Trust Relationships in a Mobile Agent System

Hock Kim Tan and Luc Moreau

hkvt99r@ecs.soton.ac.uk, L.Moreau®@ecs.soton.ac.uk
Department of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, UK

Abstract. The notion of trust is presented as an important component
in a security infrastructure for mobile agents. A trust model that can
be used in tackling the aspect of protecting mobile agents from hostile
platforms is proposed. We define several trust relationships in our model,
and present a trust derivation algorithm that can be used to infer new
relationships from existing ones. An example of how such a model can
be utilized in a practical system is provided.

1 Introduction

Mobile agent technology has been identified as a new paradigm that allows flex-
ible structuring of distributed computation over wide-scale networks such as the
Internet [11]. One of the main concerns currently impeding the wider acceptance
and use of mobile agents, particularly in application areas such as e-commerce
[6], is the issue of security. Farmer et. al [4] provides an early discussion of the se-
curity problems and requirements unique to mobile agents, as well as the types
of security goals that are achievable. A more recent overview of mobile agent
security issues, along with a comparative discussion of the current techniques
available to address them, can be found in [2], [13] and [8]. In general, we can
divide mobile agent security into two broad areas : host security (protecting the
host platform from a malicious agent) and code security (protecting the mobile
agent from a malicious host platform).

In this paper, we discuss some of the techniques available for addressing the
code security issue and suggest that the manner in which current techniques are
implemented may not scale well for a security infrastructure that encompasses a
large number of highly mobile agents. We identify trust as an important compo-
nent of a security infrastructure, and develop a security framework for a mobile
agent system which incorporates a simple trust model. Our model is motivated by
the similiarities between the manner in which distributed authentication is han-
dled in a public key infrastructure, and the way code security could be handled
in a security infrastructure for mobile agents. Existing work on trust relation-
ships within the context of a public key infrastructure is used as a background
to define trust relationships specific to a mobile agent system. We then show
how new trust relationships may be derived from existing ones in our model and
present an algorithm to formalize our approach.

The main contributions of this paper are :

— Identifying trust as an important component in a security infrastructure to
handle code security;

— Proposing a security framework which incorporates the notion of trust through
the delegation of a code security technique;

— Adapting an existing trust model for a public key certificate system to use
in conjunction with the proposed security framework.

An overview of the paper is as follows. In Sect. 2, we discuss current code
security techniques and suggest the need to incorporate trust. We develop our
trust model and security framework through analogies of the use of trust within
a public key infrastructure in Sect. 3. Trust relationships within this model is
detailed in Sect. 4, while Sect. 5 describes the trust derivation algorithm that we
use. Sect. 6 provides an intuitive discussion of how such a model can be deployed
in a mobile agent system. Finally, Sect. 7 concludes the paper with a summary
and identifies avenues for possible future work.

2 DMobile Code Security Techniques

Host security is a well researched area for which a number of viable techniques
have already been developed. These include mechanisms such as sandbox secu-
rity in the Java programming language [5], software fault isolation [19], proof
carrying code [12] and type safe languages [18]. Code security is however more
problematic, since this aspect has only come into prominence recently as a se-
curity problem unique to mobile code. Most solutions proposed so far have been
conceptual, and it is likely that this area will be crucial in determining the
future viability of mobile agent applications in scenarios such as distributed
e-commerce.

Some of the more well known code security techniques include code obfus-
cation [7], encrypted functions [14], tamper-proof hardware [20] and execution
tracing [17]. The reader is referred to [8],[9] for a more thorough overview and
classification of the code security techniques currently available. Execution trac-
ing, the technique that we employ in the construction of our security framework,
involves the detection of unauthorized modifications of an agent through the
faithful recording of the agent’s behavior during its execution on each host plat-
form. This technique requires each host platform involved to create and retain a
log or trace of the operations performed by the agent while resident there. Upon
return of the mobile agent, the agent owner may (if she suspects that the mobile
agent was not correctly executed) request that the various host platforms submit
their individual traces. These are then contrasted against a simulated execution
of the original mobile agent (using the information contained in the traces) to
detect possible deviations in execution of the agent.

All of these techniques attempt to safeguard the mobile agent with regards
to one or more security aspects. For purposes of discussion, we provide a simple
classification for the security aspects that these techniques might seek to protect

— Ezecution integrity. This refers to the correct transformation of the current
state of the mobile agent to a new state, in accordance with the semantics of
the mobile agent code. To accomplish this, it is also necessary to ensure that
the correct portion of the code is executed in order to affect the required
transformation.

— State/code integrity. The state and code of the mobile agent need to be
protected from invalid manipulation.

— State/code visibility. It may be necessary to permit only certain parts of the
state and code to be made visible to the host platform since other parts may
contain sensitive information.

— Resource provision. It is also important to gurantee the provision of necessary
system resources (within the constraints of the resource and security policy of
the host platform) to the mobile agent in order for it to execute successfully.

In general, code security techniques only address one or a few security aspects;
those that attempt to address every single aspect conceivable are likely to be
found deficient in certain aspects upon closer scrutiny. In view of this, it is
likely that a future security infrastructure that addresses the code security issue
comprehensively will need to incorporate a combination of techniques, rather
than a ubiquitous “one-shoe-fits-all” solution. What is therefore required is a
mechanism for selecting the appropriate technique or combination of techniques
to use, depending on the execution environment and targeted application.

For example, in his discussion of the tamper-proof hardware approach, Yee
[22] suggests the use of trust to negate the requirement for hardware to be
installed on all execution environments. It could be permissible to run a mobile
agent in a software-only environment (using other purely software based code
security techniques), if the deployers of the agent have a certain amount of trust
in the that environment. Tamper-proof hardware would only need to be installed
in environments whose behaviour or reputation is unknown to the deployers.

Certain code security techniques, such as execution tracing, require active
intercession on behalf of the agent deployer (the platform deploying the mobile
agent will need to verify the execution trace submitted back by the host platform
executing the agent). If the deploying platform is the only entity capable of
performing such a verification, it will quickly become overwhelmed when the
number of mobile agents and corresponding verifications required increase. In
order for such a system to scale, the deploying platform must be able to delegate
some of its verification activities to other entities in the system. Again, some
notion of trust between entities is required for the deploying platform to delegate
its activities in this manner.

A more subtle point to be considered is the action of censuring a host platform
that has been detected in the act of illegally manipulating some portion of the
mobile agent’s code or state (i.e. violating state integrity). In most literature
describing code security techniques that detect such violations, the assumption is
that uniform punitive action is taken towards all perpetrators. On reflection, we
see that this inflexibility might not be desirable in every situation. For example,

in e-commerce scenarios, it is possible to acquire additional economic interests
or benefits that result from constant interaction with a trusted platform, which
may not be readily available from untrusted platforms. Thus when we discover
that a trusted platform has violated an agent’s integrity, we do not immediately
bar our agents from visiting that platform (as might have been the case with
an untrusted platform). Instead we could permit migration, but with possibly
a more comprehensive code security technique applied. Trust thus provides us
with the basis for deciding on a suitable course of action to be taken in dealing
with the violation of the agent in the event that such flexibility is advantageous
in a given situation.

A large number of agent frameworks, particularly those in e-commerce sce-
narios, involve the development and evolution of complex trust relationships
between the various participating entities. The incorporation of the notion of
trust in a security framework allows the development of trust models and met-
rics to express the nature and flow of trust resulting from the interactions of
these entities. Such models and metrics also permit quantitative comparison be-
tween different frameworks that may provide useful guidelines on their future
development.

We can now identify several points which we believe make a sound argument,
for the inclusion of the notion of trust as part of an overall security framework
when addressing mobile agent code security

— it provides a basis for deciding on the particular code security technique
or combination of techniques to be deployed in a particular environment or
application;

— it permits the scalability of a system employing certain code security tech-
niques through the delegation of specific security activities;

— it allows flexibility in deciding on the appropriate punitive action to under-
take towards perpetrators;

— it allows development of trust models and metrics that express the trust
dynamics in e-commerce agent frameworks

The benefits of using incorporating trust and using trust models in a dis-
tributed system in general [16] and a mobile agent system in particular [15] have
been identified. Certain code security techniques, such as tamper-proof hardware,
also incorporate the notion of trust, although in an implicit manner. However, to
date, we are not aware of any work that develops a trust model explicitly in the
context, of a mobile agent system by defining the trust relationships possible in
such a system. In the next section, we demonstrate how a simple security frame-
work for a mobile agent system can be developed by adapting the trust model
used in a distributed authentication system such as a public key infrastructure.

3 Framework for Code Security in a Mobile Agent
System

A public key infrastructure (PKI) [1] is essentially a system that provides all
the necessary maintenance activities associated with the complete life cycle of
certificates, which are one of the key elements of a distributed authentication
service [10]. The main issue in such a service is ensuring that a public key is
correctly associated with the identity of an entity that owns the corresponding
private portion. PKI systems involve a trusted third party termed a certificate
authority (CA) that is responsible for verifying name-key bindings through the
issuance of certificates. On a large scale basis, a single CA would be incapable
of handling the name-key binding activity for all users; thus the need for several
CAs arises. In such a situation, an end-user may not be able to immediately
identify a certificate received, and may require that the certificate be verified in
turn by a CA that he or she is familiar with. This in effect creates a certification
path through which CAs verify the certificates of other CAs all the way up to
a root authority, for which a user would be acquainted with. The certification
path thus reflects the propagation of trust between different CAs and users in
the system.

We can now begin to develop a security framework for a mobile agent sys-
tem based on the trust model just described. We do not claim that this model
is a definitive one as far as mobile agent systems are concerned; rather it pro-
vides a guideline on how a more comprehensive model can be developed. Code
security techniques have been classified in literature surveys into detection (ex-
ecution tracing, state appraisal) and prevention mechanisms (code obfuscation,
encrypted functions). Prevention mechanisms seek to prevent meaningful manip-
ulation of agent code and hence are the most reliable, although they are usually
very complicated and expensive in deployment. They assume a very simplistic
trust model; no entity is trusted at all and maximal measures are undertaken to
prevent any possible security breach. Detection mechanisms, on the other hand,
are more easily deployable since they merely seek to detect possible violations in
the agent. More importantly, when such violations are detected, the nature and
severity of the violations allow us to determine the different levels of trustwor-
thiness in the platforms concerned. Based on this consideration, we can select an
appropriate combination of code security techniques (in addition to the detection
mechanism) that needs to be applied on that particular host platform, in line
with the original motivations for the use of trust in a code security framework.

With regards to this, we choose to employ execution tracing as our core code
security technique in the framework that we are about to describe. This technique
is well developed and to date its only criticisms are related to performance and
scalability concerns. There are other detection mechanisms available such as
forward integrity [22] and state appraisal [3]; execution tracing however offers
the important advantage of being able to detect tampering of any part of the
agent, as opposed to only specific portions, as is the case with the former two
mechanisms. To improve scalability, execution tracing requires the introduction
of additional entities to undertake the verification process of execution traces

on behalf of the deploying platform (as mentioned in the previous section). In
such an instance, these entities assume the role of a trusted third party, not
unsimiliar to the role of the CA in a PKI. We refer to this trusted third party
as a verification server.

In a PKI, the task of associating the public key correctly with an identity (a
security requirement for any entity before it can commence utilizing the key),
has essentially been delegated from the entity to the CA. In our system, the
verification server functions as an intermediary between an agent owner platform
(the platform from which the mobile agent is initially launched from) and a host
platform. The task of verifying the correct execution of the mobile agent on
the host platform has now been delegated from the agent owner platform to
the verification server. In addition, verification servers may delegate execution
verification activities to other verification servers in the system, analogous to the
manner in which CAs verify certificates of other CAs in a PKI.

Trust is generally established with regards to a specific activity, rather than
as an unconstrained notion. For example, it is too general to simply state that
an entity A trusts another entity B; it would be more accurate to say that A
trusts B with respect to a certain activity. The context of trust used in a PKI
is generally with respect to the name-key binding activity (other activities may
include secure key pair generation, in the event the CA is responsible for key
generation as well). In our system, we employ the classification of security aspects
defined in Sect. 2 (execution integrity, state/code integrity, etc) as a context for
establishing trust. Since we only utilize the execution trace technique, the two
main activities would be execution integrity and state/code integrity.

4 A Trust Model for Mobile Agents

One of the seminal papers to discuss the idea of trust relationships in a dis-
tributed authentication system is [21]. There are two types of trust relationships
introduced in this paper :- direct trust and recommended trust. Direct trust is
analogous to the trust obtained between a CA and an entity which generates
a public key pair. In this instance, the CA can directly verify the identity of
this entity and issue a certificate binding this identity to the entity’s public key.
Recommended trust is analogous to the trust obtained between an entity that
has just received a certificate and the CA that issued it. In this instance, the
entity has no way of determining directly that the public key in the certificate is
bound correctly to the identity contained within, and trusts the CA to perform
this activity for it. A trust derivation algorithm (also presented in [21]) can be
used to generate new derived trust relationships from an existing set of direct
trust and recommended trust relationships existing in the system.

To achieve a fine grained trust model, we introduce the idea of partitioning
a complete mobile agent into several smaller, self-contained state and code com-
ponents. We believe that in the future, mobile agents will be complex pieces of
code composed by their deployers from reusable components that are distributed
by third party code producers. In this instance, we can selectively apply differ-

ent code security techniques to different state and code components, and thus
establish trust relationships of different contexts with respect to different code
and state components. Of course in our model, we only employ the execution
trace technique, which we can still apply selectively to different code and state
components.

4.1 Trust and belief relationships in a mobile agent system

Before defining the trust and belief relationships in our system, we first define a
state space encompassing all the relevant entities

OP={A B, ...} (Set of agent owner platforms)
VSP={VSy, VSi, ... } (Set of verification servers)
HP ={Hy, Hi, ...} (Set of host platforms)
SC={so,81, ...} (Set of code/state components)
SO ={xp,21, ... } (Set of security objectives)

We assume that all mobile agents in the system can be composed from a
combination of predefined set of code and state components made available by
third party code producers. Agent owner platforms are platforms where mobile
agents are launched from. These agents will migrate through an itinerary of
host platforms before terminating or returning to their respective agent owner
platforms. Execution tracing of these mobile agents is performed by a set of veri-
fication servers distributed throughout the system. Trust and belief relationships
between entities in the system are established with respect to a certain type or
class of activities; this corresponds to the classification of security aspects men-
tioned earlier.

) V'So trusts.exe Ho with (X,S) (Server-host trust)
) A trusts.exe Ho with (X,S) (Owner-host trust)
) A trusts.ver V.Sy with (X,8) (Owner-server trust)
) V' So trusts.ver V.S1 with (X,8) (Server-server trust)
) A believes.exe Ho with (X,S) (Owner-host belief)
) A believes.ver V' So with (X,S) (Owner-server belief)

where A € OP, X € SO, S C SC, VSo, VS, € VSP, Ho € HP

(1
(2
(3
(4
(5
(6

Fig. 1. Basic trust and belief relationships

We now describe the basic trust and belief relationships (Figure 1) that
are possible between the three different types of entities in the system (host
platforms, agent owner platforms and verification servers). The first relationship,
server-host trust, represents the trust that a verification server, V'S, has in a host
platform, Hy, to undertake the transformation of the state components specified
in S correctly with respect to a security objective X'. S and X are thus constraints
on the context for which this relationship is applicable. We give this type of trust

relationship the term ezecution trust. A server-host trust relationship is initially
established when a verification server successfully validates the execution trace
submitted by a host platform. This execution trace pertains to a mobile agent
composed of the components S, undertaken by the verification server to test the
reliability of the host platform in question.

Owner-host relationship represents the trust an agent owner platform, A,
has in a host platform, Hy, to undertake the transformation of the code/state
components specified in S correctly with respect to a security objective X'. Since
verification servers are the only entities in our system possessing the functionality
necessary to ascertain execution correctness, this type of relationship cannot be
established directly by an agent owner platform. It can only be derived from
other existing trust relationships, as will be demonstrated later.

Owner-server trust relationship refers to when an agent owner platform, A,
trusts a verification server, V' Sy to undertake correct verification of the transfor-
mation of state components specified in S, with respect to a security objective
X. This trust relationship is analogous to the idea of recommendation or rec-
ommended trust as described in [21]. In our context, we shall give it the term
verification trust. Verification trust is established directly when an agent owner
platform decides to delegate the task of verifying correct execution of its mobile
agents to a verification server. Once such a relationship is in place, the agent
owner platform will supply the verification server with the necessary information
and resources (for example, a copy of all mobile agents launched by the agent
owner) to undertake the verification successfully.

Server-server trust relationship is interpreted to mean that a verification
server, V.Sy, trusts another verification server, V.57 to undertake verification of
the correct transformation of state components, specified in S, with respect to a
security objective X'. This could result from a verification server delegating the
responsibility of verifying certain host platforms to other verification servers in
the system, and is thus a relationship that can be established directly.

All of these trust relationships, with the exception of owner-host trust, ex-
press trust on the basis of explicit actions (or the results of those actions) un-
dertaken by entities involved in the relationship. Sect. 6 elaborates further on
how these relationships are initially established and how they might evolve over
a period of time. We also require another type of relationship to express the as-
sumptions and/or beliefs that an entity has about another entity in the system.
For example, an agent owner platform, A, may have reason to believe (based on
knowledge acquired from an external source) that host platform H,, is capable
of executing S correctly with respect to X. A is not capable of directly verifying
the accuracy of this belief (since only verification servers possess the function-
ality necessary to verify execution traces from host platforms). This belief is
thus expressed in the form of a owner-host belief relationship (statement 5). The
idea of a server-host and a server-server belief relationship is equally valid in this
context; they are not included in order to simplify the trust derivation algorithm
that we develop in the next section.

It is important to note that trust and belief relationships are not sym-
metric in our system (i.e V. Sy trusts.ver V.S; does not necessarily imply that
V' Sy trusts.ver VSp). Also, we did not introduce the idea of trust originating
from a host platform (i.e. the host platform is the terminating point for an exe-
cution trust relationship). This could be useful if we wish to extend our model to
encompass the issue of host security (i.e. the host needs to be able to trust that
agent owner platforms do not dispatch malicious agents to its environment), but
we do not address this here.

In the next section, we explore how we can combine these basic trust and
belief relationships to produce new trust and belief relationships and present a
trust derivation algorithm to demonstrate our approach.

5 Deriving New Trust Relationships

The different ways in which new trust and belief relationships can be formed from
existing ones is illustrated in Figure 2. For the server-host and server-server trust
derivations, the intersection of the code/state component constraint sets S; and
Sz in the derived relationship, indicates that the derived relationship should be in
the context of the code/state components common to both relationships that it
is derived from. Owner-host and owner-server trust derivations will, in addition,
involve owner-host and owner-server belief relationships as well. In this case, we
only derive a new trust relationship if there already exists a belief relationship
between the agent owner platform and the host platform or verification server
concerned. Again, this new relationship will be in context of the code/state
components common to both the two initial relationships as well as the belief
relationship (81 n 82 n 83)

Note that we do not include the idea of inferring new trust or belief relation-
ships by using an existing belief relationship as a starting point. This is due to
the fact that while trusting behaviour is transitive (resulting for example, from
delegation of the verification activity in the case of server-server or server-host
trust derivations), trusting belief is not. However the context of an existing belief
relationship can be altered independently by an agent owner platform depending
on the results of the new trust relationships derived. For example, if in deriving
a new owner-host trust relationship, S; and Sy are both supersets of Sz, then the
agent, owner platform could choose to expand the constraints of its current belief
relationship with the host platform from S3 to S; U Ss instead. This ensures
that the next time a trust relationship is derived from the existing owner-server
and server-host relationships, a wider constraint can be achieved.

5.1 Verification path

It is important to note the exact sequence in which the existing relationships
are combined to provide a context for the new trust relationships obtained. To
achieve this, the idea of a verification path is introduced. A verification path
refers to a sequence of entities (verification servers, agent owner platforms or

Deriving server-host trust

if there exists relationships of the form
a) V.Sy trusts.exe Ho with (X,S1) b) VSo trusts.ver V.S1 with (X,S2)
then we can infer a new relationship of the form
V'So trusts.exe Ho with (X,81 N S2)

Deriving server-server trust

if there exists relationships of the form
a) V. Sy trusts.ver V.S1 with (X,81) b) VS: trusts.ver VSs with (X,8S2)
then we can infer a new relationship of the form
V'So trusts.ver V.S with (X,81 N Ss)

Deriving owner-host trust

if there exists relationships of the form
a) V. Sy trust.eve Ho with (X,S1) b) A trusts.ver V.Sy with (X,S2)
and if there exists a belief relationship of the form
c) A believes.exe Ho with (X, Ss3)
then we can infer a new trust relationship of the form
A trusts.exe Ho with (X,81 N S2NS3)

Deriving owner-server trust

if there exists relationships of the form
a) A trusts.ver V.So with (X,S1) b) V. So trusts.ver V.S; with (X,Sz)
and if there exists a belief relationship of the form
c) A believes.ver VS1 with (X,Ss)
then we can infer a new trust relationship of the form
A trusts.wer VS with (X, 51N S2 N S3)

Fig. 2. Deriving new trust relationships

host platforms) involved in the derivation of new trust relationships. Consider
for example, the following trust relationship statements

(a) V. Sy trusts.ver V.Sy with...

(b) VS; trusts.ver V.S with ...

(¢c) VSs trusts.exe Ho with ...

(a) and (b) can be combined to obtain a new trust relationship :

(d) V'Sp trusts.ver V.Sy with ...

The verification path at this stage involves the entities V' Sy, V.51 and VS,
in that given sequence. d) and c) can subsequently be combined to obtain a new
trust relationship :

(e) VSy trusts.exe Ho with ...

The verification path sequence now involves the entities V' Sy, V'S1, V'S2 and
Hy. Further derivation of new trust relationships from (e) will involve expanding

the verification path in a similiar manner. The idea of a verification path will be
used in the algorithm that we develop next.

5.2 Trust Derivation Algorithm

We can now detail a trust derivation algorithm (Figure 3), which we extend
from the one presented in [21] by incorporating the idea of using beliefs in the
process of deriving new trust relationships. The algorithm demonstrates how the
derivations just explained can be systematically applied in a system described
by an initial set of trust relationships. The goal of this algorithm is to generate
from this initial set of trust relationship expressions, a set of tuples HS, that
describe owner-host trust relationships that exist between any given agent owner
platform, A, in the system and all other host platforms in the system. The
algorithm works on the elements within two sets, HS and N

HS is a set of tuples, with each tuple consisting of a host platform, H, as well
as a set of state components, C. Initially, HS is empty and the algorithm will
append elements to it during its execution. At the termination of the algorithm,
each tuple in HS represents a new host platform, H, in which the agent owner
platform A can establish a new derived owner-host trust relationship with the
form A trusts.exe H with (X,C).

N is also a set of tuples, each tuple representing a possible next step in a
verification path. The constituent components of each tuple are:

— a verification server, V.S;, which is the next possible entity in a verification
trust path;

— a sequence seq = [A,V 51,V S,...,VS;] which represents the sequence of
the verification path traversed so far;

— a set of code/state components Se¢ which represents the code/state compo-
nents for which trust is still applicable on the given verification path.

The expression seq @ V.S is used to indicate that a new entity V'S; is being
appended to a sequence seq of a verification path. At the start, A is initialized
with the tuples that correspond to all initial trust relationships of the form
A trusts.wer V'S; with (X, Sc;), where A is the current agent owner platform to
which the algorithm is being applied to.

5.3 Trust Derivation Algorithm - Example

Consider a system consisting of a set of host platforms, HE, verification servers,
VE, code/state components SE and a single agent owner platform, A.

VE = {VS,,V58;,VS,.,VS4}
HE = {Hp:Hq}
SE = {s0,51,52,53,54}

Signature

C = P(S8C)

HostTuple = H x C

HS = P(HostTuple)

HS == {(H1, C1), (Ha, Cs),...}

seq = OQuwnerplatform x VS x...x VS
PathTuple = VS X seq x Sc

N = P(PathTuple)

N == {{(VS1, seqi,Sc1), (VSa, seqs,Secs),...}

Initialisation
TBS = { Set of initial trust and belief relationships }
HS = {}

./\/ = {(VS1, [A, VS1],SC1), (VSz, [A, VSz],SCz), sy (VS]‘, [A, VSj],SCj)}

where A is the current agent owner platform to which the algorithm is being applied
and VS1,VSs,...,VS; are all the verification servers for all trust relationships
A trusts.wer VS; with (X,S8c¢;) € TBS

boolean foundtuple;
Do until N = 0:
Select a PathTuple (VS;, seqi,Sc;) from N
for every V'S; trusts.exe Hy, with (X,8;) € TBS
if A believes.exe Hy with (X,S,) € TBS
begin
foundtuple = false
for every HostTuple (H;,C;) in HS
if Hy, = H;
C; = C;U(SiNSm NSci), foundtuple = true
if not foundtuple
HS = HSU(Hi,{SiNSnNSc;})
end
end
for every V' S; trusts.exe VS, with (X,S,) € TBS
if A believes.ver V.S, with (X,8,) € TBS
if VS, ¢ seq;
N = N U (VS,, seqi e VS,,{S,NS; NSc;})
end

N = N\ (VS;, seqi,Sc;)

Fig. 3. Trust derivation algorithm

At the start, we assume that the system already has the following initial trust
and belief relationships :
1. A trusts.ver V.S, with (X,SE)
2. A trusts.wer VS, with (X,SE)
3. A trusts.wer VS, with (X,SE)
4. A believes.wer V Sy with (X, {s1,$2})
5. A believes.exe H,, with (X, {s2,s3})
6. VS, trusts.ver V.S, with (X, {so, s1,S2})
7.V Sy trusts.exe Hp with (X,{s1,s2})
8. VS, trusts.ver V.Sq with (X,{s1,s4})
9. VIS4 trusts.exe Hy with (X, SE)
10. V'S, trusts.exe H, with (X,{ss,sa})
We now proceed to apply the algorithm to A to determine all the new trust
relationships that can be derived with the host platforms in the system. We start
by initializing A/ with all the trust relationships that originate from the agent
owner platform A (1, 2 and 3).
N ={(VS,, [A,VS,], SE), (VS,, [4,VS.], SE), (VS,, [A4,VS,], SE)}
HS ={}
After the first pass of the algorithm, we have
N ={{VSy, [A,VS,,VS], {s1,82}), (VS., [A,VS.], SE), (VS., [4,VS.], SE)}
HS ={}
After the second pass of the algorithm, we have
N ={{VS., [A,VS.], SE), (VS,, [A,VS,], SE)}
HS = {(Hy {5:1)}
After the third pass of the algorithm, we have
N = {(VSe, [A,VS.], SE)}
HS = {(Hy {5:1)}
After the fourth pass of the algorithm, we have
N ={}
HS = {<Hp7 {527 53}>}
Thus we can form a new trust relationship of the form
A trusts.exe H, with (X, {s2,s3})

6 Deploying the Framework

We discuss intuitively how the proposed framework could be deployed in a mobile
agent system. Consider a community of host platforms, verification servers and
agent, owner platforms with trust relationships already established among them-
selves. A new agent owner platform that wishes to participate in the community
will need to establish trust relationships with one or more verification servers.
Through a short interaction with a selected verification server, the agent owner
platform could determine the host platforms that the server in question has a
trust relationship with. The agent owner platform can initially ascertain the re-
liability of that verification server by composing a mobile agent and launching
it to a host platform, with the execution trace being submitted back to both

the agent owner platform and the verification server. The results reported back
by the verification server are checked for consistency with the validation of the
trace by the agent owner platform.

Once the agent owner platform is satisfied, it establishes a trust relationship
with the verification server (with respect to specific components) and executes
the trust derivation algorithm to obtain new trust relationships with other host
platforms. This provides it with a potential itinerary for future mobile agents
that it wishes to launch (in the event that the agent owner platform supplies a
predefined itinerary), or useful information that can be embedded in the agent
itself (should the agent be capable of dynamically deciding its itinerary while it
migrates). New verification servers that join the community can establish trust
relationships with existing verification servers in a similar manner. New host
platforms on the other hand, could advertise their presence through a registry
service after which they can be tested for reliability in hosting mobile agents by
verification servers who express interest in establishing trust relationships with
them.

The key to the evolution of the trust relationships in this framework is the
verification of an execution trace submitted by a host platform to a verification
server. Trust relationships are initially established as described above, and re-
main static as long as all traces checked are valid. The moment a verification
server detects an invalid trace, the nature of its current trust relationships with
the offending host platform will be altered. This could range over several pos-
sible alternatives : severing all existing trust relationships, severing some trust
relationships or degrading existing relationship(s) by reducing the number of
components that the relationship(s) is valid for.

Returning to the analogy that we introduce at the start of Sect. 3 (i.e. the
verification server being roughly equivalent to a CA in a PKI), we note that
the CA is trusted to maintain the integrity of the key-to-name binding within
a certificate. Certificate revocation is employed when such integrity becomes
suspect (for example, due to a suspected key compromise before the expiry
of the certificate). This is typically implemented using a periodic publication
mechanism such as certificate revocation lists (CRLs), which can be accessed by
other entities that need to validate certificates. A verification server, on the other
hand, is trusted to maintain the integrity of mobile agent execution, and alters
its trust relationship (degradation or destruction) with the offending platform
when a violation of this integrity is detected. Information about this relationship
change (trust information) is then propagated to all other verification servers
or agent owner platforms (the trustors) that have established trust relationships
with the server that detected the violation (the trustee). This will in turn result
in a corresponding change in trust relationships on those servers and platforms
as well. In effect, trust information is equivalent to a CRL in a PKI, with the
difference that trust information is propagated instead of being published. Agent
owner platforms could use the event of reception of trust information as a trigger
to execute the trust derivation algorithm again in order to recalculate their new
trust relationships with existing host platforms.

The actual mapping between the detection of a violation in an execution
trace and the subsequent change affected in a trust relationship (destruction or
degradation) is a function of a security policy which can be either administered
locally or globally administered. The discussion of such policies and their im-
plication on the trust dynamics of the system as a whole is beyond the scope
of this paper, but remains important work to be accomplished in studying the
effects of a trust model in a mobile agent security framework.

7 Conclusion

This paper proposes the incorporation of a trust model as part of a security
framework for mobile agents. We argue that the notion of trust can aid in a
more flexible and scalable deployment of existing code security techniques. We
also suggest that the manner in which trust would be employed in a wide scale
security infrastructure for mobile agents has many parallels to the way it is used
currently in a distributed authentication system such as a public key infrastruc-
ture. Based on this motivation, we propose a simple security framework for a
mobile agent system that resembles the structure of a public key infrastructure.
Drawing from existing work on trust relationships in such an infrastructure, we
define several trust relationships for a mobile agent system. We then demonstrate
how new trust relationships could be derived from existing ones, and present an
algorithm to formalize our approach.

We believe that the material developed here is representative of the initial
work required in the construction of a complete trust model for a mobile agent
system. Such a model would permit a detailed insight into the complex interac-
tions that involve trust in a mobile agent system. Future work in this direction
could involve a more precise and formal definition of trust relationships (includ-
ing, for example, explicit negative trust relationships) specific to mobile agents.
There will also be a need to investigate how execution tracing (and other existing
code security techniques) could be modified to fit effectively within the structure
of such a framework.

References

1. C. Adams and S. Lyold. Understanding Public Key Infrastructure : Concepts,
Standards and Deployment Considerations. Macmillan Technical Publishing, 1999.

2. D. M. Chess. Security Issues in Mobile Code Systems. In Mobile Agents and
Security, number 1419 in LNCS. Springer-Verlag, 1998.

3. W. Farmer, J. Guttman, and V. Swarup. Security for mobile agents : Authen-
tication and state appraisal. In Furopean Symposium on Research in Computer
Security, number 1146 in LNCS. Springer-Verlag, 1996.

4. W. Farmer, J. Guttman, and V. Swarup. Security for mobile agents: Issues and re-
quirements. In Computer Communications, Special Issue on Advances in Research
and Application of Network Security, October 1996.

5. L. Gong. Java Security Architecture (JDK1.2). Technical report, Sun Microsys-
tems, March 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

R. H. Guttman, A. G. Moukas, and P. Maes. Agents as mediators in electronic
commerce. Electronic Markets, 8(1), May 1998.

F. Hohl. Time limited blackbox security: Protecting mobile agents from malicious
hosts. In Mobile Agents and Security, number 1419 in LNCS. Springer-Verlag,
1998.

W. Jansen. Countermeasures for Mobile Agent Security. In Computer Communica-
tions, Special Issue on Advances in Research and Application of Network Security,
November 2000.

N. Karnik. Security in Mobile Agent Systems. PhD thesis, Department of Computer
Science and Engineering, University of Minnesota, 1998.

B. Lampson, M. Abadi, M. Burrows, and E.Wobber. Authentication in distributed
systems : Theory and practice. ACM Transactions on Computer Systems, 10(4),
November 1992.

D. B. Lange and M. Oshima. Seven good reasons for mobile agents. Communica-
tions of the ACM, 42(3), 1999.

G. Necula and P. Lee. Safe kernel extensions without run-time checking. In Pro-
ceedings of the 2nd Symposium on Operating System Design and Implementation
(OSDI ’96), Washington, October 1996.

R. Oppliger. Security issues related to mobile code and agent-based systems. Com-
puter Communications, 22(12), July 1999.

T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts.
In Mobile Agents and Security, number 1419 in LNCS. Springer-Verlag, 1998.

K. Schelderup and J. @lnes. Mobile agent security - issues and directions. In
Proceedings of the 6th International Conference on Intelligence and Services in
Networks, Barcelona, Spain, April 1999.

V. Swarup and J .T. Fabrega. Trust : Benefits, models and mechanisms. In Secure
Internet Programming : Security Issues for Mobile and Distributed Objects, number
1603 in LNCS. Springer-Verlag, 1999.

G. Vigna. Cryptographic traces for mobile agents. In Mobile Agents and Security,
number 1419 in LNCS. Springer-Verlag, 1998.

D. Volpano and G. Smith. Language Issues in Mobile Program Security. In Mobile
Agents and Security, number 1419 in LNCS. Springer-Verlag, 1998.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based
fault isolation. In Proceedings of the 14th ACM Symposium on Operating Systems
Principles, pages 203-216, December 1996.

U. G. Wilhelm, S. Staamann, and L. Buttyan. Introducing trusted third parties
to the mobile agent paradigm. In Secure Internet Programming : Security Issues
for Mobile and Distributed Objects, number 1603 in LNCS. Springer-Verlag, 1999.
R. Yahalom, B. Klein, and T. Beth. Trust relationships in secure systems—A
distributed authentication perspective. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 150-164, 1993.

B. S. Yee. A sanctuary for mobile agents. In Secure Internet Programming : Se-
curity Issues for Mobile and Distributed Objects, number 1603 in LNCS. Springer-
Verlag, 1999.

