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ABSTRACT

A reliable communication layer is an essential component
of a mobile agent system. We present a new fault-tolerant
directory service for mobile agents, which can be used to
route messages to them. The directory service, based on
a technique of forwarding pointers, introduces some redun-
dancy in order to ensure resilience to stopping failures of
nodes containing forwarding pointers; in addition, it avoids
cyclic routing of messages, and it supports a technique to
collapse chains of pointers that allows direct communica-
tions between agents. We have formalised the algorithm and
derived a fully mechanical proof of its correctness using the
proof assistant Coq; we report on our experience of design-
ing the algorithm and deriving its proof of correctness. The
complete source code of the proof is made available from the
WWW.

1. INTRODUCTION

Mobile agents have emerged as a major programming para-
digm for structuring distributed applications [3, 5]. For in-
stance, the MAGNITUDE project [13] investigates the use of
mobile agents as intermediary entities capable of negotiat-
ing access to information resources on behalf of mobile users.
Several important issues remain to be addressed before mo-
bile agents become a mainstream technology for such appli-
cations: among them, a communication system and a se-
curity infrastructure are needed respectively for facilitating
communications between mobile agents and for protecting
agents and their hosts.

Here, we focus solely on the problem of communications, for
which we have adopted a peer-to-peer communication model
using a performative-based agent communication language
[11], as prescribed by KQML and FIPA. Various authors
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have previously investigated a communication layer for mo-
bile agents based on forwarding pointers [16, 10]. In such
an approach, when mobile agents migrate, they leave for-
warding pointers that are used to route messages. A point
of concern is to avoid cyclic routing when agents migrate
to previously visited sites; additionally, lazy updates and
piggy-backing of information on messages can be used to
collapse chains of pointers [12]. For structuring and clarity
purposes, a communication layer is usually defined in terms
of a message router and a directory service; the latter tracks
mobile agents’ locations, whereas the former forwards mes-
sages using the information provided by the latter.

Directory services based on forwarding pointers are cur-
rently not tolerant to failures: the failure of a node con-
taining a forwarding pointer may prevent finding agents’
positions. The purpose of this paper is to present a direc-
tory service, fully distributed and resilient to failures exhib-
ited by intermediary nodes, possibly containing forwarding
pointers. This algorithm may be used by a fault-tolerant
message router (which itself will be the object of another
publication).

We consider stopping failures according to which processes
are allowed to stop during the course or their execution [7].
The essence of our fault-tolerant distributed directory ser-
vice is to introduce redundancy of forwarding pointers, typ-
ically by making N copies of agents’ location information.
This type of redundancy ensures the resilience of the algo-
rithm to a maximum of N —1 failures of intermediary nodes.
We will show that the complexity of the algorithm remains
linear in N. Our specific contributions are:

1. A new directory service based on forwarding pointers,
fault-tolerant, preventing cyclic routing, and not in-
volving any static location;

2. A full mechanical proof of its correctness, using the
proof assistant Coq [1]; the complete source code of the
proof (involving some 25000 tactic invocations) may be
downloaded from the following URL [9].

We begin this paper by a survey of background work (Sec-
tion 2) and follow by a summary of a routing algorithm
based on forwarding pointers (Section 3). We present our
new directory service and its formalisation as an abstract



machine (Section 4). The purpose of Section 5 is to sum-
marise the correctness properties of the algorithm: its safety
states that the distributed directory service correctly and
uniquely identifies agents’ positions, whereas the liveness
property shows that the algorithm reaches a stable state
after a finite number of transitions, once agents stop mi-
grating. Then, in Section 6, we report on our experience of
designing the algorithm and deriving its proof of correctness,
and we suggest possible variants or extensions.

2. BACKGROUND

The topic of mobile agent tracking and communication has
been researched extensively by the mobile agent commu-
nity. Very early on, location-aware communications were
proposed: they consist of sending messages to locations
where agents are believed to be, but typically result in fail-
ure when the receiver agent has migrated [15, 19].

For a number of applications, such a service is not satis-
factory because the key property is to get messages reliably
delivered to a recipient, wherever its location and whatever
the route adopted (for instance, when two mobile agents
undertake a negotiation on how to solve a specific prob-
lem). Location-transparent communication services were
introduced as a means to route and deliver messages au-
tomatically to mobile agents, independently of their migra-
tion. (Such services have been shown to be implementable
on top of a location-aware communication layer [19].)

In the category of location-transparent communication lay-
ers, there are essentially two approaches, respectively based
on home agents and forwarding pointers. In systems based
on home agents, such as Aglets [5], each mobile agent is
associated with a non-mobile home agent. In order to com-
municate with a mobile agent, a message has to be sent to
its associated home agent, which forwards it to the mobile
one; when a mobile agent migrates, it informs its home agent
of its new position. Alternatively, in mobile agent systems
such as Voyager [16], agents that migrate leave trails of for-
warding pointers, which are used to route messages.

In situations such as the pervasive computing environment,
the mechanism of a home agent may defeat the purpose
of using mobile agents by re-introducing centralisation: the
home agent approach puts a burden on the infrastructure,
which may hamper its scalability, in particular, in massively
distributed systems. A typical illustration is two mobile
agents with respective home bases in the US and Europe
having to communicate at a host in Australia. In such a
scenario, routing via home agents is not desirable, and may
not be possible when the host is temporarily disconnected
from the network. If we introduce a mechanism by which
home agents change location dynamically according to the
task at hand, we face the problem of how to communicate
reliably with a home agent, which is itself mobile. Alter-
natively, we could only use the home agent to bootstrap
communication, and then shortcut the route, but this ap-
proach becomes unreliable once agents migrate. Finally, the
home agent also appears as a single point of failure: when it
exhibits a failure, it becomes impossible to track the mobile
agent or to route messages to it.

A naive forwarding pointer implementation causes commu-

nications to become more expensive as agents migrate, be-
cause chains of pointers increase. Chains of pointers need
to be collapsed promptly so that mobile agents become in-
dependent of the hosts they previously visited. Once the
chain has collapsed direct communications become possible
and avoid the awkward scenario discussed above. As far as
tolerance to failures is concerned, the crash of an intermedi-
ary node with a forwarding pointer prevents upstream nodes
to forward messages. Collapsing chains of pointers also has
the benefit of reducing the system’s exposure to failures.

Coordination models offer a more asynchronous form of com-
munication, typically involving a tuple space [4]. As coordi-
nation spaces are non-mobile, they may suffer from the same
problem as the home agent; solutions such as distributed
spaces may be introduced for that purpose but maintaining
consistency is a non-trivial problem. An inconvenient of the
coordination approach is that it requires coordinated pro-
cesses to poll tuple spaces, which may be inefficient in terms
of both communication and computation. As a result, tuple
spaces generally provide a mechanism by which registered
clients can be notified of the arrival of a new tuple: when
clients are mobile, we are back to the problem of how to
deliver such notifications reliably. If the tuple space itself is
mobile [17], the problem is then to deliver messages to the
tuple space.

This discussion shows that reliable delivery of messages to
mobile agents without using static locations to route mes-
sages is essential, even if peer-to-peer communications are
not adopted as the high-level interaction paradigm between
agents. Previous work has focused on formalisation [10] and
implementation [16] of forwarding pointers, but solutions
were not fault-tolerant. We summarise such an approach
in Section 3 before extending it with support for failures in
Section 4.

3. SUMMARY OF DIRECTORY SERVICE

In this section, we summarise the principles of a communi-
cation layer based on forwarding pointers [10] without any
fault-tolerance. The algorithm comprises two components:
a distributed directory service and a message router, which
we describe below.

Distributed Directory Service. FEach mobile agent is
associated with a timestamp that is increased every time
the agent migrates. When an agent has autonomously de-
cided to migrate to a new location, it requests the commu-
nication layer to transport it to its new destination. When
the agent arrives at a new location, an acknowledgement
message containing both its new position and its newly-
incremented timestamp is sent to its previous location. As a
result, for each site, one of the following three cases is valid
for each agent A: (i) the agent A is local, (%) the agent A
is in transit but has not acknowledged its new position yet,
or (iii) the agent A is known to have been at a remote loca-
tion with a given timestamp. Timestamps are essential to
avoid race conditions between acknowledgement messages:
by using timestamps, a site can decide which position infor-
mation is the most recent, and therefore can avoid creating
cycles in the graph of forwarding pointers. In order to avoid
an increasing cost of communication when the agent mi-
grates, a mechanism was specified to propagate information



about agent’s position, which in turn reduces the length of
chains of pointers [10].

Message Router. Sites rely on the information about
agents’ positions in order to route messages. For any in-
coming message aimed at an agent A, the message will be
delivered to A if A is known to be local. If A is in transit,
the message will be enqueued, until A’s location becomes
known; otherwise, the message is forwarded to A’s known
location.

Absence of Fault Tolerance. There is no redundancy
in the information concerning an agent’s location. Indeed,
sites only remember the most recent location of an agent,
and only the previous agent’s location is informed of the
new agent’s position after a migration. As a result, a site
(transitively) pointing at a site exhibiting a failure has lost
its route to the agent.

4. FAULT-TOLERANT ALGORITHM

The intuition of our solution to the problem of failures is to
introduce some redundancy in the information about agents’
positions. Two essential elements are used for this purpose.
First, agents remember N previous different sites that they
have visited; once an agent arrives at a new location, it in-
forms its IV previous locations of its new position. Second,
sites remember up to N different positions for an agent,
and their associated timestamps. We shall establish that
the algorithm is able to determine the agent’s position cor-
rectly, provided that the number of stopping failures remains
smaller or equal to N — 1.

Remark We aim to design an algorithm which is resilient to
failures of intermediary nodes. We are not concerned with relia-
bility of agents themselves. Systems replicating agents and using
failure detectors such as [8] may be used for that purpose; they
are complementary to our approach.

We adopt an existing framework [10] to model the distributed
directory service as an abstract machine, whose state space
is summarised in Figure 1. For the sake of clarity, we con-
sider a single mobile agent; the formalisation can easily be
extended to multiple agents by introducing names by which
agents are being referred to. An abstract machine is com-
posed of a set of sites taking part in a computation. Agent
timestamps, which we call mobility counters, are defined as
natural numbers. A memory is defined as an association
list, associating locations with mobility counters; we repre-
sent an empty memory by . The value N is a parameter of
the algorithm. We will show that the agent’s memory has
a size N and that the algorithm tolerates at most N — 1
failures.

The set of messages is inductively defined by two construc-
tors. These constructors are used to construct messages,
which respectively represent an agent in transit and an ar-
rival acknowledgement. The message representing an agent
in transit, typically of the form agent(s,l, M), contains the
site s that the agent is leaving, the value [ of the mobility
counter it had on that site, and the agent’s memory M, i.e.
the IV previous sites it visited and associated mobility coun-
ters. The message representing an arrival acknowledgement,

ack(s, 1), contains the site s (and associated mobility counter
1) where the agent is.

We assume that the network is fully connected, that com-
munications are reliable, and that the order of messages in
transit between pairs of sites is preserved. These commu-
nication hypotheses are formalised in the abstract machine
by point-to-point communication links, which we define as
queues using the following notations, where the expression
q18q2> denotes the concatenation of two queues g¢i, g2, and
first(q) the head of a queue q.

Each site maintains some information, which we abstract as
“tables” in the abstract machine. The location table maps
each site to a memory; for a site s, the location table indi-
cates the sites where s believes the agent has migrated to
(with their associated mobility counter). The present table is
meant to be empty for all sites, except for the site where the
agent is currently located, when the agent is not in transit;
there, the present table contains the sites previously visited
by the agent. The mobility counter table associates each site
with the mobility counter the agent had when it last visited
the site; the value is zero if the agent has never visited the
site.

After the agent has reached a new destination, acknowl-
edgement messages have to be sent to the N previous sites
it visited. We decouple the agent’s arrival from acknowl-
edgement sending, so that transitions that deal with in-
coming messages are different from those that generate new
messages. Consequently, we introduce a further table, the
acknowledgement table, indicating which acknowledgements
still have to be sent.

In our formalisation, we use a variable to indicate whether a
machine is up and running. A site’s failure state is allowed
to change from false to true, which indicates that the site is
exhibiting a failure. We are modelling stopping failures [7]
since no transition allows a failure state to change from true
to false.

A complete configuration of the abstract machine is defined
as the Cartesian product of all tables and message queues.
Our formalisation can be regarded as an asynchronous dis-
tributed system [7]. In a real implementation, tables are
not shared resources, but their contents can be distributed
at each site.

The behaviour of the algorithm is represented by transitions,
which specify how the state of the abstract machine evolves.
Figure 2 contain all the transitions of the distributed direc-
tory service. Transitions are assumed to be executed atom-
ically. For convenience, we use some notations such as post,
receive or table updates, which give an imperative look to
the algorithm; their definitions is as follows. Given a config-
uration (loc T, present_T, mob_T, ack_T, fail T, k),
mob_T(s) := V denotes (loc_T,present T, mobT",ack_T,
fail T, k), such that mob.T'(s) = V and mobT'(s') =
mobT(s"), ¥V s' # s. A similar notation is used for other
tables. Given a configuration, post(s1, s2, m) denotes (loc_T,
present_ T, mob_T,ack_T, fail T,k'), with k'(s1,s2) =
k(slv 32)§{m}7 and k,(sia Sj) = k(si7 Sj)7 V(sh Sj) a (517 52)'
A similar notation is used for receive.



S = {s0,81,.-+,8n.} (Set of Sites) Characteristic variables :
L = N (Mobility Counters) seS
¥ = list(§x L) (Memory) meM
N € N (Algorithm Parameter) kek
M agent:SXLx¥ 5> M | ack:SxL—>M (Messages) ceC
K = 8x8— Queue(M) (Message Queues) Mew
LT = §->7 (Location Tables) loc.T € LT
PT = S—>V (Present Tables) present T € PT
MT = S§->L (Mobility Counter Tables) mob. T € MT
AT = ST (Acknowledgement Tables) ack T € AT
FT = S — Bool (Failure State) fail T € FT
C = LT XPTXMT xAT xFT xK (Configurations) q € Queue(M)

Figure 1: State Space

In each rule of Figure 2, the conditions that appear to the
left-hand side of an arrow are guards that must be satisfied
in order to be able to fire a transition. For instance, the
first four rules contain a proposition of the form —fail_T'(s),
which indicates that the rule has to occur for a site s that is
up and running. The right-hand side of a rule denotes the
configuration that is reached after transition. We assume
that guard evaluation and new configuration construction
are performed atomically. In order to illustrate our rules,
we present graphical representations of configurations; the
first part of Figure 3 illustrates an agent that has succes-
sively visited sites so, s1, S2,s3 with respective timestamps
t—1,t,t+1,t+2. In this example, we assume that the value
of N is 3. (Note that so is not represented in the figure.)

The first transition of Figure 2 models the actions to be
performed, when an agent decides to migrate from s1 to sa.
In the guard, we see that the present table at s; must be
non-empty, which indicates that the agent is present at si.
After transition, the present table at si is cleared, and an
agent message is posted between s; and s»; the message con-
tains the agent’s origin si, its mobility counter mob_T'(s1),
and the previous content of the present table at s;. Note
that s2, the destination of the agent, is only used to specify
which communication channel the agent message must be
enqueued into. The site s1 does not need to be communi-
cated this information, nor does it have to remember that
site. In a real implementation, the agent message would also
contain the complete agent state to be restarted by the re-
ceiver. The second part of Figure 3 illustrates changes in
the system, when an agent has initiated its migration.

The second transition is concerned with s handling a mes-
sage' agent(ss,l, M) coming from s;. Tables are updated
to reflect that s» is becoming the new agent’s location, with
[ + 1 its new mobility counter. Our algorithm prescribes
the agent to remember N different sites it has visited. As
s2 may have been visited recently, we remove s» from M,
before adding the site s3 whe1;e it was located before mi-
gration. The call add(N,s,l, M) adds an association (s,!)
to the memory M, keeping at most N different entries with
the highest timestamps. (Appendix A contains the com-

!Note that s is not required to be equal to si. Indeed, we
want the algorithm to be able to support sites that forward
incoming agents to other sites.

plete definition of add.) In addition, the acknowledgement
table of s is updated, since acknowledgements have to be
sent back to those previously visited sites. At this point, a
proper implementation would reinstate the agent state and
resume its execution. The third part of Figure 3 illustrates
the system as an agent arrives at a new location.

According to the third transition, if the acknowledgement
table on s1 contains a pair (s2,[2), then an acknowledgement
message ack(s1, (mob-T'(s1))) has to be sent from s; to s;
the acknowledgement message indicates that the agent is on
s1 with a mobility counter mob_T'(s1).

If a site sy receives an acknowledgement message about site
s3 and mobility counter [, its location table has to be up-
dated accordingly. Let us note two properties of this rule.
First, we do not require the emitter s; of the acknowledge-
ment message to be equal to s3; this property allows us
to use the same message for propagating more information
about the agent’s location. Second, we make sure that up-
dating the location table (%) maintains information about
different locations, (ii) does not overwrite existing location
information with older one.  This functionality is imple-
mented by the function add, whose specification may be
found in appendix A.

According to rule inform of Figure 2, any site s; believing
that the agent is located at site sz, with a mobility counter
I, may elect to communicate its belief to another site ss.
Such a belief is also communicated by an ack message. It
is important to distinguish the roles of the send_ack and
inform transitions. The former is mandatory to ensure the
correct behaviour of the algorithm, whereas the latter is
optional. The purpose of inform is to propagate information
about the agent’s location in the system, so that the agent
may be found in less steps. As opposed to previous rules,
the inform rule is non-deterministic in the destination and
location information in an acknowledgement message. At
this level, our goal is to define a correct specification of an
algorithm: any implementation strategy will be an instance
of this specification; some of them are discussed in Section
6. The first part of Figure 4 illustrates the states of the
system after sending acknowledgement messages, whereas
the second one shows the effect of such messages.



For a configuration (loc_T', present T, mob_T, ack_T, fail T, k),

legal transitions are:

migrate_agent(s1, s2) :
s1# 82 A locT(s1) =0 A presentT(s1)#0
AackT(s1)=0 A —fail T(s1)
— { let M = present T(s1)
in present T (s1) :=0
post(s1, 52, agent(s1, mob.T(s1), M)) }

receive_agent(s1, s2, s3, [, M) :
first(k(s1,s2)) = agent(ss,l, M) A —fail T(sz2)
— { receive(si, s2)
let S =add(N,ss,l, remove(ss, M))
in loc.T(s2):=10
present T(ss) := S
mob T(sz) :=1+1
ack T(s2): =8}

send_ack(s1, $2, M,lg) :
ack_T(s1) = (s2,12) § M A —fail T(s1)
= { ackT(s1):=M
post(s1, s2,ack(s1, mobT(s1))) }

receive_ack(s1, s2, 53,1) :
first(k(s1,s2)) = ack(ss, )

— { receive(si, s2)
locT(s2) := add(N, ss,l,loc.T(s2)) }

A =fail T(s2)

inform(s1, s2, s3,1) :
(s3,1) € locT(s1) A —fail - T(s1)
— { post(si,sz,ack(ss, 1)) }

stop_failure(s) :
fail T(s) = false
= { fail T(s)=true}

msg_failure(s1, s2,m) :
first(k(s1,s2)) =m A fail T(s3)
— { receive(si,s2) }

Figure 2: Fault-Tolerant Directory Service

Failure. The first five rules of Figure 2 require the site s
where the transition takes place to be up and running, i.e.
—fail _T(s). Our algorithm is designed to be tolerant to stop-
ping failure, according to which processes are allowed to stop
somewhere in the middle of their execution [7]. We model
a stopping failure by the transition stop_failure, changing
the failure state of the site that exhibits the failure. Con-
sequently, a site that has stopped will be prevented from
performing any of the first five transitions of Figure 2.

As far as distributed system modelling is concerned, it is
unrealistic to consider that messages that are in transit on
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Figure 3: Agent Migration (part 1)

a communication link remain present if the destination of
the communication link exhibits a failure. Rule msg_failure
shows how messages in transit to a stopped site may be
lost. A similar argument may also hold for messages that
were posted (but not sent yet) at a site that stops. We could
add an extra rule handling such a case, but we did not do so
in order to keep the number of rules limited. As a result, our
communication model can be seen as using buffered inputs
and unbuffered outputs.

Initial and Legal Configurations. In the initial con-
figuration, noted c;, we assume that the agent is at a given
site origin with a mobility counter set to N + 1. Obviously,
at creation time, an agent cannot have visited N sites previ-
ously. Instead, the creation process elects a set S; of different
sites that act as “backup routers” for the agent in the ini-
tial configuration. Each site is associated with a different
mobility counter in the interval [1, N]. Such N sites could
be chosen non-deterministically by the system or could be
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Figure 4: Agent Migration (part 2)

configured manually by the user. For each site in S;, the
location table points to the origin and to sites of S; with
a higher mobility counter; the location table at all other
sites contains the origin and the N — 1 first sites of S;. The
present table at origin contains the sites in S;. A detailed
formalisation of the initial configuration is available from [9].
A configuration c is said to be legal if there is a sequence
of transitions ¢1,t2,...,t, such that c is reachable from the
initial configuration: ¢; e 2 ey L i el We
define —™ as the reflexive, transitive closure of .

5. CORRECTNESS

The correctness of the distributed directory service is based
on two properties: safety and liveness. The safety of the
distributed directory service ensures that it correctly tracks
the mobile agent’s location, in particular in the presence of
failures. The liveness guarantees that agent location infor-
mation eventually gets propagated.

We intuitively explain the safety property proof as follows.
An acknowledgement message results in the creation of a
forwarding pointer that points towards the agent’s loca-
tion. Forwarding pointers may be modelled by a relationship
parent that defines a directed acyclic graph leading to the
agent’s location.

In the presence of failures, we show that the relationship
parent contains sufficient redundancy in order to guarantee
the existence of a path leading to the agent, without involv-
ing any failed site: (i) Sites that belong to the agent’s
memory have the agent’s location as a parent.  (4i) Sites
that do not belong to the agent’s memory have at least IV

parents. Consequently, if the number of failures is strictly
inferior to IV, each site has always at least one parent that
is closer to the agent’s location; by repeating this argument,
we can find the agent’s location.

We summarise the liveness result similar to the one in [10].
A finite amount of transitions can be performed from any
legal configuration (if we exclude migrate_agent and inform).
Furthermore, we can prove that, if there is a message at the
head of a communication channel, there exists a transition
of the abstract machine that consumes that message. Con-
sequently, if we assume that message delivery and machine
transitions are fair, and if the mobile agent is stationary at
a location, then location tables will eventually be updated,
which proves the liveness of the algorithm.

All proofs were mechanically derived using the proof assis-
tant Coq [1]. Coq is a theorem prover whose logical foun-
dation is constructive logic. The crucial difference between
constructive logic and classical logic is that =——p = p does
not hold in constructive logic. The consequence is that the
formulation of proofs and properties must make use of con-
structive and decidable statements. Due to space restriction,
we do not include the proofs but they can be downloaded
from [9]. The notation adopted here are pretty-printed ver-
sions of the mechanically established ones.

6. ALGORITHM AND PROOF DISCUSSION

The constructive proof of the initial algorithm without fault-
tolerance helped us understand the different invariants that
needed to be preserved. In particular, the algorithm main-
tains a directed acyclic graph leading to the agent’s position;
interestingly, short-cutting chains of pointers by propagat-
ing acknowledgement messages ensures that the graph re-
mains connected and acyclic. Using the same mechanism
of timestamp in combination with replication preserves a
similar invariant in the presence of failures.

The resulting algorithm turned out to be simpler because it
uses less rules, and its correctness proof was easier to derive.
When N is equal to 1, the algorithm has the same observable
behaviour as [10]. From a practical point of view, generat-
ing the mechanical proof still remained a tedious process,
though simpler, because it needed some 25000 tactic invo-
cations, of which 5000 for the formalisation of the abstract
machine were reused from our initial work.

The complexity of the algorithm is linear in N as far as the
number of messages (N acknowledgement messages per mi-
gration), message length (size of a memory is O(NV)), space
per site (size of a memory is O(N)), and time per migra-
tion are concerned. Our proof established the correctness in
the worst-case scenario. Indeed, the algorithm may toler-
ate more than N failures provided that one parent, at least,
remains up and running for each site.

For a given application, the designer will have to choose the
value of N. If N is chosen to be equal to the number of
nodes in the network, the system will be fully realiable but
its complexity, even though linear, is too high on an Internet
scale. Instead, an engineering decision should be made: in
a practical network, from network statistics, one can derive
the probability of obtaining 1,2,..., N simultaneous fail-



ures. For each application, and for the quality of service it
requires, the designer selects the appropriate failure proba-
bility, which determines the number of simultaneous failures
the system should be able to tolerate.

A remarkable property of the algorithm is that it does not
impose any delay upon agents when they initiate a migra-
tion. Forwarding pointers are created temporarily until a
stable situation is reached and they are removed. This has
to be contrasted with the home agent approach, which re-
quires the agent to notify its homebase, before and after
each migration. Interestingly, our algorithm does not pre-
clude us also from using other algorithms; we could envision
a system where such algorithms are selected at runtime ac-
cording to the network conditions and the quality of service
requirements of the application.

Propagating agent location information with rule inform is
critical in order to shorten chains of forwarding pointers,
because shorter chains reduce the cost of finding an agent’s
location. The ideal strategy for sending these messages de-
pends on the type of distributed system, and on the appli-
cations using the directory service. A range of solutions is
possible and two extremes of the spectrum are easily iden-
tifiable. In an eager strategy, every time a mobile agent mi-
grates, its new location is broadcasted to all other sites; such
a solution is clearly not acceptable for networks such as the
Internet. Alternatively, a lazy strategy could be adopted
[12] but it requires cooperation with the message router.
The recipient of a message may inform its emitter, when
the recipient observes that that the emitter has out-of-date
routing information. In such a strategy, tables are only up-
dated when user messages are sent.

In Section 4, communication channels in the abstract ma-
chine are defined as queues. We have established that swap-
ping any two messages in a given channel does not change
the behaviour of the algorithm; in other words, messages do
not need to be delivered in order.

Message Router. This paper studied a distributed direc-
tory service, and we can sketch two possible uses for message
routing.

Simple Routing. The initial message router [10] can be
adopted to the new distributed directory service. A site
receiving a message for an agent that is not local forwards
the message to the site appearing in its location table with
the highest mobility counter; if the location table is empty,
messages are accumulated until the table is updated. This
simple algorithm does not use the redundancy provided by
the directory service and is therefore not tolerant to failure.

Parallel Flooding. A site must endeavour to forward a
message to N sites. If required, it has to keep copies of mes-
sages until N acknowledgements have been received. By
making use of redundancy, this algorithm would guarantee
the delivery of messages. We should note that the algo-
rithm needs a mechanism to clear messages that have been
delivered and are still held by intermediate nodes.

Further Related Work. Murphy and Picco [14] present

a reliable communication mechanism for mobile agents. Their
study is not concerned with nodes that exhibit failures, but

with the problem of guaranteeing delivery in the presence of

runaway agents. Whether their approach could be combined

with ours remains an open question.

Lazar et al. [6] migrate mobile agents along a logical hierar-
chy of hosts, and also use that topology to propagate mes-
sages. As a result, they are able to give a logarithmic bound
on the number of hops involved in communication. Their
mechanism does not offer any redundancy: consequently,
stopping failures cannot be handled, though they allow re-
connections of temporarily disconnected nodes.

Baumann and Rothermel [2] introduce the concept of a sha-
dow as a handle on a mobile agent that allows applications to
terminate a mobile agent execution by notifying the termi-
nation to its associated shadow. Shadows are also allowed to
be mobile. Forwarding pointers are used to route messages
to mobile agents and mobile shadows. Some fault-tolerance
is provided using a mechanism similar to Jini leases, requir-
ing message to be propagated after some timeout. This dif-
fers from our approach that relies on information replication
to allow messages to be routed through multiple routes.

Mobile computing devices share with mobile agents the prob-
lem of location tracking. Prakash and Singhal [18] propose
a distributed location directory management scheme that
can adapt to changes in geographical distribution of mobile
hosts population in the network and to changes in mobile
host location query rate. Location information about mobile
hosts is replicated at O(y/m) base stations, where m is the
total number of base stations in the system. Mobile hosts
that are queried more often than others have their location
information stored at a greater number of base stations. The
proposed algorithm uses replication to offer improved per-
formance during lookups and updates, but not to provide
any form of fault tolerance.

7. CONCLUSION

In this paper, we have presented a fault-tolerant distributed
directory service for mobile agents. Combined with a mes-
sage router, it provides a reliable communication layer for
mobile agents. The correctness of the algorithm is stated in
terms of its safety and liveness.

Our formalisation is encoded in the mechanical proof assis-
tant Coq, also used for carrying out the proof of correctness.
The constructive proof gives us a very good insight on the al-
gorithm, which we want to use to specify a reliable message
router. This work is part of an effort to define a mechani-
cally proven correct mobile agent system. Besides message
routing, we also intend to investigate and formalise security
and authentication methods for mobile agents.
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ADD FUNCTION

The function add adds a pair site-timestamp to an asso-
ciation list, making sure that no two entries have a same
timestamp or site. A maximum of N entries is kept in the
association list, and they are sorted by decreasing timestamp
order.

A functional definition of add (close to its definition in Coq)
appears below, and it uses auxiliary functions remove to
remove an entry with a specific site from an association list
and firstN which keeps the first IV entries of an association

list.

fun add (N:int;sl:site;nl:int;q:(Alist site int))

(firstN N (insert sl nl q))

fun insert (s:site;n:int;q:(Alist site int)) :=
match q

nil => (coms (s,1) q)
(cons (s1,nl) q’) =>
if (s=s1)
then
if (n <=
then q
else (cons (s,n) q’)
else
if (n<nl)
then (cons (s1,nl) (insert s n q’))
elif (n=n1)
then q
else (cons (s,n) (remove s q))

nil)



