case, a relay agent is spawned and its identity distributed to all participants. Agent interactions then
commence; each agent may send a message to the relay agent, which in turn broadcasts it to all other
agents in the meeting.

The meeting will terminate either when the end time is reached (this event will be broadcast to all
agents), or when the attending agents leave the meeting. The meeting manager and relay agent will
both shutdown, cancelling all contracts and releasing all system resources still used.

A public meeting negates the need for attendance lists and validation; the booking agent merely ad-
vertises meetings on specific topics via a system registry. This registry is accessible to a local community
of agents who can query it, match registered topics with their own interests, and decide which platform
to migrate to in order to participate. Public meetings enforce a predefined starting and ending time.

A facility is provided for specifying that an agent representing a specific user should attend a par-
ticular meeting. An invitation is directed to an agent that represents a user, which can then (with
or without user intervention) either relay the invitation onwards to some previously spawned agent, or
spawn a new agent to attend the meeting.

In SOFAR, we have the ability to simulate meetings behind closed doors. First, if an attendee migrates
out of the platform, its contract is immediately terminated (during the serialisation process); therefore,
it no longer receives messages from the other participants. Furthermore, it is possible to forbid attendees
from communicating with agents on other platforms by preventing them from initialising startpoints.

6 Related Work

There is an amazing number of mobile agent systems, and we cannot list them all in this paper. We
refer the reader to www-sites such as [24, 12]. Our literature survey indicates that no other agent
system combines the key features of SOFAR: (i) declarative communications based on speech acts
and independent of the transport layer; (%) communication layer that routes messages transparently
to mobile agents and does not rely on any fixed or centralised locations; (iii) propagated identities of
users and agents so that permissions can be granted to agents and users independently.

A number of systems such as GrassHopper or Voyager support multiple communication modules; oth-
ers, such as Hive [18] or Ajanta, use RMI only. We note that adopting the startpoint-endpoint paradigm
abstracts away from the communication details that sometimes make programming communications
very tedious. It also elegantly helps us encapsulate the management of agent identity or communication
encryption.

We agree with Wojciechowski and Sewell that “A wide-area programming language should provide
a level of abstraction that makes distribution and network communication clear; higher levels should
be provide and implemented using the modularisation facilities of the language.” [30]. Our modular
approach to communications follows the same principle, with the choice between straight point-to-point
communication or transparent routing made by the agent implementor, or even dynamically by the agent
itself.

We observe that there are relatively few agent systems that offer transparent point-to-point com-
munications with mobile agents. This is problematic because, in the interval between finding an agent
and initiating communications with it, the agent may have migrated, causing a communications failure.
Voyager provides a “redirecting proxy”, which is able to redirect a communication to the next agent lo-
cation. We are not aware of the details of the algorithm used, but our investigation [20] shows that naive
message forwarding and race conditions may result in cyclic routing when an agent visits a previously
visited site: it is the reason why our algorithm introduces timestamps.

Nomadic Pict [30] uses several location-independent algorithms, implemented by converting location-
independent primitives into a core calculus with explicit locations; the algorithm they present uses a
fixed query server. A fixed component is also adopted by April [17] and JumpingBeans [2]. As we regard
SOFAR as an agent infrastructure for the pervasive information fabric, we believe that adopting fixed or



centralised locations would place an excessive burden on the infrastructure.

Other mobile agents systems opt for completely different communication mechanisms. Mars [5]
follows coordination-based approaches and Mole [3] has an event model that supports mobile participants.
Some of this functionality is provided in our framework by the subscription and relay mechanisms,
combined with transparent message routing.

Scalability of mobile agent systems has different facets including efficiency of message delivery for
roaming agents, size of routing tables and efficiency of brokering. We are investigating these issues,
by exploring different avenues. The problem of clearing routing tables is equivalent to the distributed
termination problem [27, 20], and therefore distributed reference counting techniques may be used for
that purpose. Hierarchical organisations, as noted by [15], help dealing with many components in a
system [19]. Techniques such as query routing [9] are also applicable in this context, and they should be
compared with “flooding” techniques.

7 Conclusion

The SoFAR framework has been the focus of a tremendous activity involving up to thirty researchers
in the Intelligence, Agents and Multimedia group at Southampton. Training sessions were organised
about agents, ontologies, and the actual framework implementation in Java. On two occasions, a group
activity, called “agentfest”, took place: during a three day-session, those researchers developed agents,
operating on application domains such as: user interfaces, image processing, audio and video segmen-
tation, conversion between audio and text, cooperative applications, and linking services. As a result,
SOFAR has now been adopted by several researchers for their every day research.

The startpoint and endpoint abstraction, combined with transparent routing of messages, are very
powerful techniques. In particular, they considerably simplify the implementation of groups of mobile
agents [22]. These groups and the associated management of resources will be included in the framework.

The goal of this agent framework is to build the pervasive information fabric, and we are using
the meeting room so that agents may exchange link databases and find information that is relevant to
their users [8]. In that context, security becomes an essential issue: we have identified the need for
authentication and trust management, which we are now investigating.
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