
Mobile Objects in Java
�

Luc Moreau Daniel Ribbens
Electronics and Computer Science Service d’Informatique

University of Southampton University of Liège
SO17 1BJ Southampton UK 4000 Liège, Belgium

L.Moreau@ecs.soton.ac.uk ribbens@montefiore.ulg.ac.be

Abstract

Mobile Objects in Java provides support for object mo-
bility in Java. Similarly to the RMI technique, a notion
of client-side stub, called startpoint, is used to commu-
nicate transparently with a server-side stub, called end-
point. Objects and associated endpoints are allowed to
migrate. Our approach takes care of routing method
calls using an algorithm that we studied in [22]. The
purpose of this paper is to present and evaluate the im-
plementation of this algorithm in Java. In particular, two
different strategies for routing method invocations are
investigated, namely call forwarding and referrals. The
result of our experimentation shows that the latter can
be more efficient by up to 19%.

1 Introduction

Over the last few years, mobile agents have emerged
as a powerful paradigm to structure complex distributed
applications. Intuitively, a mobile agent can be seen as a
running software that may decide to suspend its execu-
tion on a host and transfer its state to another host, where
it can resume its activity. Cardelli [5] argues that mobile
agents are the right abstraction to develop applications
distributed across “network barriers”, e.g. in the pres-
ence of firewalls or when connectivity is intermittent. In
Telescript [17], software migration is presented as an al-
ternative to communications over a wide-area network,
in which clients move to servers to perform computa-
tions. Lange [16] sees mobile agents as an evolution of

�
Presented at PADDA’2001, the International Workshop on

Performance-oriented Application Development for Distributed Ar-
chitectures Perspectives for Commercial and Scientific Environments
April 19-20, 2001, University of Technology, Munich. To appear in
PADDA’2001 Special Issue of Scientific Programming.

the client-server paradigm, and enumerates several rea-
sons for using software mobility.

It is a challenge to design and implement mobile
agent applications because numerous problems such as
security, resource discovery and communications, need
to be addressed. Therefore, we introduce Mobile Ob-
jects in Java, a middleware that helps implement mobile
agent systems by providing a concept of mobile object.
Its specific contribution is a communication mechanism
consisting of the invocation of methods on objects that
may be mobile.

Our motivation has been driven by developments in
distributed computing over the last couple of decades.
Successive paradigms such as remote procedure calls
(RPC) [3], method invocation in Network Objects [4]
and remote method invocation (RMI) in Java [12],
amongst others, abstract away from the reality of distri-
bution. They successively provided programmers with
new and more sophisticated abstractions. RPC provides
homogeneity, by its marshalling and unmarshalling of
data structures using data representation suitable for het-
erogeneous platforms. Network Objects offers memory
uniformity because remote method invocations are syn-
tactically identical to local ones and garbage collection
takes care of local and distributed objects. Java RMI

provide code propagation because the programmer no
longer needs to replicate code to remote machines, but
instead Java RMI is able to load code dynamically.

The next logical step is to hide the location and move-
ment of objects. A similar approach has also been
adopted by the network community, which devised the
next generation of the IP protocol (IPv6) with support
for mobile addresses [14].

There exists an incremental approach to introduce
mobility into an infrastructure that is unaware of mobil-
ity [16, 7]. It consists of associating each mobile entity

1

with a stationary home agent, which acts as an inter-
mediary for all communications. While this approach
preserves compatibility with an existing infrastructure,
introducing an indirection to a home agent for every
communication puts a burden on the infrastructure; this
may hamper the scalability of the approach, in particu-
lar, in massively distributed systems, such as the amor-
phous computer [27] or the ubiquitous/pervasive com-
puting environment [1]. Free from any compatibility
constraint, we adopted an algorithm to route messages
to mobile agents that does not require any static loca-
tion: the theoretical definition of this algorithm based
on forwarding pointers and the proof of its correctness
have been investigated in a previous publication [22].

The purpose of this paper is to present Mobile Ob-
jects in Java, an implementation of the algorithm, which
offers transparent method invocation and distributed
garbage collection for mobile objects. By transparent,
we mean that mobile and non-mobile objects present a
same interface, which is independent of the object loca-
tion and its migratory status. Distributed garbage col-
lection ensures that an object, whether mobile or not,
can be reclaimed once it is no longer referenced. While
implementing our algorithm, it became clear that two
strategies could be adopted, which we named call for-
warding and referrals; we present these strategies and
evaluate their performance through a benchmark.

This paper is organised as follows. First, we provide
more motivation for mobile agents by presenting two
promising application domains in Section 2. Then, in
Section 3, we summarise the algorithm we have investi-
gated in [22]. In Section 4, we describe its implementa-
tion in Java, providing a transparent interface to mobile
objects. We then discuss two different methods for rout-
ing method invocations, namely forwarding and refer-
rals, in Section 5. In order to compare these techniques,
we devise a synthetic benchmark, and analyse results in
Section 6. Finally, we compare our approach with re-
lated work in Section 7.

2 Motivation

In this Section, we provide further motivation for mo-
bile agents. We describe two promising applications
where mobile agents act semi-autonomously on behalf
of users. The reasons for doing so, however, differ sub-
stantially in the two applications.

Digital Library Yan and Rana [30] present a high-
level service for a digital library of radar images of the
Earth. The library is composed of a set of confidential
images and associated annotations with attached own-
ership. They extend a Web-based client-server archi-
tecture with mobile agents that perform tasks on behalf
of users and that are able to migrate to a predefined
itinerary of hosts.

After being dispatched, agents migrate securely, with
data, code and state to an itinerary of servers that may
have relevant data and services. Agents become inde-
pendent of the user who created them: they can survive
intermittent or unreliable network connections. Mobile
agents are beneficial for several reasons. (i) They avoid
the delivery of large volume of scientific data required
for data mining of images; (ii) They help maintain con-
fidentiality and ownership of data, by being run through
security checks, ensuring that they have the rights to ac-
cess the data; (iii) They are allowed specific queries on
the library according to the “security level” they were
granted.

Mobile Users The context of the Magnitude project
[24] is the “ubiquitous computing environment” [27]
where embedded devices and artifacts abound in build-
ings and homes, and have the ability to sense and inter-
act with devices carried by people in their vicinity. Ap-
plications running on mobile devices interact with the
infrastructure, and find and exploit services to fulfill the
user’s needs.

Mobile Agents

and Mobile devices

Application Specific

Nomadic Users and

Fixed Infrastructure

M M M

N N

I I II

Figure 1: Architecture

However, communications between mobile devices
and the infrastructure have some limitations, in the form
of intermittent connectivity and low bandwidth. Fur-

2

thermore, processing power and memory capacity of
compact mobile devices remain relatively small. As
a result, such an environment would prevent the large
scale deployment of advanced services that are commu-
nication and computation intensive.

We adopt mobile agents as proxies for mobiles users.
As illustrated by Figure 1, we utilise mobile agents, as
semi-autonomous entities, which can migrate from mo-
bile devices to infrastructure locations to take advan-
tage of the resources their specific tasks require; mobile
agents perform their tasks on the infrastructure, possibly
involving further migration, and then return results back
to mobile users.

Summary Both scenarios use the idea of mobile agent,
as a semi-autonomous proxy for a user. If granted the
right to do so, mobile agents may migrate to new loca-
tions, where they can take advantage of local resources.

3 Message Routing Algorithm

In this section, we summarise the message routing al-
gorithm for mobile agents that we formalised in [22].
We consider a set of mobile objects and a set of sites
(in our case JVMs) taking part into a computation. Each
mobile object is associated with a timestamp, which is
a counter incremented every time the object changes lo-
cation. Each site keeps a record of the location where
every mobile object known to the site is thought to be,
and of the timestamp the object had at the time. There-
fore, in a system composed of several sites, sites may
have different information about a same mobile object
(depending on how fast location information is propa-
gated between sites).

The algorithm proceeds as follows. When a mobile
object decides to migrate from a site

�
to another site

�
, it informs

�
of its intention of migrating; a trans-

portation service is used to transport the object to
�

.
When the mobile object arrives at

�
, its safe arrival is

acknowledged by informing its previous site
�

of its
new location and of its new timestamp; site

�
can then

update its local table with the mobile object’s new posi-
tion and timestamp.

Mobile objects delegate to sites the task of send-
ing messages to other objects. When a site receives
a request for sending a message to a mobile object, it
searches its table in order to find the object location. If
the object is local, the message is passed onto the object.

If the object is not local, but known to be at a remote lo-
cation, the message is forwarded to the remote location.

As migration is not atomic, a mobile object may have
left a site, but the acknowledgement of its safe arrival
may not have been received by the site yet. In such
a case, the site temporarily has to enqueue messages
aimed at the object; as soon as the acknowledgement
arrives, delayed messages may be forwarded.

Timestamps are used to guarantee that sites always
update their knowledge about mobile objects with more
recent information than the one they currently have.
If a site receives information with a timestamp that is
smaller than the timestamp in its table, the received in-
formation is discarded. Such a timestamp mechanism is
mandatory to avoid cyclic routing of messages [22].

In the algorithm described so far, a mobile object
leaves a trail of forwarding pointers during its migration.
In order to reduce the length of the chain of forwarding
pointers, routing information and associated timestamp
may be propagated by any site to any site; timestamps
are again used to guarantee that the most recent informa-
tion is stored in routing tables. In the rest of the paper,
we discuss an implementation of this abstract algorithm.

4 Implementation in Java

In Java RMI [12], an object whose methods can be in-
voked from another JVM is implemented by a remote
object. Such a remote object is described by one or
more remote interfaces. Remote method invocation is
the action of invoking a method of a remote interface on
a remote object. In practice, a stub acts as a client’s lo-
cal representative or proxy for a remote object. The stub
of a remote object implements the same interface as the
remote object: when a method is called on the stub, ar-
guments are serialised and communicated to the remote
object1, where the method can be called; its result is
transmitted back to the stub and becomes the method
call result. A very desirable feature of this approach is
that local and remote method invocation share an iden-
tical syntax.

Now, we present an approach in which remote objects
are allowed to be mobile, but clients still use the same
stub-based method invocation mechanism, making them
unaware of the location and movement of the mobile
object.

1Before Java 1.2, there was a notion of skeleton, which was a
server-side representative of the object, responsible for deserialising
the arguments.

3

4.1 Startpoints and Endpoints

Figure 2 displays the different entities of our implemen-
tation. The right-hand side of the picture represents the
“server-side” on JVM � , composed of a mobile object;
the left-hand side is concerned with the “client-side” on
JVM � .

We adopt Nexus terminology [8], and we respectively
name startpoint and endpoint the client-side and server-
side representatives of a remote object. A mobile ob-
ject is specified by an interface, which must also be
implemented by its startpoints. Startpoints contain an
RMI stub representing the current location of a mobile
object, and permit direct communication with the end-
point; the endpoint passes messages to the mobile ob-
ject. Additionally, the startpoint contains the mobile
object’s timestamp

�
. (The endpoint also has the same

timestamp
�
.)

Figure 3 displays the new configuration after the mo-
bile object has migrated to JVM � . There exists a new
endpoint acting as a server-side representative at the new
location. Its timestamp is

�����
following its increase

after migration. The endpoint is referred to by a start-
point with timestamp

���	�
, which is sent to JVM � as

an acknowledgement to the safe arrival at JVM � . This
startpoint is used by the endpoint on JVM � as a forward-
ing pointer to the new object location. When a method
is activated on the startpoint on JVM � , the call is still
transmitted to JVM � , where the endpoint is aware that
the object has moved to JVM � and uses the same mech-
anism to forward the call.

As opposed to simple message passing, a remote
method invocation is expected to return a result2. In a
first instance, our implementation is based on call for-
warding and the result is propagated back along the
chain to the initial startpoint where the method call was
initiated.

In such an algorithm, it is important to reduce any
chain of forwarding pointers in order to reduce the cost
of method invocation, but also to make the system more
resilient to failures. In Figure 3, when JVM � has to for-
ward a call to JVM � , JVM � knows that information on
JVM � is out of date. Therefore, when the result is re-
turned to JVM � , we can also return updated information
about the mobile object location. To this end, we made
the remote interface implemented by endpoints differ-

2In the particular case of a procedure returning a type void, no
result is returned, but the method invocation terminates after the call
has been completed remotely; for the sake of presentation, we will no
longer distinguish this case from normal return of values.

ent from the interface implemented by mobile objects:
we return not only the “usual result”, but also the new
object location.

Returning updated location information at the same
time as returning results may not propagate information
soon enough, because processing on the server may be
long. Therefore, independently, we might like to in-
form previous JVMs in the chain about the location of
the mobile object. Since regular remote method invo-
cation does not give any information about the method
caller, we provide, as extra arguments, the stubs point-
ing to the JVMs involved in the chain.

In summary, a startpoint implements the same inter-
face as a mobile object. An endpoint has a derived inter-
face passing extra routing information, both during the
forward call and during the return of a result. The RMI-
stub encapsulated in the startpoint implements the same
interface as the endpoint.

For the sake of illustration, let us consider the method
talk specified in the interface Talker implemented
by a mobile object.

interface Talker {
int talk(int v, String s);

}

A startpoint associated with such a mobile ob-
ject also implements the interface Talker. The
endpoint of such a mobile object implements the
Endpoint TalkerI interface containing a method
talk:

interface _Endpoint_TalkerI {
_int_Result talk (List from, int _v, String _s);

}

The extra argument from is a list of RMI stubs to
the JVMs that were involved in the passing of the cur-
rent method call. The type int Result encapsulates
an int as well as new routing information. We have
implemented a stub compiler which takes care of gen-
erating such interfaces. It also creates the definitions of
the startpoint and endpoint classes.

4.2 Object Migration

We provide a new abstract class UnicastMobileOb-
ject, which encapsulates the behaviour common to all
mobile objects. A mobile object must be defined as
a subclass of UnicastMobileObject, from which
two methods can be inherited:

4

Unicast

Startpoint

Endpoint

Unicast
Mobile
Object

Object
Remote

RMI stub

�

�

JVM �JVM �

Remote Method Invocation

Figure 2: Startpoint and Endpoint

Unicast

Object
Remote

Startpoint

Remote
Method

Invocation

Remote
Method

Invocation

Unicast

Endpoint

Unicast
Mobile
ObjectObject

Remote

� �����

����������

JVM �JVM � JVM 	

stub
RMI

Startpoint

RMI stub

Endpoint

Figure 3: Mobile Object Migration

protected void migrate(String url,
Serializable state)

protected void install(Object state)

A mobile object can initiate its migration to another
JVM, identified by a RMI-style URL, using the method
migrate. The current object content will be serialized
in conjunction with an extra argument. Upon an object’s
arrival, the method install is activated with the state
argument passed to migrate. Both methods are de-
fined as “protected” to guarantee that they are invoked
only under the object’s control.

The Java object model does not make any guaran-
tee regarding which thread executes remote methods.
Therefore, for a single object, there may be several
threads executing in parallel when a request for migrat-
ing is issued by one of them. As Java does not support
thread migration, it is not possible to suspend the exe-
cution of all threads in order to resume them at the des-
tination. Instead, we allow an object to migrate when
there is only one thread executing a method of this ob-
ject. It is therefore the programmer’s responsibility to
synchronize and terminate threads currently executing
in parallel, and, if necessary, to save their state in a seri-

alizable field of the object.
Mobile Objects in Java also introduce the concept of

“platform”, a JVM that runs mobile objects securely.
A platform is a RMI UnicastRemoteObjectwhich
advertises its presence by binding itself with a RMI-style
URL (specified at construction time) in a RMI-registry.
This is such a URL which is expected as a first argument
by migrate. Hooks are provided to perform security
checks before executing objects in their sandbox [20].

4.3 Startpoint Deserialisation

In our system, on a given platform, there is at most one
instance of a startpoint that refers to a given mobile ob-
ject. In order to preserve this invariant, each platform
maintains a table of all the startpoints it knows, which
is updated when startpoints are deserialised. (We use
the Java method doReadResolve [13] to override the
object returned from the stream.)

A desirable consequence of this implementation is
that all objects using a specific startpoint share the ben-
efit of the most recent routing information for that start-
point. The table of startpoints is a hash table, using a

5

unique name given to mobile objects as a hashing key.
This table uses weak references [11] to guarantee that
startpoints do not remain accessible longer than neces-
sary. As a result, we ensure that mobile objects may be
properly garbage collected.

4.4 Clearing Routing Information

Routing information has to be cleared when it is no
longer needed. Indeed, platforms run for a long period
of time and host many visiting mobile objects, which
leave forwarding pointers as they migrate to their next
destination. We need to ensure that routing tables do not
become filled with unnecessary routing information.

We have observed [22] that the task of clearing rout-
ing tables is equivalent to the distributed termination
problem [25]. A forwarding endpoint is allowed to be
cleared if it can be proved that no other platform will
ever forward method calls to it. This may be imple-
mented using a distributed reference counting algorithm
[23, 25]. In particular, RMI provides a method Unref-
erenced for remote objects which is called when there
is no remote reference to this object [12]. When this
method is called on an endpoint, it may be unexported,
and the reference to the next startpoint in the chain may
be lost. Note that this mechanism can only work if tables
of startpoints contain weak references to these. Other-
wise, if startpoints remain live, the RMI-stubs they con-
tain will also remain live, which will prevent the call
of the Unreferenced method on the associated end-
points.

5 Forwarding vs Referrals

In our theoretical algorithm [22], messages are routed
individually; a reply would be regarded as a separate
message to be routed independently. The view that we
have adopted for Mobile Objects in Java differs slightly
because it is based on the remote method invocation
paradigm: methods are invoked and are expected to
produce a result. In the previous section, we showed
that the result could be propagated backwards along the
chain of forwarding pointers left by the mobile object.

Long chains of remote method invocations offer too
little resilience to failures of intermediary nodes. In-
stead of forwarding a method call, an endpoint could
throw an exception indicating that the mobile object has
migrated. The exception could contain the new start-
point pointing at the mobile object location.

The approach consisting of throwing an exception
containing a new startpoint, instead of forwarding a
call, is similar to the referral mechanism [9] used in
distributed search systems such as Whois++ [26] and
LDAP [28]. It then puts the onus on the method invoker
to re-try the invocation with the next location of the ob-
ject; once the object has been reached, the result may
then be returned to the caller directly. In our implemen-
tation, the startpoint is in charge of re-trying a method
invocation until it becomes successful. Therefore, from
the programmer’s viewpoint, there is no syntactic dif-
ference between the two approaches. An option passed
as argument to the stub compiler specifies whether code
has to be generated for referrals or for call forwarding.
In the rest of the paper, we compare the performance of
the two approaches.

6 Benchmark

The scientific programming community has a tradition
of adopting benchmarks to evaluate the performance
of computers; for instance, the Linpack Benchmark
is a numerically intensive test used to measure float-
ing point performance. Unfortunately, we lack bench-
marks specifically suited to evaluate routing algorithms
for mobile objects. This may be explained by the rel-
ative novelty of the concept of mobile object, and the
inexistence of widely accepted applications for mobile
agents. In a previous paper [23], we observed that there
was no recognised benchmark for evaluating distributed
garbage collectors; therefore, we designed some syn-
thetic benchmarks for such a type of distributed algo-
rithms. We propose to adopt a similar approach here.

A synthetic benchmark is an abstraction of a real pro-
gram, where routing of messages may have an impact on
the performance of the computation. In our benchmark,
we measure the cost of invoking a method on a mobile
object that has changed location since the last time the
method was invoked on it. In the context of the Mag-
nitude architecture of Section 2, such a benchmark is
reminiscent of the communications one may have with
a mobile agent visiting several locations to perform a
task.

Figure 4 summarises the “Itinerary Benchmark”. An
Itinerary consists of

�
platforms �����������	�
����
 � to be

visited by a mobile object. A platform � , not part of
the itinerary, is used to initiate invocations of a method
m on the remote mobile object. Every method invoca-
tion takes as argument a list of � platform identifiers

6

Set of platforms:
���

,
�
� , . . . ,

�����
�

Benchmark platform:
�

, with
���	 ��

Number of jumps: �
Number of itineraries: �

Initial Configuration:

 On

���
, create a mobile object � that knows of all platforms

�������������������
� .

On Benchmark platform:

 Repeat � times:

– Create a partition ��� � ��� ��������� � ����� � � � ��� ��������� � ����� ��������� � �! �� ��������� �! #" �%$ of integers in the range �'& �)(+* & � with(,* & 	 �.-0/ * &�1!243 , 3657� ;

– For each subset � �
 � ��������� �
98 � :
: Invoke method m on object � with arguments � �
 � ��������� �
98 � ;

– Invoke method m on object � with arguments � ; � .
Method m of object � :

 When m is activated, with argument � �
 � ��������� �
<8 � :

– In a separate thread, migrate object � successively to platforms
��=?> � ������������=�> 8 ;

– Return from method m.

Figure 4: Itinerary Benchmark

that the mobile object has successively to migrate to; an
itinerary is completed when the mobile object returns to
the first platform ��� . As method m is invoked on the mo-
bile object, it spawns a thread responsible for migrating
the mobile object to � platforms, while method m termi-
nates in parallel. On platform � , we measure the time
taken to perform all method calls necessary to complete
an itinerary.

Figure 5 illustrates the execution of the Itinerary
benchmark over 10 platforms (5 rather heavily loaded
workstations/servers each running 2 JVMs), connected
by a local area network. Each method call forced the
object to migrate to one new location. We ran the same
benchmark using both the call forwarding and the refer-
rals techniques. We can see that in this specific instance,
referrals are on average 9% faster than call forwarding,
over 200 itineraries. We should observe the abnormal
duration of the first itinerary in Figure 5: indeed, it can
be up to an order of magnitude slower than the others
since it forces object byte-code to be loaded dynami-
cally as the mobile object visits each platform for the
first time.

In Figure 6, we summarise our results, which we dis-
cuss now. Several variants of the Itinerary benchmark
were considered.

(i) We always ran the Itinerary benchmark on 10
platforms. In one case, the platforms executed on 5
rather heavily loaded workstations/servers each running
2 JVMs) connected by a 100Mb local area network (No-
tation: LAN). In the other case, the platforms executed
on 5 nodes of a cluster (Linux 2.2, 450 Mhz) with dedi-
cated 100Mb network, with each node running 2 JVMs
(Notation: Cluster).

(ii) The partitioning of the platforms may be deter-
ministic or non-determinisic. In the former case, the
object systematically visits platforms in the same order
(Notation: Sequential). In the latter case, the order of
platforms is decided randomly for each itinerary (Nota-
tion: Random).

(iii) We ran the Itinerary benchmark using both the
call forwarding (Notation: CF) and the referrals tech-
niques (Notation: Ref).

(iv) When a mobile object migrates to successive lo-
cations, its new position can be acknowledged to all its
previous locations (Notation: Eager Acknowledgement),
or to its directly previous location only (Notation: One
Acknowledgement).

In order to reduce some of the non-deterministic na-
ture of the benchmark, we have introduced a delay be-
tween each method call to the mobile object, which gave

7

2048

4096

8192

0 20 40 60 80 100 120 140 160 180 200

T
im

e
in

 m
s

(lo
g

sc
al

e)

Number of itineraries

Comparison of Call forwarding and Referrals [sequential (eager ack) 200 1]

Call Fowarding (Itinerary Average: 2657.99, Method Average: 265.799)
Referral Style (Itinerary Average: 2431.27, Method Average: 243.127)

Figure 5: An Illustration of Call Forwarding vs Referrals (LAN)

time to the object to migrate to its location. Such a delay
is not included in the results.

In the first table of Figure 6, eager acknowledgement
of object migration resulted in methods calls to be for-
warded at most once. This is confirmed by the average
duration of a method call, which does not incur any sig-
nificant variation as � , the number of migrations asso-
ciated with a method call, increases. We also observe
that there is no significant difference between sequen-
tial and random itineraries. Finally, the referrals tech-
nique appears to be marginally more efficient than call
forwarding.

In the second table of Figure 6, acknowledgements of
object position is back-propagated to the object’s pre-
vious location only. Therefore, as we increase � , the
number of platforms that the mobile object has to mi-
grate to for each method call, we observe that method
calls have to be forwarded further. Again, we do not
observe any significant difference between sequential
and random itineraries. However, the referrals technique
becomes significantly more efficient than call forward-
ing: its efficiency is in the range [11%-19%] for a LAN,
whereas its in the range [6%-11%] for a cluster.

Instrumenting the Itinerary benchmark turned out to
be more difficult than anticipated. Indeed, many ele-
ments, not in our control, interact with our implementa-
tion. In particular, platform to platform communications
were implemented with Java RMI, which uses Birrel’s
distributed garbage collector [4]. Such a distributed GC

introduces synchronisations every time a stub is com-
municated by a remote method invocation; in particu-
lar, such synchronisations occur in the benchmark when
an object migration is acknowledged, or when stubs are
piggybacked. An alternative would be to use another
algorithm [23] which does not introduce such synchro-
nisations. Our rationale for comparing sequential and
random itineraries was to test whether a cost was in-
curred because new connections needed to be opened.
Java RMI hides the implementation details in a totally
opaque manner, and we have no control over the man-
agement of these resources in our implementation.

Discussion. Call forwarding requires two interven-
tions of each intermediary platform for forwarding the
call and the result, whereas referrals require only one
such intervention. We believe that this element is the
principal explanation for the superior performance of re-
ferrals in the presence of heavily loaded platforms (as
in our LAN). We anticipate that such a configuration is
similar to the environment in which mobile agents are
likely to be deployed (cf. Section 2).

At the beginning of our investigation, we debated
whether referrals would be penalised by having to open
new connections between the benchmark platform and
itinerary platforms. In all likelihood, such connections
had to be opened for distributed GC purpose in both
variants of the algorithm, and therefore no significant
change of performance could be attributed to this as-

8

Eager Acknowledgement (
(&�; � � 	 � ;?;)

LAN Cluster
Sequential Random Sequential Random

� Method calls/Itinerary CF Ref % CF Ref % CF Ref % CF Ref %
1 10 266 243 9% 263 245 7% 254 243 5% 255 244 5%
2 5 260 244 7% 260 245 6% 258 246 5% 259 246 5%
3 4 262 244 7% 261 245 7% 257 246 4% 257 251 2%
4 3 257 245 5% 257 249 3% 257 256 7% 260 255 2%
5 2 248 248 0% 256 256 0% 257 261 2% 256 257 0%

One Acknowledgement (
(&�; � � 	 � ;?;)

LAN Cluster
Sequential Random Sequential Random

� Method calls/Itinerary CF Ref % CF Ref % CF Ref % CF Ref %
1 10 — Identical to Eager Acknowledgement —
2 5 299 264 11% 299 263 12% 275 258 6% 278 258 7%
3 4 323 278 14% 330 280 15% 295 271 8% 298 269 10%
4 3 343 289 16% 348 293 16% 312 279 11% 312 280 10%
5 2 329 287 13% 364 295 19% 315 288 9% 312 288 8%

Figure 6: Average Duration of a Method Call to a Mobile Object

pect. Tools to instrument resources used within the JVM

would be extremely valuable in this context.

7 Related Work and Conclusion

We have presented Mobile Objects in Java a library able
to route method invocations to mobile objects. We have
discussed two ways of forwarding calls, namely call for-
warding and referrals; the latter turned out to be more ef-
ficient in our benchmark. There is a third method where
the caller explicitly passes a reference to itself, which is
used by the callee to return the result. Such a method
discussed in [21, 8] allows the result to “short-cut” the
chain of forwarding calls. A more extensive study is
required to investigate the performance of these three
methods (as well as the home agent approach) in vari-
ous scenarios.

Mobile Objects in Java is an integral part of a mo-
bile agent system that we use to support mobile users in
the Magnitude project [24]. From a software engineer-
ing viewpoint, such a library provides a separation of
concern between higher-level interactions and message
routing. We are adopting such a communication model
in three different circumstances. (i) User-driven com-
munication to their mobile agents; (ii) Return of results
from a mobile agent to a mobile personal digital assis-
tant; (iii) Communications between mobile agents.

There are a number of other systems that support mo-
bile computations, but they adopt a different philosophy.
Emerald [15] supports migration of an object, including
threads running in parallel. In Kali Scheme [6], contin-
uations may be migrated between address spaces. None
of them provides the transparent routing of messages, as
described in this paper. Other approaches rely on a sta-
tionary entity to support communications between mo-
bile objects, including Aglets [16], Nomadic Pict [29],
April [18] and the InterAgent Communication Library
[19]. Jumping Beans [2] is a commercial product offer-
ing support for mobile applications, but requires a server
to be visited by mobile agents during each agent migra-
tion. Stationary and central locations put an extra bur-
den on the infrastructure which we wanted to avoid in
our implementation.

Our investigation has highlighted a number of diffi-
culties concerning the evaluation of algorithms for mo-
bile agents. (i) In high-level implementations such as
ours, in particular above Java RMI, the lack of tools to
instrument low-level resources (connections, distributed
garbage collection) makes it somewhat difficult to ex-
plain observed behaviours. (ii) The absence of widely
recognised benchmarks does not ease comparison with
other authors. (iii) In mobile computing, social hu-
man behaviours dictate the patterns of physical mobil-
ity; these can be extensively used in simulations. Be-

9

cause we lack widely accepted applications of mobile
agents, we also lack accepted models of their mobility.

It is this specific problem that Huet [10] addresses by
looking at a formal modelisation of routing algorithms
as stochastic processes. In particular, he compares a
centralised forwarder with distributed forwarding point-
ers. From the slides that were accessible to us, we were
enable to establish the patterns of mobility he adopted,
and whether call forwarding or referrals were consid-
ered. A challenging issue is to define simulations that
are refined enough to take into account other activities
such as distributed garbage collection, which itself also
lacks recognised benchmarks.

In the future, we wish to investigate strategies for
propagating information about object’s locations inde-
pendently of remote method invocation. Such a study
will have to consider new benchmarks, ideally derived
from real applications, and should also include alter-
native routing algorithms. Furthermore, other require-
ments and their implications on performance need to be
investigated, such as security and robustness of direc-
tory services.

8 Acknowledgements

David De Roure pointed out an analogy between the
directory service described in this paper and the no-
tion of referrals used in distributed search systems and
in “query routing”. Thanks to Omer Rana for discus-
sions on their agent-based Digital Library system, and
to Danius Michaelides for his comments on the paper.
This research is funded in part by EPSRC and QuinetiQ
project “Magnitude” reference (GR/N35816).

References
[1] S. Adams and David DeRoure. A Simulator for an Amorphous

Computer. In Proceedings of the 12th European Simulation Mul-
ticonference (ESM’98), Manchester, UK, June 1998.

[2] Ad Astra. Jumping beans. Technical report, White Paper, 1999.
http://www.JumpingBeans.com/.

[3] A. D. Birrell and B. J. Nelson. Implementing Remote Proce-
dure Calls. ACM Transactions on Computer Systems, 2(1):39–
59, February 1984.

[4] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wob-
ber. Network Objects. Technical Report 115, Digital Systems
Research Center, February 1994.

[5] Luca Cardelli. Abstractions for Mobile Computation. In Jan
Vitek and Christian Jensen, editors, Secure Internet Program-
ming: Security Issues for Distributed and Mobile Objects, vol-
ume 1603 of Lecture Notes in Computer Science, 1999.

[6] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-
order distributed objects. ACM Transactions on Programming
Languages and Systems, 17(5):704–739, September 1995.

[7] Jonathan Dale and Francis G. McCabe. Agent Management
Support for Mobility. Fipa’98 draft specification, Fujitsu Labo-
ratories of America, 1998.

[8] Ian Foster, Carl Kesselman, and Steven Tuecke. The Nexus Ap-
proach to Integrating Multithreading and Communication. Jour-
nal of Parallel and Distributed Computing, 37:70–82, 1996.

[9] Nicholas Gibbins and Wendy Hall. Scalability issues for query
routing service discovery. In Proceedings of the Second Work-
shop on Infrastructure for Agents, MAS and Scalable MAS, May
2001.

[10] Fabrice Huet. Distribution and localisation. http://www.irit.fr/
ACTIVITES/PLASMA/PRO-Toulouse2001/LesPropositions/
LesTransparents/pro-huet.pdf.

[11] Java Reference Objects. http://java.sun.com/j2se/1.3/docs/guide/
refobs/.

[12] Java Remote Method Invocation Specification, November 1996.

[13] Java Object Serialization Specification, November 1998.

[14] David B. Johnson and Charles Perkins. Mobility Support in
IPv6. Internet draft, IETF Mobile IP Working Group, 1999.
draft-ietf-mobileip-ipv6-09.txt.

[15] Eric Jul. Migration of light-weight processes in Emerald. Op-
erating Systems Technical Committee Newsletter, 3(1):25–30,
1989.

[16] Danny B. Lange and Mitsuru Ishima. Programming and Deploy-
ing Java Mobile Agents with Aglets. Addison-Wesley, 1998.

[17] General Magic. Telescript Technology: Mobile Agents, 1996.

[18] F. G. McCabe and K. L. Clark. APRIL - Agent Process In-
teraction Language. In Proc. of ECAI’94 Workshop on Agent
Theories, Architectures and Languages. Springer-Verlag, 1995.

[19] F. H. McCabe. InterAgent Communications Reference manual.
Technical report, Fujitsu Laboratories of America, 1999.

[20] Gary McGraw and Edward W. Felten. Securing Java. Wiley,
1999.

[21] Danius Michaelides, Luc Moreau, and David DeRoure. A Uni-
form Approach to Programming the World Wide Web. Com-
puter Systems Science and Engineering, 14(2):69–91, 1999.

[22] Luc Moreau. Distributed Directory Service and Message Router
for Mobile Agents. Science of Computer Programming, 39(2–
3):249–272, 2001.

[23] Luc Moreau. Tree Rerooting in Distributed Garbage Collection:
Implementation and Performance Evaluation. Higher-Order and
Symbolic Computation, To appear.

[24] Luc Moreau, David De Roure, Wendy Hall, and Nick
Jennings. MAGNITUDE: Mobile AGents Negotiat-
ing for ITinerant Users in the Distributed Enterprise.
http://www.ecs.soton.ac.uk/ � lavm/magnitude/, 2001.

[25] Gerard Tel and Friedemann Mattern. The Derivation of Dis-
tributed Termination Detection Algorithms from Garbage Col-
lection Schemes. ACM Transactions on Programming Lan-
guages and Systems, 15(1):1–35, January 1993.

[26] C. Weider, J. Fullton, and S. Spero. Architecture of Whois++ In-
dex Service. Request for comments 1913, Internet Engineering
Task Force, 1996.

10

[27] Mark Weiser. Some Computer Science Problems in Ubiquitous
Computing. Communications of the ACM, 36(7):74–84, July
1993.

[28] M. Whalh, T. Howes, and S. Kille. Light Weight Directory Ac-
cess Protocol (v3). Request for comments 2251, Internet Engi-
neering Task Force, 1997.

[29] Pawel Wojciechowski and Peter Sewell. Nomadic Pict: Lan-
guage and Infrastructure Design for Mobile Agents. In
First International Symposium on Agent Systems and Ap-
plications/Third International Symposium on Mobile Agents
(ASA/MA’99), October 1999.

[30] Y. Yang, O. F. Rana, C. Georgousopoulos, D. W. Walker, and
R. D. Williams. Mobile agents and the sara digital library. In
Proceedings of IEEE Advances in Digital Libraries 2000, pages
71–7, Washington, D. C., May 2000.

11

