
Tree Rerooting in Distributed Garbage Colle
tion:Implementation and Performan
e EvaluationLUC MOREAU l.moreau�e
s.soton.a
.ukDepartment of Ele
troni
s and Computer S
ien
e, University of Southampton, SouthamptonSO17 1BJ. United Kingdom.Re
eived June 15, 2000; Revised February 22nd, 2001Editor: Takayasu ItoAbstra
t. We have re
ently de�ned a new algorithm for distributed garbage
olle
tion based onreferen
e-
ounting [20, 24℄. At the heart of the algorithm, we �nd tree rerooting, a me
hanismable to redu
e third-party dependen
ies by reorganising di�usion trees. In reality, the algorithmdes
ribes a spe
trum of algorithms a

ording to the poli
y used to manage messages. In thispaper, we present the implementation of the algorithm and evaluate its performan
e. We haveimplemented two poli
ies, whi
h are extremes of the spe
trum, respe
tively using and not usingtree rerooting. In addition, two di�erent strategies for managing a
tion queues have been imple-mented. The
on
lusions of our experimentations are the following. Tree rerooting o�ers moreparallelism during distributed g
 a
tivity; we explain this phenomenon by the length redu
tion of
ausality
hains in the distributed g
. Grouping messages per destination dramati
ally redu
esthe number of messages, but requires a more
omplex implementation as messages have to besorted per destination. Speed up of 100% has been observed on some ben
hmarks.Keywords: distributed garbage
olle
tion, distributed referen
e
ounting, performan
e evalua-tion, ben
hmark1. Introdu
tionOver the last de
ade, distributed symboli

omputing has found useful appli
ationsoutside resear
h laboratories. Environments for developing distributed appli
ationsare now shipped by major software suppliers, and are used to produ
e advan
edappli
ations involving
omplex intera
tions between multiple
lients and servers.Java, whi
h plays a dynami
 role in this
ontext, is bundled with the rmi
ommu-ni
ation layer [12℄ able to a
tivate methods on remote obje
ts.In parti
ular, rmi provides a distributed garbage
olle
tor (also written dis-tributed g
 or dg
) that turns out to be a very valuable te
hnology as it au-tomati
ally maintains pointer
onsisten
y: it ensures that an obje
t will not bere
laimed as long as it is referred to lo
ally or remotely.The author has re
ently published an algorithm for distributed garbage
olle
tion[20℄. This algorithm based on distributed referen
e
ounting was developed andprototyped as part of NeXeme [23℄, a distributed implementation of S
heme, basedon the message-passing library Nexus [9℄. This algorithm has been studied indetail, and me
hani
al proofs of safety and liveness have been
arried out usingthe proof assistant Coq [24℄. Furthermore, the algorithm des
ribes a family ofalgorithms and it may be optimised in several ways. In this paper, we fo
us on a

real implementation of the algorithm, and we undertake a
omparative study of itsvariants and optimisations.The algorithm was implemented in C and uses the Nexus library [9℄ for
ommuni-
ations. Lo
al garbage
olle
tion is handled by the Boehm-Demers-Weiser
olle
tor[10℄. The implementation is about 5000 lines of
ode, plus an extra 2000 for in-strumentation. Plans to implement the algorithm in Java are underway;
ombinedwith the NexusRMI stub
ompiler [4℄, it would give a

ess to a multi-languagegarbage-
olle
ted distributed environment.This paper is organised as follows. First, we state our assumptions regarding thedistributed
omputing model and we de�ne some terminology in Se
tion 2. Weanalyse
urrent distributed referen
e
ounting algorithms in Se
tion 3, and explainthe design rationale of our distributed g
 algorithm. Then, we summarise itsprin
iples in Se
tion 4. The overall implementation design is presented in Se
tion5. Some ben
hmark programs are des
ribed and algorithm performan
e is evaluatedin Se
tion 6. Finally, a
omparison with related work and a summary
on
lude thepaper.2. Models and TerminologyIn this se
tion, we introdu
e the models of distribution and
ommuni
ation that wehave adopted as well as some useful terminology. This paper studies distributed ref-eren
e
ounting on a network of pro
esses that
an
ommuni
ate only by ex
hangeof messages. A
omputation exe
utes on a set of pro
esses and
onsists of a set ofthreads. An individual thread exe
utes a sequential program, whi
h may read andwrite data shared with other threads exe
uting in the same pro
ess. In this
ontext,a pro
ess denotes a memory spa
e holding a number of obje
ts. Pro
esses may bedistributed a
ross several physi
al ma
hines, but also a single ma
hine
an hostseveral pro
esses; in both
ases, the only means by whi
h pro
esses
ommuni
ateis by ex
hange of messages. We shall assume that
ommuni
ations are reliable andordered between any pair of pro
esses.In the des
ription of our garbage
olle
tor implementation, an address denotesthe lo
ation of an obje
t in a pro
ess; su
h an address is only meaningful withinits pro
ess. The need for distributed garbage
olle
tion
omes from the usage of anotion of remote referen
e by whi
h a pro
ess
an refer to an obje
t in a possiblyremote pro
ess. As opposed to an address, a remote referen
e
an be
ommuni
atedto other pro
esses. We de�ne the owner of an obje
t as the pro
ess where the obje
tis lo
ated; by extension, the owner of a referen
e denotes the owner of the obje
tthe referen
e points at.2.1. The Communi
ation ModelIn this Se
tion, we present the
hara
teristi
s of the
ommuni
ation model thatis expe
ted by our implementation. Even though they are heavily in
uen
ed byNexus [9℄, they are generi
 be
ause they form the essen
e of a distributed obje
tsystem.

Host pointers and a me
hanism for initiating remote
omputations are two keyfa
ets of a distributed obje
t system. A host pointer is a network representative ofan obje
t, able to refer to an obje
t in a possibly remote pro
ess; alternatively, itmay be
alled global pointer [9℄ or network pointer [3℄. We take a view of messagepassing su
h that the arrival of a message initiates a
omputation to handle themessage [9℄. Therefore, remote method invo
ation as in Network Obje
ts [3℄ orJava rmi [12℄ is implemented by two messages, to a
tivate the
omputation and totransport the result, respe
tively.The a
tual interfa
e to the
ommuni
ation layer is library dependent. Generally,a
ommuni
ation is spe
i�ed by providing a host pointer, a handler identi�er, anda data bu�er, in whi
h data are serialised. Initiating the
ommuni
ation
ausesthe data bu�er to be transferred to the pro
ess designated by the host pointer,after whi
h the routine spe
i�ed by the handler is exe
uted, potentially in a newthread of
ontrol. Both the data bu�er and the obje
t referred to by the hostpointer are made available to the handler. Host pointers must be a prede�neddata type supported by the
ommuni
ation library; they must be serialisable andtransportable to remote pro
esses.2.2. Garbage Colle
tion and Rea
habilityIn ea
h pro
ess, obje
ts are allo
ated in a heap managed by a lo
al garbage
olle
tor.The purpose of a lo
al garbage
olle
tor is to
olle
t obje
ts that are no longerlo
ally rea
hable. Lo
al rea
hability is de�ned in terms a set of roots. The roots arelo
ations holding addresses of heap obje
ts; generally, roots are pro
essor registers,program sta
ks and global variables. An obje
t in the heap is lo
ally rea
hable if itsaddress is held in a root or if its address is held in another lo
ally rea
hable heapobje
t [14℄.The
ommuni
ation library and its host pointers o�er the means to refer to obje
tsin remote pro
esses. In this
ontext, the purpose of a distributed garbage
olle
toris to
olle
t obje
ts that are no longer globally rea
hable. An obje
t o is globallyrea
hable if one of the following
onditions holds:1. if o is lo
ally rea
hable in a pro
ess taking part in the
omputation,2. if there is a globally rea
hable obje
t that
ontains the address of o,3. if there is a globally rea
hable obje
t that
ontains a host pointer referring too.(Note that a more detailed des
ription of how a host pointer refers to an obje
t willbe given later in the paper.)Following the
ustom in dg
 literature, an appli
ation is regarded as
omposedof two separate a
tivities: the mutator performs the a
tions spe
i�ed by the pro-gram, whereas the garbage
olle
tor takes
are of all a
tivities related to automati
memory management.

3. Ba
kgroundDistributed referen
e
ounting and its derivatives are by and large the most
om-monly found te
hniques used to implement distributed garbage
olle
tion. Eventhough su
h te
hniques are not able to re
laim distributed
y
les, they are fre-quently adopted be
ause they are easy to interfa
e with unipro
essor garbage
ol-le
tors, whi
h only need to provide �nalizers (that
ause referen
e de
rement mes-sages to be sent) and a notion of a weak pointer (so that DGC tables do not
auseobje
ts to be preserved in
orre
tly by the
olle
tor) and do not need to supportspe
ial forms of tra
ing.Referen
e
ounting was initially
on
eived in the
ontext of unipro
essor appli
a-tions [5℄. In a referen
e
ounting system, ea
h obje
t is asso
iated with a referen
e
ounter. An obje
t's
ounter is in
remented every time a new referen
e to theobje
t is
reated, and de
remented every time su
h a referen
e is destroyed. Areferen
e
ounter equal to zero indi
ates that there is no referen
e to the obje
tand therefore the spa
e o

upied by the obje
t may be re
laimed safely.The referen
e
ounting te
hnique may na��vely be extended to a distributed settingby introdu
ing two messages in
rement and de
rement , but unfortunately this re-sults in an in
orre
t algorithm. The essen
e of the problem is summarised in Figure1, where a referen
e ptr to obje
t o of pro
ess P1 is passed from pro
ess P2 to pro-
ess P3, immediately followed by pro
ess P3 deleting its referen
e to ptr . A na��veextension of referen
e
ounting would send an in
rement message to in
rement the
ounter on P1 when ptr is sent to P3 and a de
rement message to de
rement the
ounter on P1 when P3 deletes its referen
e. A ra
e
ondition between in
rementand de
rement messages may
ause the
ounter on P1 to be de
remented before itis in
remented, possibly making it null temporarily; a null
ounter would make theobje
t ready for
olle
tion, even though there still is a live referen
e ptr on P2.
(1) method invo
ation

P1 P3
P2

o (2) in
rement(ptr)(4) de
rement(ptr) (3) referen
e ptr
ptr

ptr ptr deletedpassing ptr
Figure 1. Naive Extension to Distributed Context

Di�erent approa
hes have been proposed to address the short
omings of the na��veextension, whi
h essentially fall into three
ategories des
ribed below.Triangular Proto
ols The s
enario of Figure 1 involves three di�erent pro
esses,namely the owner, the sender and the re
eiver of a referen
e. Lermen and Maurer[15, 31℄ were the �rst to introdu
e a proto
ol between these pro
esses in order tomake the
opy of a referen
e safe. Birrel et al. [3℄ also proposed another algorithm,whi
h was adopted in Network Obje
ts [3℄ and in Java rmi [12℄. We summarisethese algorithms below.Lermen and Maurer [15, 31℄ introdu
e two new messages
reate and a
knowledge.When a referen
e is dupli
ated, a
reate message is sent to its owner, whi
h in
reasesthe owner's referen
e
ounter and is followed by an a
knowledge message to thereferen
e re
eiver. When a referen
e is deleted, a de
rement message is sent to theowner; the re
eiver ensures that no ra
e
ondition
an take pla
e between a
reatemessage and a de
rement message by sending a de
rement message only after ana
knowledgement for this referen
e has been re
eived.In this proto
ol, the owner is involved every time the emitter sends a referen
e toa re
eiver. Lermen and Maurer's s
hema requires the re
eiver to maintain a
ountof both the number of
opies made and the number of a
knowledgements re
eived;de
rement messages
an only be sent when both are equal.Birrel et al. also present a triangular algorithm as part of Network Obje
ts, adistributed obje
t language with remote method invo
ation [3℄. Similarly to Lermenand Maurer, their proto
ol ensures that referen
e
ounters are not de
rementedprematurely. For this purpose, syn
hronisations are introdu
ed between garbage
olle
tion and mutator a
tivities.The owner of an obje
t maintains a \dirty" set, whi
h
ontains identi�ers forall the pro
esses that have a referen
e to the obje
t. When a
lient �rst re
eives areferen
e, it makes a dirty
all to the owner. When the referen
e is no longer lo
allyrea
hable, as determined by the
lient's lo
al g
, the
lient makes a
lean
all anddeletes the referen
e. In order to avoid
on
i
ts between dirty and
lean
alls, theemitter keeps the referen
e rea
hable until it re
eives an a
knowledgement fromthe re
eiver. The a
knowledgement may be returned as part of the result when thereferen
e is passed as an argument to the remote method
all; otherwise, an extramessage may be required when the referen
e is returned as the result of a remotemethod
all.In Birrel's algorithm, distributed referen
e
ounting a
tivity is syn
hronous withthe appli
ation. In parti
ular, unmarshalling may be suspended by dirty
alls.Furthermore, the emitter of a referen
e is only allowed to free its referen
e after themethod invo
ation has terminated on the re
eiver: this may potentially maintainthe existen
e of a pointer in the emitter for garbage
olle
tion purpose only, eventhough its presen
e is not required by the mutator.Other triangular proto
ols have been proposed. The distributed variant of theTrain GC [11℄ relies on a referen
e-
ounting style pointer-tra
king me
hanism (ontop of whi
h
y
le
olle
tion is built). This pointer tra
king bears a resemblan
eto Birrel's algorithm but attempts to minimise the number of ex
hanged messages.

Man
ini and Shrivastava [16℄ also use a triangular proto
ol as the basis of a fault-tolerant version of distributed referen
e
ounting.Weighted Referen
e Counting Weighted referen
e
ounting (wr
) [2, 34, 6℄avoids ra
e
onditions between messages by sending de
rement messages only. wr
asso
iates a weight with ea
h obje
t and with ea
h referen
e. When an obje
tand its �rst referen
e are
reated, they are given a same weight. The algorithmmaintains the invariant that the weight of an obje
t is equal to the sum of weightsof referen
es pointing at it. Whenever a referen
e is deleted, a message is sent tothe owner with the referen
e weight, whose e�e
t is to de
rement the obje
t weightby the referen
e weight. When a referen
e is
opied, its weight is (equally) dividedbetween the two
opies without
ommuni
ation with the owner.Di�erent solutions may be adopted when the weight of a referen
e rea
hes oneand
annot be divided further. (i) A new obje
t
ontaining a referen
e to theinitial obje
t may be
reated; su
h a new obje
t, usually
alled indire
tion
ell ,and its asso
iated referen
e are given equal weights. The new referen
e is thenpropagated a

ording to the same algorithm. (ii) A message may be sent to theowner in order to request more weight.Indire
t Referen
e Counting Piquer's indire
t referen
e
ounting (ir
) [27℄does not use in
rement messages, whi
h resulted in ra
e
onditions with de
rementmessages in the na��ve extension. Instead, his algorithm relies on a representationof the path along whi
h referen
es are propagated in a distributed appli
ation.While, in general, the propagation path of referen
es
an form a
y
li
 stru
ture, aspanning tree,
alled the di�usion tree, may be obtained by remembering the pathalong whi
h a referen
e is propagated to a pro
ess for the �rst time.Indire
t referen
e
ounting requires ea
h pro
ess in the di�usion tree to maintain a
ounter for ea
h referen
e it holds. Every time a pro
ess sends a referen
e remotely,it in
reases the
ounter asso
iated with this referen
e. The di�usion tree is built andmaintained at runtime: ea
h pro
ess that has re
eived a referen
e for the �rst timejust needs to remember whi
h pro
ess the referen
e was sent from; by de�nition,the re
eiving pro
ess is said to be the sender's
hild in the di�usion tree. Whena referen
e is deleted by a pro
ess, indire
t referen
e
ounting sends a de
rementmessages to the parent of this pro
ess in the di�usion tree. If a pro
ess sends areferen
e to another pro
ess that already holds a
opy of the referen
e, the senderin
reases its referen
e
ounter, assuming that the re
eiver will join the di�usiontree as its
hild; as the re
eiver already holds a
opy, a de
rement message needsto be sent ba
k to the message emitter. In a stable situation (when all messageshave been propagated), the sum of all
ounters for a given referen
e indi
ates thenumber of remote
opies for the
ounter.Indire
t referen
e
ounting introdu
es third party dependen
ies, where a referen
eis kept in a pro
ess for the sole purpose of ir
 be
ause its
hildren in the di�u-sion tree still
ontain a
tive referen
es. Su
h referen
es, whi
h Piquer
alls zombiepointers , are harmful be
ause they prevent the
ompleteness of the garbage
olle
-tion pro
ess (in other words they
ause memory leaks), and they further expose thesystem to failures.

Dis
ussion Let us now dis
uss these algorithms by examining (i) the syn
hro-nisations they for
e with the mutator; (ii) the third party dependen
ies theyintrodu
e; (iii) the number of messages they generate; (iv) the type of network
onne
tivity they require; (v) their ability to support mobile obje
ts.Today, Birrel's algorithm is the most widely used, as it is part of Java rmi [12℄and Network Obje
ts [3℄. As summarised above, this algorithm however introdu
essyn
hronisations between the mutator and the garbage
olle
tor, whi
h may slowdown the
omputation.Birrel's and Piquer's algorithms introdu
e third party dependen
ies whi
h pre-vent the sender of a referen
e from freeing it. In Birrel's
ase, dependen
ies takepla
e for the duration of a remote method invo
ation. In Piquer's, they last aslong as referen
es are rea
hable in the re
eiver (whi
h
an be mu
h longer than inBirrel's
ase). Depending on the solution adopted when pointer weights be
omeone, weighted referen
e
ounting introdu
es third party dependen
ies or syn
hroni-sations. An indire
tion
ell introdu
es an unwanted form of dependen
y; alterna-tively,
onta
ting the owner to obtain more weight introdu
es an undesired delayto the mutator. The frequen
y at whi
h these events o

ur is however mu
h lowerthat in Birrel's and Piquer's be
ause they only happen when pointer weights
anno longer be divided.If we analyse the number of generated messages, all algorithms require only onemessage when a referen
e is deleted. wr
 and ir
 require no extra message whena referen
e is
ommuni
ated, though wr
 may require a
ommuni
ation with theowner when the weight be
omes one. Triangular proto
ols require up to two ad-ditional messages; Lermen and Maurer's solution systemati
ally requires two mes-sages be
ause the sender is indi�erent to whether the re
eiver already holds a ref-eren
e.Another interesting aspe
t for
omparison is how pro
esses are required to be
onne
ted in order to propagate dg
 messages. ir
 is unique be
ause dg
 mes-sages follow the same path as mutator's messages. Other algorithms require dire
t
onne
tivity with the owner: this may not ne
essarily be a valid assumption in thepresen
e of �rewalls, whi
h make some part of the network invisible [1℄. Finally,ex
ept for ir
, none of these algorithms support mobile obje
ts.Shapiro, Di
kman and Plainfoss�e [30, 29℄ analyse the problem of third partydependen
y and are the �rst to propose a me
hanism to
ollapse
hains of pointers.Details of their algorithm is presented in the related work se
tion. At this point,it is important to note that their te
hnique supports mobile obje
ts and partial
onne
tivity: it is able to adapt to the network
on�guration by preventing theshort-
utting of pointers if and when required [1℄; on the downside, dg
 a
tivity issyn
hronised with the mutator a
tivity.Our goals are similar to Shapiro, Di
kman and Plainfoss�e's, be
ause we alsowant to support mobile obje
ts and to
ollapse the distributed state, wheneverpossible a

ording to
onne
tivity (or even a

ording to lo
ality [21℄). However,we adopted a modular approa
h: �rst, we investigated the
ollapse of state fornon-mobile obje
ts [20, 24℄, then we studied the requirements for mobile obje
ts[22℄. The needs di�er substantially and a bene�t of our approa
h is that it helps

us to understand the intera
tions between the di�erent algorithm
omponents. Inaddition, our solution does not introdu
e any syn
hronisation with the mutator,and keeps the number of messages to be ex
hanged low, by requiring a maximumof two messages, only when a referen
e is re
eived for the �rst time. Sin
e the �rstpubli
ation of our algorithm, Di
kman [7℄ has independently dis
overed a variantof our rerooting te
hnique; we delay a deeper
omparison with his approa
h untilthe related work se
tion.In this paper, we fo
us only on the distributed garbage
olle
tion of non-mobileobje
ts, and the me
hanism we have introdu
ed to avoid third party dependen
ies:tree rerooting . In parti
ular, we investigate the performan
e impli
ations of thiste
hnique. Our experimentation may be summarised as follows: tree rerootingintrodu
es more parallelism by redu
ing the length of
ausality
hains; groupingdg
 messages dramati
ally de
reases dg
 traÆ
. In the following se
tion, wedes
ribe our algorithm.4. The AlgorithmThe essen
e of our algorithm
an be summarised as follows. When a pro
ess Pre
eives a referen
e for the �rst time, indire
t referen
e
ounting di
tates that thepro
ess has to join the referen
e's di�usion tree as the
hild of the sender pro
ess.Tree rerooting is the sequen
e of operations by whi
h a pro
ess P
an be
ome adire
t
hild of the owner pro
ess (if not already so). Tree rerooting requires asequen
e of two messages: the �rst one is a request from P to the owner to
hangeparent, and the se
ond one is a message from the owner to the previous parentinforming it of the transfer.In the rest of the se
tion, we present the key features of the algorithm. Ouralgorithm has been presented, formalised and proved
orre
t in other papers [20,24℄. The
omplete formal spe
i�
ation of the algorithm in Coq is available from:http://www.e
s.soton.a
.uk/�lavm/
oq/dr
.At an abstra
t level, we deal with a notion of remote referen
e, whi
h we
all dg
pointer. A referen
e
ounter is asso
iated with ea
h dg
 pointer. A dg
 pointerptr is
onventionally represented by two boxes. The �rst box is used only in theowner, where it
ontains the address of the obje
t ptr refers to; it is empty in theother pro
esses. The se
ond box
ontains a referen
e
ounter
 (initially zero).ptr
We also assume that ea
h parti
ipating pro
ess maintains a table,
alled a re
eive-table, that
ontains the set of dg
 pointers re
eived by the pro
ess and
urrentlyregarded as rea
hable by the lo
al g
; to this end, the re
eive-table is not
on-sidered as a root for the lo
al g
. (This aspe
t will be dis
ussed further in theimplementation se
tion.) In addition to regular messages sent by the mutator,two new messages named in
 de
 and de
 are introdu
ed to maintain a

uratereferen
e
ounters.

Figure 2 illustrates a
on�guration with three pro
esses P1;P2;P3. The �rstpro
ess is the owner of an obje
t o and ea
h pro
ess also
ontains a pointer ptrreferring to o. Ea
h instan
e of the pointer is asso
iated with a referen
e
ounter;re
eive tables are represented as boxes annotated by the letter \R" in the right-handside of ea
h pro
ess.Referen
e
ounters, re
eive tables and dg
 messages are used in the followingrules that regulate the sending of pointers (S), the re
eiving of pointers (R1, R2,R3), the handling of dg
 messages (DEC, INC), and lo
al garbage
olle
tion(GC).In the text, we
onventionally use numbers in bra
kets to refer to a
tions in�gures; they identify su

essive messages and their respe
tive e�e
t on the lo
alstate of a pro
ess.
0

1
1

ptr
ptr ptr(4) message passing ptr(2) message passing ptr(3)
P1 P3(1)o

P2
R

R
R(5)Figure 2. Pointer Di�usionS: Every time a pointer is sent to a remote pro
ess, its asso
iated
ounter is in
re-mented by one. In Figure 2, ptr is sent from P1 to P2 (2) and then to P3 (4); itsreferen
e
ounter is in
remented on P1 (1) and P2 (3). In a given pro
ess, thereferen
e
ounter asso
iated with a pointer represents the number of bran
hesleaving that pro
ess in the pointer's di�usion tree. In P3, the
ounter for ptr iszero be
ause the pointer has not been passed to other pro
esses.R1: If a pro
ess re
eives a pointer sent by its owner, and if the pointer does notbelong to the re
eive table, then the pointer is entered in the re
eive table. There
eive table on P2 points to ptr (
f. a
tion (3)); when a pointer is re
eived forthe �rst time, the initial value of its referen
e
ounter is set to 0.R2: If a pro
ess re
eives a pointer sent from a pro
ess other than its owner andif the pointer does not belong to the pro
ess re
eive table, then the pointeris entered in the re
eive table; an in
 de
 message is also sent to the owner,

0
0

2
ptr

ptr ptr(6) in
 de
(ptr,P2)(7) (8) de
(ptr)(9)
P1 P3o

P2R
RRFigure 3. Tree Reorganisation: Rerooting
ontaining a referen
e to the emitter P2. Figure 2 shows that P3 re
eives ptrfrom P2 (5); in Figure 3, a
tion (6) is su
h an in
 de
 message.INC: When a pro
ess re
eives an in
 de
 message referring to a pointer and athird pro
ess, it in
rements the
ounter asso
iated with the pointer and it postsa de
 message to the third pro
ess. In Figure 3, after the in
 de
 messageis re
eived, the referen
e
ounter of ptr is in
remented (7) by P1, and a de
message is sent to P2 (8).DEC: When a pro
ess re
eives a de
 message pertaining to a pointer, it de
re-ments the
ounter asso
iated with the pointer. After re
eiving the de
 message,the referen
e
ounter of ptr is de
remented by P2 (9), giving the value 0.GC: The purpose of the lo
al g
 is to dete
t data stru
tures that are no longerrea
hable from the set of lo
al roots. As dg
 pointers are regarded as regulardata stru
tures by the lo
al g
, the lo
al g

an dete
t when a dg
 pointer isno longer lo
ally rea
hable. When su
h an event o

urs, the pointer is removedfrom the re
eive-table, and a de
rement message de
 is sent to the pointer'sowner.R3: If a pro
ess re
eives a pointer sent by any emitter and if the pointer is alreadypresent in its re
eive table, then a de
 message is sent ba
k to the emitter.The key idea of the algorithm is the in
 de
 message followed by the de
 mes-sage, whose e�e
t is to propagate referen
e
ounter values safely from internalpro
esses of the di�usion tree to the owner (whi
h is the root of the di�usion treefor the
urrent pointer). As this operation grafts a subtree onto the root of thedi�usion tree, we
all it tree rerooting . Tree rerooting does not a�e
t the sum ofthe referen
e
ounters for an obje
t; we
an see that the sum of referen
e
ounters

remains equal to 2 in Figures 2 and 3: this means that there are two remote
opiesof ptr . In Figure 3, after the tree rerooting operation has taken pla
e, the sum ofall the
ounters is found on the owner. In other words, the e�e
t of the in
 de
message is to
atten the di�usion tree.All parti
ipating pro
esses maintain another table
alled send-table, not repre-sented in the �gures. When a referen
e
ounter is in
reased, the pointer is enteredin the pro
ess send-table, if it was not present. When a referen
e
ounter is de-
reased and rea
hes 0, the pointer is removed from the send-table. In order toensure safety and liveness, send-tables as opposed to re
eive-tables are de�ned asroots of lo
al garbage
olle
tors. The role of the send-table is the following. Onpro
esses other than the owner, pointers held by the send-table are kept rea
hablewhile messages
ontaining
opies of these pointers are in transit and until rerootinghas
ompleted. On the owner, the send-table is key to the safety of the algorithm:pointers on the owner are kept rea
hable while a
opy is in transit or rea
hableanywhere in the network [24℄. Consequently, the data asso
iated with the pointerwill not be re
laimed by the owner's lo
al g
, be
ause the send-table makes thepointer, and therefore the data, rea
hable from the lo
al g
 roots.Our algorithm avoids the ra
e
ondition between in
rement and de
rement mes-sages of na��ve referen
e
ounting by always in
rementing the owner's referen
e
ounter, with an in
 de
 message, before de
rementing it on another pro
ess witha de
 message. We should note that the algorithm requires in-order message de-livery between any pair of pro
esses, so as to avoid a de
 message overtaking anin
 de
 message; indeed, not doing so may result in the undesirable de
rementingof a
ounter before its in
rementing.A Spe
trum of Algorithms An important aspe
t of our algorithm is that thererooting operation is not syn
hronous with the mutator's a
tivity. Rerooting re-quires two messages, but this takes pla
e for the �rst arrival of a referen
e at apro
ess only. In networks where full
onne
tivity to the owner is not available,rerooting does not have to be performed. In addition, the algorithm may be op-timised in two ways. First, all dg
 messages may be delayed and grouped: bygrouping dg
 messages, one
an signi�
antly redu
e the amount of dg
-spe
i�
traÆ
. Se
ond, R2 immediately followed by GC may be optimised by a singlede
 message to the pro
ess that sent the pointer: this optimisation only requiresa single message instead of two, and it involves two pro
esses instead of three.Our algorithm's ability to use di�erent strategies adapted to the network
onne
-tivity and message traÆ
 is unique. In fa
t, the algorithm and its optimisations
hara
terise a whole spe
trum of referen
e
ounting algorithms . At one end of thespe
trum, eager a
tivation of rerooting with rule R2 tends to
atten the di�u-sion tree. At the other end of the spe
trum, the a
tivation of rerooting may bedelayed as mu
h as possible: in this
ase, in
 de
 messages are never sent, andthe algorithm behaves as Piquer's indire
t referen
e
ounting algorithm [28℄. Inour experiments, we shall see that eager rerooting generates more messages thanindire
t referen
e
ounting. However, the in
rease of messages is
ompensated bythe potential for parallel exe
ution of the dg
 a
tivity, whi
h in one of ben
hmarksresults in a redu
ed overall exe
ution time.

5. Implementation DesignOur implementation of the algorithm relies on two libraries for
ommuni
ationsand lo
al garbage
olle
tion: we use the Nexus message-passing library for
om-muni
ations [9℄ and the Boehm-Demers-Weiser lo
al garbage
olle
tor [10℄. TheBoehm-Demers-Weiser garbage
olle
tor was used be
ause it is
onservative andmultithreaded and therefore
an easily
oexist with the Nexus C library; it is alsothe garbage
olle
tor used by Bigloo at the heart of our distributed S
heme, NeX-eme [23℄. A major
on
ern was to design a generi
 implementation, whi
h
ouldbe made independent of these libraries.5.1. The Nexus Communi
ation LibrarySe
tion 2.1 introdu
ed the broad
hara
teristi
s of the
ommuni
ation model as-sumed by our implementation. In this Se
tion, we explain the a
tual representationof host pointers adopted by Nexus.A

ording to the Nexus
ommuni
ation paradigm, a
ommuni
ation
ows overa virtual
ommuni
ation link identi�ed by a startpoint and an endpoint. A start-point
an be thought of as a
apability granting rights to operate on the asso
iatedendpoint. Both startpoints and endpoints
an be
reated dynami
ally; the start-point has the additional property that it
an be moved between pro
esses; on the
ontrary, endpoints
annot be
opied between pro
esses.A
ommuni
ation link supports a single
ommuni
ation operation: an asyn-
hronous remote servi
e request (rsr). An rsr is applied to a startpoint by provid-ing a pro
edure name and a data bu�er. For the endpoint linked to the startpoint,the rsr transfers the data bu�er to the address spa
e in whi
h the endpoint islo
ated and remotely invokes the spe
i�ed pro
edure, providing the endpoint andthe data bu�er as arguments.We refer the reader to the Nexus literature des
ribing the rationale of Nexusdesign. In parti
ular, we note that Nexus is portable over multiple
ommuni
ationproto
ols: the virtual
ommuni
ation link identi�ed by a startpoint-endpoint pairis able to hide the details of the a
tual
ommuni
ation proto
ol used.5.2. Distributed GC PointersWe
onsider that ea
h pro
ess memory spa
e is divided in two heaps: the �rst oneis managed by a lo
al g
, whi
h
an automati
ally deallo
ate obje
ts; the se
ondheap is under the responsibility of the
ommuni
ation library. (In the
ase of Nexus,obje
t deallo
ation is not automati
.)Figure 4 shows how the heap managed by the lo
al garbage
olle
tor
an
oexistwith the heap managed by the
ommuni
ation library. Users' programs allo
ateobje
ts in the garbage
olle
ted heap. Host pointers pointing at these obje
ts areallo
ated in the
ommuni
ation library heap. A Nexus host pointer is
omprisedof a startpoint-endpoint pair. An endpoint
ontains the address of a user obje
t

User Obje
t
user DGC Pointerreferen
e
ountmutexhplife
y
leproto
ol

ommuni
ation libraryheap managed byHandlers Table
NexusEndpoint

StartpointNexusPointerHost

heap managed by lo
al garbage
olle
torFigure 4. Obje
ts, Host Pointers, and dg
 pointersallo
ated in the garbage
olle
ted heap and is asso
iated with a handler table; astartpoint is bound to an endpoint and may be
opied to remote heaps.Host pointers may be regarded as network representatives of user obje
ts. In orderto de�ne our distributed garbage
olle
tor, we introdu
e a new kind of obje
t,
alleda dg
 pointer , that is a garbaged-
olle
ted, network representative of a user obje
t.The
ombination of Nexus with our distributed garbage
olle
tor is intended toprovide a
omponent of the runtime system of a distributed language. The lan-guage designer has a wide range of options to spe
ify what programming interfa
eis a
tually made available for the programmer. High-level annotations for distri-bution su
h as future
ould be provided [19℄; alternatively, dg
 pointers
an bemade �rst-
lass obje
ts, whi
h would provide a low-level but powerful programminginterfa
e, as in NeXeme [23℄. The libraries are dire
tly usable from C, and at theimplementation level, dg
 pointers are regarded as regular data stru
tures, whi
h
an be
olle
ted by the lo
al g
; host pointers are invisible to the user and are usedonly by the
ommuni
ation library.A dg
 pointer is a data stru
ture allo
ated in the garbage-
olle
ted heap. Thereal implementation re�nes the \two boxes" notation of Se
tion 4, by using several�elds:� a user address, whi
h points at the user data on the owner, and whi
h is nullon any other pro
ess; the user data resides in the garbage
olle
ted heap;� a host pointer address, whi
h, for Nexus, is the address of a
ommuni
ationstartpoint;

� a referen
e
ounter indi
ating the number of times the pointer has been sent toa remote pro
ess;� a mutex to ensure ex
lusive a

ess to the dg
 pointer
ontent;� the distributed garbage
olle
tion proto
ol handling this obje
t;� a state information des
ribing the point in the dg
 pointer's life
y
le, whi
hwe explain below.Figure 5 displays two pro
esses P1, P2. Pro
ess P1 is the owner of an obje
t, anda dg
 pointer p points at this obje
t; the same pointer was sent to P2. On P1, theuser address of p points at the obje
t, whereas it is null on P2. The host pointer�eld refers to a Nexus startpoint, whi
h itself points to an endpoint ep on P1. Theendpoint ep only exists in the owner pro
ess P1, and also refers to the obje
t.
PointerHostPointerHost userDGC Pointer phpuserDGC Pointer php

heap managed by EndpointStartpoint sp
pro
ess P1 pro
ess P2

Startpoint spComms. library ref. tolo
al garbage
olle
torUser Obje
t heap managed by
omms library heap managed bylo
al garbage
olle
tor
omms libraryheap managed byep endpoint ep on P1
Figure 5. Pointers on two pro
essesSe
tion 2.2 de�ned global rea
hability in an abstra
t manner. We
an restate thethird
ondition in terms of our implementation. An obje
t o is globally rea
hable ifone of the following
onditions holds:1. if o is lo
ally rea
hable in a pro
ess taking part in the
omputation,2. if there is a globally rea
hable obje
t
ontaining the address of o,3. if there is a globally rea
hable obje
t
ontaining (the address of) a dg
 pointerp, if p
ontains the address of a startpoint sp asso
iated with an endpoint ep,and if ep
ontains the address of o. (Note that ep and o are required to be inthe same pro
ess, and sp and ep are allowed to be in di�erent pro
esses.)The idea of a send-table
ontaining dg
 pointers with a non-null referen
e
ounteris
ru
ial to our implementation. Indeed,
ondition 3 of the de�nition
an safely1be approximated as follows:

3 (revised). if there is a dg
 pointer p in the send-table of the owner of o.As we have de�ned send-tables to be roots for the lo
al g
s, the �rst and third
onditions may now be merged into a single one; our algorithm safely approximatesthe globally rea
hability of an obje
t o if one of the following
onditions holds:1. if o is lo
ally rea
hable in a pro
ess taking part in the
omputation,2. if there is a globally rea
hable obje
t
ontaining the address of o.As a result, when a lo
al garbage
olle
tor dete
ts that an obje
t is no longerlo
ally rea
hable, it also means that no other dg
 pointer to this obje
t exists inthe system, whether in a remote pro
ess or in a message in transit.From a lo
al garbage
olle
tor's point of view, dg
 pointers are regular datastru
ture, for whi
h lo
al rea
hability
an be determined as for any other obje
t.dg
 pointers have a life
y
le
omposed of three su

essive states, and our dis-tributed g
 implementation has an expli
it representation of this state in a �eld ofa dg
-pointer. The only allowed transitions are from live to phantom and phan-tom to dead; they are only �red by the lo
al garbage
olle
tor dete
ting the non-rea
hability of a dg
 pointer.1. live: When a dg
 pointer is
reated, it is said to be live, and it remains so, aslong as it is lo
ally rea
hable.2. phantom: The lo
al garbage
olle
tor is responsible for dete
ting when a dg
pointer is no longer lo
ally rea
hable. Our implementation uses �nalization to
hange the pointer state to \phantom". During this new stage, the pointer is nolonger used (not even rea
hable) by the mutator. It is removed from the re
eive-table but it remains in use by the dg
 so that rule (GC)
an be
ompleted, i.e.a de
 message is sent to the owner.3. dead : On
e rule (GC) has terminated for a dg
 phantom pointer, the lo
algarbage
olle
tor
an dete
t that it is no longer lo
ally rea
hable for a se
ondtime; then, the dg
 pointer
an again be �nalized and it enters the new phase\dead". In this third phase, resour
es used by the asso
iated host pointer inthe
ommuni
ation library should expli
itly be deallo
ated.In the implementation, there may be a delay between the moment a live dg
pointer is dete
ted to be unrea
hable by the lo
al g
, at whi
h point it is marked asphantom, and the moment it is removed from the re
eive-table. Therefore, a re
eive-table
ontains live pointers, but may also
ontain phantom pointers, unrea
hableby the mutator and waiting to be removed. Consequently, rules R1 and R2 needto be re�ned: their �ring requires that a pro
ess re
eives a dg
-pointer that is not
urrently in the re
eive-table with the live
ag. In this
ase, our implementation
reates a new entry in the re
eive-table for the newly re
eived pointer, with a live
ag.

5.3. DGC proto
olsAll dg
 pointers have a three-stage life
y
le, but a dg
 proto
ol determines thedistributed garbage
olle
tion poli
y that regulates this obje
t: the poli
y deter-mines when, where, or what kind of message pertaining to this pointer has to besent. The dg
 proto
ol is spe
i�ed by an expli
it �eld of a dg
 pointer. Proto
olsare also represented by a data stru
ture whose �elds are shown in Figure 6.When a message
ontaining a dg
 pointer is re
eived by a pro
ess, the dg
proto
ol uses a re
eive-table to determine whether the pointer is present lo
ally.Similarly, the proto
ol maintains a send-table that
ontains all dg
-pointers witha non-null referen
e
ounter. (We remind the reader that the send table is a rootfor the lo
al garbage
olle
tor but the re
eive table is not.)The lo
al garbage
olle
tor plays an essential role be
ause it dete
ts when a dg
pointer is no longer lo
ally rea
hable; during �nalization, it moves dg
 pointersto the phantom or dead stages of their life
y
les. During these phases, the dg
or the
ommuni
ation layer may have to send messages; these operations may belong and may require a substantial amount of memory. It is not suitable to performthese operations during the �nalization itself; indeed, �nalization may be performedinside the garbage
olle
tor
riti
al se
tion, and one prefers to leave this se
tion asqui
kly as possible to avoid starving other threads running in parallel and requiringmore memory. There are further implementation-dependent
onsiderations to betaken into a

ount: is the �nalizer run in a new thread? what is the priority of the�nalizer thread? In our implemenentation, �nalized dg
 pointers are entered in a�nalization queue (
f. (1) in Figure 6).A dedi
ated thread,
alled the dg
 thread , is responsible for transferring pointersfrom the �nalization queue into an a
tion queue (
f. (2) in Figure 6). This a
tionqueue is also dire
tly used by proto
ols, when for instan
e, upon re
eiving a pointer,a dg
 message must be emitted. As we do not want the dg
 a
tivity to delay themutator, dg
messages are not immediately sent, but enqueued in the a
tion queue.The same dg
 thread is also responsible for a
tivating items from the a
tion queue(3); this operation typi
ally requires
alling a pro
edure of the
ommuni
ation layer.Finally, the polling thread of the
ommuni
ation library is responsible for readingin
oming messages and a
tivating the
orresponding handlers. The distributedgarbage
olle
tor implementation provides some handlers for handling de
 andin
 de
 messages or initialising remote pro
esses.The proto
ol data stru
ture
ontains pointers to the re
eive and send tables, tothe �nalize and a
tion queues, to fun
tions for pointer
reation, �nalization,
om-muni
ation noti�
ation, and deallo
ation, and to all ne
essary mutexes to prote
ta

ess to
riti
al resour
es. Most of our
ode is parameterised by the proto
olmanaging the
urrent dg
 pointer; this organisation fa
ilitates easy dispat
h. Thisimplementation te
hnique allows us to have pointers managed by di�erent proto
olsrunning at the same time in a single environment.

InOut
InOut

re
eive tablesend table
�nalization�nalize queuedg
 threada
tion queue

reate ptrsend ptrre
eive ptrenqueue in
 de
deallo
ateunreferen
edenqueue de
 Proto
ol

. . .

SendTable
A
tion Queue

WeakRe
eiveTable

PollingThread LayerCommuni
ation

Lo
al GC

DGC Pointer transferpointerweak pointer
dg
Threadin
 de
 handlerde
 handler

Finalize Queue
ptr

(1)
(2)(3) (2)(3)

Figure 6. Proto
ol and asso
iated data stru
tures5.4. Implemented Proto
olsIn order to study the bene�ts of the in
 de
 message on the di�usion tree reor-ganisation, we have implemented the following proto
ols.5.4.1. Tree Rerooting with in
 de
 Messages If a dg
 pointer p is re
eived bya pro
ess, and if p is not a pointer in its live stage present in its re
eive-table, andif the emitter and re
eiver are both di�erent from the pointer's owner, then anin
 de
 message is prepared and enqueued in the a
tion queue. When pro
essed,the in
 de
 message will be sent to the pointer's owner. If a dg
 pointer p isre
eived by a pro
ess, and if p is live and present in its re
eive-table, then a de
message is prepared and enqueued in the a
tion queue.Let us observe that we do not send dg
 messages immediately, but add themto the a
tion queue. This approa
h has two bene�ts: (i) Re
eiving a pointer ptypi
ally o

urs as part of re
eiving a remote method invo
ation, whi
h a
tivatesthe mutator; by delaying the sending of a dg
 message, we favour mutator over

garbage
olle
tion a
tivity. (ii) By managing all dg
 messages in a same queue,we may optimise them, as explained in Se
tion 5.6.5.4.2. Indire
t referen
e
ounting In this proto
ol, in
 de
 messages are notused. dg
 pointers now have an extra �eld,
alled emitter , whi
h
ontains a ref-eren
e to the pro
ess that emitted the pointer. If a dg
 pointer p is re
eived by apro
ess, and if p is not a live pointer present in its re
eive-table, then the emitter�eld for p is set to the pro
ess that emitted p. Otherwise, de
 messages are pre-pared as in the �rst proto
ol. On
e the pointer is �nalized and rea
hes the phantomstate, a de
 message is no longer sent to its owner but to the pro
ess
ontained inthe emitter �eld of the pointer.5.4.3. The null proto
ol The null proto
ol does not maintain referen
e
ountersfor pointers. In our implementation, pro
esses are denoted by null proto
ol pointers.Su
h pointers are added to every
ommuni
ation so that re
ipients of a message
an determine its originator.5.5. A
tionsA
tions are operations to be performed by the distributed g
. A
tions are managedby the a
tion queue. Currently, the algorithm supports three types of a
tions.5.5.1. Sending a de
 message In the simple
ase, this
onsists of sending asingle de
 message related to a pointer. In the most
omplex
ase, this a
tionsends a message to de
rease the referen
e
ounters of several pointers, by an amountspe
i�ed for ea
h pointer.5.5.2. Sending an in
 de
 message In the simple
ase, this
onsists of sendingan in
 de
 message to a pointer's owner. In the most
omplex
ase, the messagea
ts upon the referen
e
ounters of several pointers.5.5.3. Deallo
ating a pointer This a
tion deallo
ates all resour
es used by a hostpointer in the heap managed by the
ommuni
ation library.5.6. Implemented A
tion QueuesThe a
tion queue is a data stru
ture
ontaining a
tions. Any implementation strat-egy is valid for a
tion queues, as long as it preserves the safety
onditions set bythe algorithm: (i) de
 messages
annot overtake in
 de
 messages if they arerelated to a same pointer; (ii) deallo
ation of a pointer
annot take pla
e beforethe last message to that pointer has been emitted. We have implemented twovariants of the a
tion queue.

5.6.1. The FIFO a
tion queue A
tions are handled in a �fo manner. No attemptis made to merge messages that are related to the same pointers.5.6.2. The sorted a
tion queue Ea
h a
tion for sending a de
 message enteredin the queue is merged with a similar a
tion related to the same pointer. There-fore, a
tions for sending de
 messages are asso
iated with a number spe
ifying theamount by whi
h a
ounter has to be de
reased. In order to preserve the safety
on-dition, a de
 message is only extra
ted from a sorted queue if there is no in
 de
message waiting to be pro
essed. In order to fa
ilitate these operations, a
tionsare sorted by their type: in
 de
 messages in a queue, while the other a
tions aremaintained in a se
ond queue. As in
 de
 messages have a lower frequen
y, wehave de
ided not to merge them.A further optimisation is possible: if a de
 message is sent to the owner of apointer, and if the sorted queue
ontains an in
 de
 message for the same pointer(to be followed by a de
 message to a pro
ess P), then these messages
an berepla
ed by a single de
 message to P dire
tly. While this optimisation redu
esthe number of messages, we have not implemented it, be
ause it would not havebeen used in any signi�
ant manner in the ben
hmarks we propose in the followingse
tion. However, systemati
ally applying this optimisation after delaying in
 de
messages gives us ir
, whi
h we have implemented.6. Performan
e EvaluationIn this se
tion, we evaluate and
ompare the di�erent proto
ols and the di�erent a
-tion queues that we have implemented. First, we des
ribe the ben
hmark programsthat we have designed; se
ond, we present our experiments results.6.1. Ben
hmark ProgramsThe s
ienti�
 programming
ommunity has developed a series of ben
hmarks forsequential and parallel languages. Similarly, Gabriel's ben
hmarks and no�b arerespe
tively used by the Lisp and Haskell
ommunities; Feeley [8℄ has produ
ed a se-ries of programs to measure the eÆ
ien
y of MultiLisp. We dramati
ally la
k ben
h-marks spe
i�
ally designed for evaluating the performan
e of distributed garbage
olle
tors.Unfortunately, we la
k real appli
ations to evaluate the overall e�e
t of dg
algorithms. It is a major problem to evaluate algorithms, but we are
on�dentthat su
h appli
ations will be
ome available as platforms su
h as Java rmi be
omewidely used.Instead, we have spe
i�
ally devised two ben
hmarks that exhibit the perfor-man
e of our implemented poli
ies:
y
le highlights the e�e
t of in
 de
 messages,whereas di�use shows the bene�ts of the sorted a
tion queue. The ben
hmarks arean abstra
tion of the behaviour of real programs, where distributed garbage
olle
-tion may have an impa
t on the performan
e and/or robustness of the
omputation.

The �rst ben
hmark
y
le is reminis
ent of the behaviour of mobile agents that mi-grate while keeping a pointer to their home base; making sure that the mobileagent be
omes independent of the lo
ations it has visited is an essential require-ment to ensure its robustness. The se
ond ben
hmark di�use is an abstra
tion ofthe behaviour of a distributed sear
h a
ross di�erent WWW servers, where theseservers
ooperate in order to �nd rea
hable pages with a spe
i�

ontent [18℄. Theproblem in this
ontext is dete
ting the termination of the sear
h, whi
h
an beimplemented by using distributed garbage
olle
tion [31℄; ensuring a prompt dete
-tion of the distributed termination is of paramount importan
e in order to obtainan eÆ
ient system.6.1.1. Cy
le The �rst ben
hmark is aimed at measuring the bene�t of reorgan-ising the di�usion tree, using in
 de
 messages; its des
ription
an be found inFigure 7. We
onsider a �xed number N of pro
esses, forming a
y
le, where thesu

essor of pro
ess PN�1 is pro
ess P0. The �rst pro
ess allo
ates a dg
 pointer,passes it to the se
ond pro
ess, whi
h in turn passes it to the third one, and so on.In order to avoid sending a pointer p to a pro
ess that has already re
eived it, we
reate a new dg
 pointer p0, every N � 1 steps. The pointer p0 is de�ned so as topoint to a newly
reated obje
t, whi
h
ontains the address of the
urrent pointerp; as a result, p is lo
ally rea
hable from p0. Then, we repeat the algorithm with p0.Algorithm parameter: NSequen
e of pro
esses: P0, P1, . . . , PN�1Number of
y
les:
Initial Con�guration:� Create a dg
 pointer p on pro
ess P0; send (p;
;N � 2) to P1.Pro
ess Pi re
eiving (p; j; k):� If k > 0, then send (p; j; k � 1) to pro
ess Pi+1 mod N .� If k = 0 and j = 0, then lose any referen
e to p and terminate.� If k = 0 and j > 0, then
reate a dg
 pointer p0 referring to a new obje
t that
ontains the address of p, and send (p0; j � 1; N � 2) to pro
ess Pi+1 mod N .Figure 7. Cy
le Ben
hmarkLet us analyse the rea
hability of the di�erent pointers. After a dg
 pointerp has been
ommuni
ated su

essively to N � 1 pro
esses, a dg
 pointer p0 is
reated. As p0 is referring to an obje
t that
ontains p, p remains rea
hable as longas p0 is rea
hable. When the iterations terminate, the last dg
 pointer is released,whi
h in turn releases the previous one, and so on. If indire
t referen
e
ountingis used, a dg
 pointer p on pro
ess Pi remains rea
hable as long as its
hild in the

di�usion tree (in pro
ess Pi+1 mod N) remains rea
hable. As a result, the lengthof the rea
hability
hain is N �
 with indire
t referen
e
ounting. Tree rerootingdoes not for
e a pointer p to remain rea
hable when its
hild in the di�usion tree isalso rea
hable. As a result, ex
ept on its owner, any dg
 pointer be
omes garbageas soon as the pointer has been sent remotely and tree rerooting has taken pla
e.
Proc2

Proc1

Proc0

366364362360358356354352350348

A

B

FD

E

G

C

p1

p2

p3

p4

p5

DECINCDEC

INCDEC

DEC

DEC

MUTATOR

INCDEC

Figure 8. Di�usion tree reorganisation (1 unit=1ms)Figure 8 displays an example of exe
ution. It displays the timelines of threepro
esses parti
ipating in the
omputation. Thin gray lines represent mutator'smessages
arrying pointers; bullets represent dg
 pointer
reation. We see that apointer p1 is passed from pro
ess 0 (label A) to pro
ess 1, and then to pro
ess 2,where a new pointer p2 is
reated (label C), passed to 0, and then 1, and so on.Dashed-dotted lines represent in
 de
 messages, whereas dashed lines denotede
 messages. We also see that when pro
ess 2 re
eives the �rst pointer, it sendsan in
 de
 message (label E) to pro
ess 0, its owner, whi
h in turn sends a de
message (label F) to pro
ess 1. The bene�t of this reorganisation is that the pointerp1 is no longer needed on pro
ess 1: it may be �nalized and a de
 message maybe sent from pro
ess 1 to 2 (label G, at time 363). This example is an illustrationthat tree rerooting avoids third party dependen
ies introdu
ed by Piquer's indire
treferen
e
ounting.The
y
le program is typi
al of mobile appli
ations, whi
h for instan
e keep apointer to their home base while they migrate. Every hop of a mobile programpotentially keeps the home base pointer in the send-table of the previous pro
ess.Tree rerooting resets the
ounter for that pointer on the parent, whi
h
an thenre
laim its spa
e.

In su
h a ben
hmark, interesting measurements
on
ern the (i) number ofmessages, (ii) total time (in
luding time to
leanup), (iii) length of
ausality
hains (to be explained in Se
tion 6.3).6.1.2. Di�use In the
y
le program, the mutator's a
tivity is sequential, as itrepeatedly propagates a single pointer to pro
ess after pro
ess. Even though alimited distributed garbage
olle
tion a
tivity may take pla
e in parallel, there is notmu
h room for optimising dg
 a
tivity. Therefore, we designed a se
ond ben
hmarkdi�use, whi
h measures the bene�t of grouping dg
 messages per destination (
f.Figure 9).Algorithm parameter: NSequen
e of pro
esses: P0, P1, . . . , PN�1Width: WDepth: DInitial Con�guration:� Create a dg
 pointer p on pro
ess P0; send (p;W;D) to W randomly
hosenpro
esses.Pro
ess Pi re
eiving (p; w; d):� If d = 0, then lose any referen
e to p and terminate.� If d > 0, then send (p; w; d� 1) to w randomly
hosen pro
esses.Figure 9. Di�use Ben
hmarkWe
onsider a number of pro
essN , su
h that ea
h pro
ess knows about the N�1other pro
esses. A pro
ess re
eives a dg
 pointer and two integers w (width) andd (depth). If d is zero, then the pointer is dis
arded. Otherwise, the same pointeris propagated to w destination pro
esses
hosen randomly, with a depth given byd� 1.This program di�uses a pointer along a tree of a spe
i�ed depth and width, whosepro
esses are de
ided at runtime. We sele
t the width and depth su
h that the totalnumber N of pro
esses is mu
h smaller than wd: as a result, a same pointer willbe
ommuni
ated to a same pro
ess several times during a short period.Let us analyse the rea
hability of the single dg
 pointer p used by the di�useben
hmark. The �rst time a pointer p is sent to w pro
esses, a tree rerooting
antake pla
e. We expe
t ea
h pro
ess rapidly to obtain a
opy of p as we assumed thatthe total number of pro
esses N is mu
h smaller than wd. Indeed, even though nofurther a
tivity is performed by a pro
ess after it has sent a pointer, the frequen
yat whi
h the pointer is sent keeps the pointer rea
hable in a pro
ess for the durationof the exe
ution. When rerooting has taken pla
e, ea
h non-owner pro
ess will be

a dire
t
hild of the owner in the di�usion tree. When the program terminates, nonrea
hability
an be dete
ted by
hild pro
esses and remaining dg
-messages
anbe propagated, whi
h will eventually make the pointer unrea
hable in the owner.The �rst three interesting measures are similar to the ones for
y
le, the last twoare spe
i�
 to this ben
hmark: (i) number of messages, (ii) total time (in
ludingtime to
leanup), (iii) length of
ausality
hains (to be explained in Se
tion 6.3),(iv)
ounters values in a de
 message, (v) number of dg
 pointers in a single de
message.6.2. Measure QualityMeasuring the performan
e of a distributed garbage
olle
tor is not a trivial taskbe
ause, as for any other distributed algorithm, exe
ution may be non-deterministi
due to pro
esses or threads s
heduling and messages propagation. The ben
hmarkdi�use even uses random number generators.The absen
e of a global
lo
k has also in
uen
ed the design of our ben
hmarks.In order to measure a time duration, we made sure that the measures were takenon a single pro
ess. Graphi
al visualisations display timelines for several pro
esses;some of these timelines may be shifted with respe
t to ea
h other be
ause time 0is not de�ned globally.In addition, there are issues that are spe
i�
 to garbage
olle
tion. There isa strong partnership between the distributed garbage
olle
tor and lo
al garbage
olle
tors: it is their
ooperation that provides automati
 distributed memory man-agement. In parti
ular, several dg
 events are triggered by �nalization initiatedby lo
al garbage
olle
tors, when some obje
ts are dete
ted to be garbage. Forinstan
e, sending a de
 message when a pointer is no longer needed or deallo-
ating
ommuni
ation resour
es are both started by �nalizers. Consequently, theperforman
e of our dg
 algorithm
annot be measured independently of the lo
al
olle
tor2.Furthermore, spe
i�
 properties of lo
al garbage
olle
tors
ome into e�e
t. Forinstan
e, in our
ase, the lo
al garbage
olle
tor is in
remental, and needs to allo-
ate obje
ts in order to re
laim existing garbage and a
tivate �nalizers. In orderto
ir
umvent this feature, we
reated a thread whose sole purpose is to allo
ategarbage to be sure that obje
ts that are relevant to our experiments get �nalized.6.3. ComparisonFor ea
h ben
hmark, we display exe
ution runs that give some intuition about thepatterns of message ex
hange and the overall exe
ution time. Then, we extra
t anddis
uss spe
i�
 measurements that are not time related. We have su

essfully runour programs on Linux 2.0 and SunOS 5.6, with
ommuni
ation taking pla
e overa 10Mb/s ethernet. As they all presented similar patterns of
ommuni
ation, wepresent here runs where all pro
esses ran on a single Linux ma
hine.Figure 10 displays the messages that were sent for two runs of the
y
le programs(a) using tree rerooting and (b) using indire
t referen
e
ounting (ir
). Mutator

messages are represented by gray lines. (We invite the reader to download
olouredversions.) In Figure 10 (a), mutator a
tivity is interleaved with dg
 message ex-
hanges and is spread between 2233 and 4629 ms. In Figure 10 (b), mutator a
tivityis between 1850 and 2061 ms. The overall
omputation terminates after 18000 msin Figure 10 (a) but only after 35000 ms in Figure 10 (b).With ir
, the distributed garbage
olle
tion a
tivity does not take pla
e whenthe mutator is pro
eeding, but only starts after the mutator has a

omplished itsexe
ution and has released the last pointer, in the last pro
ess, after the end ofthe last iteration. A sequen
e of de
 messages is then propagated in a dire
tionopposite to the one the pointer was propagated. On the other hand, as previouslyillustrated in Figure 8, dg
 a
tivity is interleaved with the mutator
omputationwhen in
 de
 messages are used. A very large number of dg
 messages may bepropagated at a very early stage in parallel . As a result, we
an see that the timeto
lear all pointer allo
ated by the
y
le ben
hmark is halved when using treererooting.This behaviour may be explained as follows. We
onsider the
on�gurationrea
hed after n iterations of the
y
le ben
hmark, and we assume that the lastpointer in the last pro
ess is still regarded as live. We imagine that all in
 de
and subsequent de
 messages have been propagated. We then obtain a
on�gura-tion su
h that for ea
h iteration of
y
le, there remains a single instan
e of a dg
pointer that is live.Consequently, on
e the last pointer in the last pro
ess is dete
ted to be garbage,a domino e�e
t will follow, freeing the pointer it is referring to, and so on. Thenumber of de
 messages that remains to be propagated is given by the numberof iterations that were
ompleted. On the
ontrary, with ir
, no tree rerootingtook pla
e, and the number of de
 messages is given by the number of iterationsmultiplied by the number of pro
esses in a
y
le.The ben
hmark was designed so as to model mobile
omputations, hopping frompro
esses to pro
esses. If we
onsider the limit of a very high number N and a singleiteration, after all in
 de
 and de
 messages were propagated, there remains asingle de
 message to send, whereas in the
ase of ir
, N messages still have to besent.Figure 10 also shows that using tree rerooting redu
es the total duration of theben
hmark (in this �gure, 1 unit is 1ms). The time to
omplete the exe
utionof the mutator is longer with tree rerooting then with ir
, be
ause some dg
a
tivity takes pla
e (in
luding the a
tivation of lo
al
olle
tors). However, whenusing tree rerooting, about three times more messages are ex
hanged than in ir
,but messages
an be propagated in parallel, whi
h results in an halved exe
utionduration.The absen
e of parallelism when using ir

an be explained in a more formalway. The length of the longest
ausality
hain is substantially higher in the indire
treferen
e
ounting algorithm than in the presen
e of tree rerooting. Causality [17℄is a partial relationship between events, whi
h expresses the
ausal dependen
iesbetween events: if event e1
ausally depends on event e2, then e2 ne
essarily o

ursafter e1. Causal dependen
ies o

ur in the following
ases:

P0

P1

P2

P3

P4

P5

1600014000120001000080006000400020000

P0

P1

P2

P3

P4

P5

35000300002500020000150001000050000

A
oloured version of these �gures is available fromhttp://www.e
s.soton.a
.uk/�lavm/papers/hos
01-
olour.tar.gz.Figure 10. The
y
le ben
hmark with (a) tree rerooting and (b) ir
; one unit is 1ms

1. in a given pro
ess, if a dg
 pointer is su

essively involved in two events e1 ande2, then e2
ausally depends on e1;2. re
eiving a message
ausally depends on sending it;3. if event e
reates a dg
 pointer p pointing at another dg
 pointer p0, then e
ausally depends on the last event in
urred by p0 in the same host.The
ausality relationship is a partial order from whi
h we
an derive a dire
teda
y
li
 graph, starting at the beginning of the exe
ution and
onverging to the lastevent of the
omputation. We
an determine the longest path between the beginningand the end of the
omputation, whi
h we
all the longest
ausality
hain. Thelongest
ausality
hain is an indi
ation of the number of events that have to beexe
uted in sequen
e. The shorter the
hain, the more parallelism we
an observe.

81

243

729

2187

6561

0 10 20 30 40 50 60 70

lo
g

3
sc

al
e

Number of cycle iterations

Length of Causality Chains

Indirect Reference Counting
Diffusion Tree Reorganisation

Figure 11. Length of the longest
ausality
hain for
y
le with 3 pro
essesFigure 11 displays the di�eren
e between the lengths of the longest
ausality
hains in the two algorithms. In order to show that this di�eren
e is proportionalto the number of pro
esses involved in the
omputation, the y axis s
ale is expressedas the logarithm of the number of hosts. We
an see that the spa
e between the
urves remains
onstant as the number of iterations in
reases.The se
ond ben
hmark evaluates the performan
e of a
tion queue strategies. Inorder to gain some intuition, Figure 12 displays the messages that were sent for tworuns of the di�use program with (a) a �fo a
tion queue or with (b) a sorted a
tionqueue. The dg
 proto
ol used in
 de
 messages; a similar result is obtained with

P0

P1

P2

9000800070006000500040003000200010000

P0

P1

P2

450040003500300025002000150010005000

A
oloured version of these �gures is available fromhttp://www.e
s.soton.a
.uk/�lavm/papers/hos
01-
olour.tar.gz.Figure 12. The di�use ben
hmark with (a) �fo and (b) sorted a
tion queues; one unit is 1ms

ir
, be
ause we assumed that wd is large
ompared to the number of pro
esses: asa result, the number of in
 de
 messages is of the same order as the number ofpro
esses, and therefore negligible.The mutator duration is in the range 4500{5000 ms for ea
h run. However overallexe
ution ends when the last pointer is re
laimed, whi
h identi�es the dete
tion ofthe distributed termination. In the
ase of �fo queues, it takes about 10000ms whileit only takes 5000 ms with ordered queues. This phenomenon is explained by thedramati
 redu
tion of the number of dg
 messages when sorted a
tion queues areused.The following table gives a small sample of the number of messages ex
hangedduring runs of the di�use program (again with three pro
esses). The
olumn mu-tator indi
ates the number of messages ex
hanged by the mutator, �fo and sortedrespe
tively indi
ate the number of dg
 messages using the �fo and sorted a
tionqueues. depth width mutator �fo sorted6 3 1092 732 1046 4 5460 3640 394As the width in
reases, dg
 pointers are more frequently sent to pro
esses towhi
h they were previously sent. Consequently, at any given moment, more dg
messages are waiting to be sent to a same destination. The sorted queue strategytakes opportunity of this situation to group several messages into a single one to asame destination.The table shows that in
reasing the width
auses a �vefold in
rease in the numberof messages sent by the mutator. The same in
rease is also observed in the numberof messages sent by the �fo strategy; as a result, the ratio of dg
 messages tomutator messages remains high and
onstant to 66%. On the other hand, thesorted queue strategy generates less messages and only has a fourfold in
rease: thesame ratio diminishes from 9% to 7%.7. Related WorkLiterature on distributed garbage
olle
tion is abundant; we refer to Jones' book [14℄for a
omplete
hapter on the subje
t and the garbage
olle
tion home page [13℄with more than 1600 referen
es. Se
tion 3 gave an overview and a dis
ussion of the
urrent work on distributed referen
e
ounting. Two di�erent approa
hes howeverdeserve a further
omparison. Shapiro, Di
kman and Plainfoss�e [30, 29℄ were the�rst to study the problem of third party dependen
y. However, we �rst draw ourattention to Di
kman who has independently published an algorithm for restru
-turing di�usion trees [7℄ sin
e the �rst publi
ation of our algorithm.Di
kman's algorithm assumes a model of
ommuni
ation based on remote methodinvo
ation, and therefore some implementation details are spe
i�
 to this model of
ommuni
ation. In this se
tion, we
ompare the essen
e of his approa
h with ours.

Di
kman proposes two te
hniques to reorganise di�usion trees, with the e�e
t ofredu
ing third party dependen
ies (Piquer's zombie pointers).The �rst one
onsists of rerooting a subtree when the root of the subtree per-forms a remote method invo
ation to the owner (the root of the di�usion tree).The request for rerooting is piggy-ba
ked on the method
all. When the result isreturned, the owner's referen
e
ounter is in
remented, and the owner is made theparent of the pro
ess that initiated the
all. A de
 message has to be sent by thererooted pro
ess to its previous parent, in order to de
rease its previous parent'sreferen
e
ounter. It is important to observe that the de
 message
an only be sentafter the termination of the remote method invo
ation, otherwise ra
e
onditionsmay arise similarly to the na��ve extension of referen
e
ounting. Consequently, longpro
essing during the remote method invo
ation will potentially prevent the earlierrelease of resour
e on the previous parent. Similarly to Di
kman's algorithm, we
ould piggy-ba
k our in
 de
 message to a remote method invo
ation, but ourde
 message may be sent earlier, allowing an early release of resour
es. Further-more, our tree rerooting te
hnique may pro
eed even though no remote methodinvo
ation is performed on the owner.The se
ond te
hnique proposed by Di
kman redu
es the depth of the tree in aless radi
al manner. When a pro
ess holding a referen
e to an obje
t re
eives anew
opy of the referen
e, ir
 and our algorithm di
tate that it should send ade
 message to the sender of the message. Instead,
hoosing between the previousparent and the message sender, Di
kman sends a de
 message to the pro
ess thathas the deeper depth, in e�e
t grafting the
urrent subtree to the pro
ess withthe shallower depth. The realisation of this algorithm turns out to be non trivialbe
ause depths of pro
esses are not propagated instantaneously, and therefore thede
ision to
hange parent may be made on possibly out-of-date depth information.We have shown that tree rerooting introdu
es more parallelism by redu
ing thelongest
hain of
ausality; Di
kman's tree stru
turing redu
es
hains of
ausality,but not as mu
h as tree rerooting. Therefore, besides the risk of in
reasing the
hain by a wrong de
ision to restru
ture the tree, his te
hnique does not redu
e the
ost of dg
 as radi
ally as ours. However, we believe that it still has some use whenthe owner is not dire
tly rea
hable, be
ause for instan
e hidden behind a �rewall.Our algorithm des
ribes a spe
trum of algorithm from eager a
tivation of treererooting to its lazy a
tivation whi
h leads to indire
t referen
e
ounting. Di
kmanintrodu
es a further dimension by allowing a
hoi
e in the tree re-stru
turing: if thereorganisation is
loser to the root, it allows more parallelism in the dg
 a
tivityand it redu
es the number of third party dependen
ies.Shapiro, Di
kman and Plainfoss�e [30, 29℄ address the problem of distributedgarbage
olle
tion for mobile obje
ts. Our approa
h separates distributed refer-en
e
ounting from the problem of obje
t migration, for whi
h we devised a spe
i�
algorithm [22℄. Our
omparison therefore fo
uses on non-mobile obje
ts. Theyintrodu
e the notion of SSP (stub-s
ion pair)
hains, whi
h essentially is their rep-resentation of di�usion trees. They allow tree rerooting, whi
h they
all
hainshort-
utting , through a method similar to Di
kman's �rst te
hnique, whi
h piggy-ba
ks information to a method invo
ation to the owner. However, unlike Di
kman's

algorithm, a de
 is not immediately sent to the previous parent, but this a
tion isleft to the distributed garbage
olle
tor adopting a spe
i�
 proto
ol to
lear unusedstubs and s
ions. Their approa
h su�ers from the same drawba
ks as Di
kman'salgorithm be
ause tree rerooting remains dependent on the mutator a
tivating re-mote method
all on the owner. Baggio [1℄ showed that SSP
hains
ould adaptto the network
on�guration. In the absen
e of dire
t
onne
tivity, e.g. behinda �rewall, short-
utting does not have to take pla
e. A similar
exibility is alsopresent in our algorithm be
ause tree rerooting is optional.8. Con
lusionThe garbage
olle
tor we present in this paper is based on distributed referen
e
ounting. As other referen
e-
ounting algorithms, ours is unable to re
laim dis-tributed
y
les. However, we should observe that there is a range of appli
ationsthat do not
reate distributed
y
les. In parti
ular, Tel and Mattern [31℄ haveshown that the problem of termination in distributed systems is equivalent to dis-tributed g
. Referen
e
ounting
an be used be
ause pro
esses form a hierar
hy.Similarly, groups [25℄ have a hierar
hi
al organisation and
an be referen
e
ounted.This paper
on
ludes the investigation of an algorithm for distributed garbage
olle
tion based on referen
e
ounting. This algorithm has been spe
i�ed, andits
orre
tness has been proved me
hani
ally. In this paper, we have des
ribed a
omplete implementation and evaluated some of its performan
e aspe
ts. The
on-
lusion of our experiments is that tree rerooting o�ers more parallelism in the dg
as
ausality
hains be
ome shorter and that grouping dg
 messages redu
es dg
traÆ
. A
omplete performan
e evaluation would require real-world appli
ationsusing distributed g
, but we
urrently la
k su
h appli
ations. Future work
on
ernsa Java implementation of the algorithm, whi
h would provide a multi-lingual envi-ronment, using Nexus/Globus as a
ommuni
ation layer and the NexusRMI stub
ompiler [4℄. In order to support garbage
olle
tion of mobile obje
ts, a furtherstudy is required to understand the intera
tions between tree rerooting and obje
tmigration [22℄.A
knowledgementsThe author is grateful to Ri
hard Jones, whose
areful reading and suggestions ledto various improvements of the te
hni
al
ontents and presentation of the paper.The author also wishes to a
knowledge Danius Mi
haelides, Christian Queinne
,and the anonymous referees for their useful
omments.Notes1. Safe approximation means that if an obje
t is globally rea
hable, then it is also globally rea
h-able a

ording to the safe approximation. As a result, when the implementation deallo
atesan obje
t, it is guaranteed that it is no longer globally rea
hable.

2. In general, dg
 a
tivity
annot be measured independently of the lo
al
olle
tor a
tivity.However, in the parti
ular
ase of the
y
le program using indire
t referen
e
ounting, it isknown that on
e the referen
e
ounter of a pointer p1 be
omes zero, the pointer p2 pointedby p1 has lost its last a
tive referen
e; therefore a de
 message may be sent immediately forp2, without waiting for the �nalizer a
tivation. Therefore by using knowledge that is spe
i�
to the problem, some ben
hmarks may be improved. However, we did not implement su
h avariant be
ause it does not remain valid for other dg
 strategies.Referen
es1. Aline Baggio. System support for transparen
y and network-aware adaptation in mobileenvironments. In ACM Symposium on Applied Computing spe
ial tra
k on Mobile ComputingSystems and Appli
ations, Atlanta, Georgia, 1998.2. David I. Bevan. Distributed Garbage Colle
tion using Referen
e Counting. In PARLEParallel Ar
hite
tures and Languages Europe, volume 259 of Le
ture Notes in ComputerS
ien
e, pages 176{187. Springer-Verlag, June 1987.3. Andrew Birrell, David Evers, Greg Nelson, Susan Owi
ki, and Edward Wobber. DistributedGarbage Colle
tion for Network Obje
ts. Te
hni
al Report 116, Digital Systems Resear
hCenter, 130 Lytton Avenue, Palo Alto, CA 94301, De
ember 1993.4. Fabian Breg and Dennis Gannon. Compiler support for an RMI implementation using Nexus-Java. Te
hni
al report, Indiana University, 1997.5. George E. Collins. A Method for Overlapping and Erasure of Lists. Communi
ations of theACM, 3(12):655{657, De
ember 1960.6. Peter Di
kman. Optimising Weighted Referen
e Counts for S
alable Fault-Tolerant Dis-tributed Obje
t-Support Systems, 1992.7. Peter Di
kman. Di�usion Tree Redire
tion for Indire
t Referen
e Counting. In Tony Hosk-ing, editor, Pro
eedings of the Se
ond International Symposium on Memory Management,Minneapolis, MN, O
tober 2000. ACM.8. Mar
 Feeley. An EÆ
ient and General Implementation of Futures on Large S
ale Shared-Memory Multipro
essors. PhD thesis, Brandeis University, 1993.9. Ian Foster, Carl Kesselman, and Steven Tue
ke. The Nexus Approa
h to Integrating Mul-tithreading and Communi
ation. Journal of Parallel and Distributed Computing, 37:70{82,1996.10. H.-J.Boehm and M. Weiser. Garbage Colle
tion in an Un
ooperative Environment. Software{ Pra
ti
e and Experien
e, 18(9):807{820, 1988.11. R.L. Hudson, R. Morrison, J.E.B. Moss, and D.S. Munro. Garbage Colle
ting the World:One Car at a Time. In Pro
eedings of OOPSLA'97, Atlanta, USA, 1997.12. Java Remote Method Invo
ation Spe
i�
ation, November 1996.13. Ri
hard Jones. The Garbage Colle
tion Page.http://www.
s.uk
.a
.uk/people/staff/rej/g
.html.14. Ri
hard Jones and Rafael Lins. Garbage Colle
tion. Algorithms for Automati
 Dynami
Memory Management. Wiley, 1996.15. C.-W. Lermen and D. Maurer. A Proto
ol for Distributed Referen
e Counting. In Lisp andFun
tional Programming, pages 343{354, 1986.16. Luigi V. Man
ini and S. K. Shrivastava. Fault-tolerant referen
e
ounting for garbage
ol-le
tion in distributed systems. Computer Journal, 34(6):503{513, De
ember 1991.17. Friedemann Mattern. Virtual time and global states of distributed systems. In M. Cos-nard et al., editors, Pro
eedings of the International Workshop on Parallel and DistributedAlgorithms, pages 215{226, Amsterdam, 1989. Elsevier S
ien
e Publishers.18. Danius Mi
haelides, Lu
 Moreau, and David DeRoure. A UniformApproa
h to Programmingthe World Wide Web. Computer Systems S
ien
e and Engineering, 14(2):69{91, 1999.19. Lu
 Moreau. Corre
tness of a Distributed-Memory Model for S
heme. In Se
ond Interna-tional Europar Conferen
e (EURO-PAR'96), number 1123 in Le
ture Notes in ComputerS
ien
e, pages 615{624, Lyon, Fran
e, August 1996. Springer-Verlag.

20. Lu
 Moreau. A Distributed Garbage Colle
tor with Di�usion Tree Reorganisation and Obje
tMobility. In Pro
eedings of the Third International Conferen
e of Fun
tional Programming(ICFP'98), pages 204{215, September 1998. Also in ACM SIGPLAN Noti
es, 34(1):204-215,January 1999.21. Lu
 Moreau. Hierar
hi
al Distributed Referen
e Counting. In Pro
eedings of the FirstACM SIGPLAN International Symposium on Memory Management (ISMM'98), pages 57{67, Van
ouver, BC, Canada, O
tober 1998. Also in ACM SIGPLAN Noti
es, 34(3):57{67,Mar
h 1999.22. Lu
 Moreau. Distributed Dire
tory Servi
e and Message Router for Mobile Agents. S
ien
eof Computer Programming, 39(2{3):249{272, 2001.23. Lu
 Moreau, David DeRoure, and Ian Foster. NeXeme: a Distributed S
heme Based onNexus. In Third International Europar Conferen
e (EURO-PAR'97), volume 1300 of Le
tureNotes in Computer S
ien
e, pages 581{590, Passau, Germany, August 1997. Springer-Verlag.24. Lu
 Moreau and Jean Duprat. A Constru
tion of Distributed Referen
e Counting. Te
hni
alReport RR1999-18, E
ole Normale Sup�erieure, Lyon, Mar
h 1999.25. Lu
 Moreau and Christian Queinne
. Design and Semanti
s of Quantum: a Language to Con-trol Resour
e Consumption in Distributed Computing. In Usenix Conferen
e on Domain-Spe
i�
 Languages (DSL'97), pages 183{197, Santa-Barbara, California, O
tober 1997.26. Lu
 Moreau, Vi
tor Tan, and Ni
holas Gibbins. Transparent Migration and Ownership ofMobile Agents. Te
hni
al report, University of Southampton, 2000.27. Jos�e M. Piquer. Indire
t Referen
e Counting: A Distributed Garbage Colle
tion Algorithm.In Parallel Ar
hite
tures and Languages Europe (PARLE'91), pages 150{165, 1991.28. Jos�e M. Piquer. Indire
t Distributed Garbage Colle
tion: Handling Obje
t Migration. ACMTransa
tions on Programming Languages and Systems, 18(5):615{647, September 1996.29. David Plainfoss�e and Mar
 Shapiro. A Survey of Distributed Garbage Colle
tion Te
hniques.In Henry G. Baker, editor, International Workshop on Memory Management (IWMM95),number 986 in Le
ture Notes in Computer S
ien
e, pages 211{249, Kinross, S
otland, 1995.30. Mar
 Shapiro, Peter Di
kman, and David Plainfoss�e. SSP Chains: Robust, DistributedReferen
es Supporting A
y
li
 Garbage Colle
tion. Rapport de Re
her
he 1799, INRIA-Ro
quen
ourt, November 1992.31. Gerard Tel and Friedemann Mattern. The Derivation of Distributed Termination Dete
-tion Algorithms from Garbage Colle
tion S
hemes. ACM Transa
tions on ProgrammingLanguages and Systems, 15(1):1{35, January 1993.32. P. W. Trinder, K. Hammond, J. S. Mattson, A. S. Partridge, and S. L. Peyton Jones. GUM: aportable parallel implementation of Haskell. In Pro
eedings of the SIGPLAN'96 Conferen
eon Programming Language Design and Implementation (PLDI'96), pages 79{88, 1996.33. Peter Van Roy. On the separation of
on
erns in distributed programming: Appli
ation todistribution stru
ture and fault toleran
e in Mozart. In Fourth International Workshop onParallel and Distributed Computing for Symboli
 and Irregular Appli
ations (PDCSIA 99),Sendai, Japan, July 1999. World S
ienti�
.34. Paul Watson and Ian Watson. An EÆ
ient Garbage Colle
tion S
heme for Parallel Com-puter Ar
hite
tures. In PARLE Parallel Ar
hite
tures and Languages Europe, volume 259of Le
ture Notes in Computer S
ien
e, pages 432{443. Springer-Verlag, June 1987.Re
eived DateA

epted DateFinal Manus
ript Date

