
Agents for the Grid: a Comparison with Web Services
(Part I: Transport Layer)

Luc Moreau
Department of Electronics and Computer Science

University of Southampton
SO17 1BJ Southampton UK
L.Moreau@ecs.soton.ac.uk

Abstract

The notion of agent has of late become popular in the
Grid community, as exemplified by several workshops on
the use of agents in the Grid. What are agents for the Grid?
What is the difference between agents and Web-services?
These are questions that we address by describing a port of
the SoFAR agent framework to Web services in the context of
a bioinformatics Grid. In this first paper, we focus our dis-
cussion solely on issues at the transport layer. Through an
agent communication language (ACL) and an abstract com-
munication model, we have been able to define a generic
API to communications, and are able to support multiple
protocols, including the XML protocol, the transport mech-
anism of Web services. This approach facilitates the de-
velopment of applications, makes our environment future-
proof, and promotes the open-ness of our Grid architecture
to third-party developers.

1. Introduction

MYGRID [35] is a Grid [18] pilot project funded by the
UK e-Science initiative [43]. Its purpose is to provide a
collaborative and supportive environment that enables geo-
graphically distributed biologists to achieve research goals
more effectively, while enabling their results to be used in
developments elsewhere in the community. The MYGRID
project aims to build a personalised problem-solving envi-
ronment for the e-Scientist.

A key requirement of MYGRID is the design of an en-
vironment in which collaborative distributed bioinformatics
applications may be developed. Our methodology for future
proofing the environment is to design a generic architecture
able to support multiple existing protocols, languages and
standards, and which hopefully will be able to accommo-
date future developments.

The biological community has been particularly active
in defining customised APIs for commonly used program-
ming languages such as BioJava [4] and Bioperl [5], and
for distributed computing technologies such as BioCORBA
[3]. XML protocol and Web Services [46] are also becom-
ing widely adopted in this community. It is the purpose of
MYGRID to support all these technologies. Furthermore,
MYGRID services will support and will be integrated with
Grid middleware, e.g. Globus [17], to maintain links with
development in the Grid community.

Our goal is to design an abstract communication archi-
tecture that we can map onto concrete communication tech-
nologies. Open-ness and ease of development are two driv-
ing forces of our undertaking: (i) For open-ness, we will
specify protocols on the wire, i.e. the message format for
each protocol supported, so that third-party developers may
elect to use MYGRID services or make theirs available to
MYGRID. (ii) For ease of development, we will provide
programming APIs, which the programmer can use to de-
velop new tools and applications in MYGRID. A specific
aim of the programming API is to provide an abstraction
layer that hides the specific implementation details of each
communication protocol.

We have adopted agent-based computing as the
paradigm underpinning our architectural design. Three
complementary reasons motivate our choice: (i) Agents
are a software engineering unit [26], typically larger than
a class or module, which can encapsulate roles and goals,
and which can be composed in order to build applications.
(ii) Agents are able of complex interactions, then forming
a multi-agent system [27]; typical interactions include ne-
gotiation and collaboration, which allow agents to adapt
their behaviour to the prevailing environments. (iii)
From a communicative viewpoint [15, 16], agents are en-
tities that communicate using an agent communication lan-
guage structured around a set of message types (performa-
tives), message content schemas (ontologies) and message

meta-information. The third reason, i.e the agent commu-
nication language, is the key principle underlying our ab-
stract communication architecture. The other two reasons
are long term motivations for using the agent paradigm, but
we do not discuss them here; we refer the reader to publica-
tions such as [26, 27].

We have prototyped these ideas into SoFAR, the
Southampton Framework for Agent Research [33], an
agent-based communication infrastructure, initially tar-
geted for distributed information management applications;
it now serves as the foundation of the MYGRID communi-
cation infrastructure. The SoFAR communication layer was
already successfully mapped onto several implementations
of RMI (including a UDP based one) and SSL; we fore-
see no problem in porting it to CORBA. We have recently
completed the mapping of the SoFAR agent communication
layer onto XML protocol [46]. This paper discusses the dif-
ferences between agents and Web Services from an imple-
mentation perspective.

Web Services generally refer to a three-layer system
composed of: (i) a transport layer based on XML mes-
saging (XML protocol, formerly known as Soap [46]); (ii) a
registry mechanism allowing the advertising and discovery
of services based on UDDI [42] and described by languages
such as WSDL [45] or DAML-S [13]; (iii) Some workflow
system such as XLANG [41] or WSFL [30].

It is frequent to hear questions such as “Why use agents
and not Web Services?”, “What is the difference between
Agents and Web Services?”. The purpose of this paper is
to answer such questions from our practical experience of
mapping SoFAR to Web services. This paper is the first
step of our investigation, and focuses solely on the trans-
port layer; in a second paper, we will discuss registry mech-
anisms.

This paper is organised as follows. First, we describe
our abstract communication architecture based on an agent
communication language (ACL) (Section 2). Then, we ex-
plain our implementation mapping the ACL onto XML Pro-
tocol (Section 3). We then compare our system with related
work (Section 4) and conclude the paper with a discussion
on the differences between agents and Web services.

2. Abstract Communication Architecture

Our primary motivation for adopting the agent paradigm
for the MYGRID environment is the notion of an “agent
communication language” (ACL), an abstract communica-
tion language that can be mapped onto concrete communi-
cation protocols, hence supporting our desire of an open and
future-proof environment.

In combination with an ACL, we also support an abstract
communication model, inspired by Nexus “virtual commu-
nication links” composed of startpoint and endpoint pairs

[19]. An ACL and virtual links have allowed us to design a
generic API, which facilitates the development of complex
distributed applications.

In this Section, we present our ACL and its integration
in our communication model in order to provide a generic
API.

2.1. Agent Communication Language (ACL)

The idea of an “agent communication language” dates
back from the DARPA knowledge sharing effort, which led
to the design of KQML (Knowledge Query and Manipula-
tion Language) [15], and was followed later by FIPA (Foun-
dation for Intelligent Physical Agents) ACL [16]. Three el-
ements compose an ACL, which we describe below.

Performatives In agent systems, it is common practice to
separate intention from content in communicative acts, ab-
stracting and classifying the former according to Searle’s
speech act theory [39]. An agent’s communications are
thereby structured and classified according to a predefined
set of “message categorisations”, usually referred to as per-
formatives.

The number of different performatives varies between
different ACLs. The most simple, such as Shoham’s Agent-
0 [40], have less than half a dozen, while the more com-
plex, such as KQML or FIPA have more than twenty. We
carefully chose performatives that would allow our agents
to interact in as complex ways as if they were using a
more complex agent communication language. In partic-
ular, FIPA and KQML contain specialised performatives for
tasks such as forwarding messages or issuing calls for pro-
posals which we respectively see as functions of the com-
munication layer, or as terms to be defined in an application
ontology. At the other extreme, Agent-0 relies on the com-
position of basic acts to perform more complex messages,
which FIPA and KQML consider as primitive.

Our minimal set of performatives support common prim-
itive interactions such as querying, notifying, requesting,
subscribing, and advertising. They are a compromise be-
tween extremes, being chosen in order to avoid the com-
plexity and communication cost that composition would en-
tail in the most common scenarios.

Adopting a rigid set of performatives also offers addi-
tional benefits. Implementations may be able to offer effi-
cient dispatch on messages, avoiding a further interpretation
layer that would be required by a non-existing or unlimited
message categorisation. Additionally, they allow us to pro-
vide a generic programming API, as we discuss in Section
2.3.

Ontology The messages exchanged by agents are used to
communicate information about their environment or some

problem domain, and so the content of the messages must
be a representation of their world. An ACL requires agents
to adopt an agreed vocabulary with a shared understanding
of some domain that they can use in their communication
[24]. Such a vocabulary is usually referred to as an ontol-
ogy, and in this context can be seen as a message content
schema.

At the communication level, we are only concerned with
defining the vocabulary used in messages. Terms of such
a vocabulary would typically refer (through a URI) to their
semantic definition, which in turn could be used internally
by agents to reason about such terms. Practically, terms of
a vocabulary can be defined by a CORBA IDL or an XML
schema; in Section 2.4, we will present the definition lan-
guage for specifying terms of our vocabulary. On the other
hand, semantic definitions could be written in more expres-
sive ontology languages such as frames or DAML+OIL [2].

The dynamic and evolving nature of a Grid environment
requires the support of multiple ontologies, designed, re-
vised and published by independent developers, at different
times. It is a requirement of an ACL to be able to accommo-
date these.

Meta-Information Performatives and ontologies as de-
scribed above are only a slight abstraction above a remote
procedure call. However, as opposed to method calls in
object-oriented programming, communication acts are not
considered as irresistible requests in agent-based systems.
Agents must be able to discriminate between messages ac-
cording to their internal state and the context of the mes-
sage.

This communication context includes information about
the act of communication itself such as the sender, receiver,
sent time, message identifier and conversation thread. An
agent may use this to reject a message or to discriminate
between senders. In complex interaction protocols, agents
need to be able to determine what conversation a message
belongs to; a conversation may be regarded as a generalisa-
tion of a peer-to-peer session to agents. This information
is usually not available in object systems, but should defi-
nitely be made available in an agent system.

Such a communication context is defined by a notion of
Envelope, which is specified in Figure 1.

2.2. Abstract Communication Model

An agent communication language can be mapped onto
several communication layers, and therefore satisfies our
need for open-ness: for each protocol, we may easily derive
a specification of messages, which may be used by third-
party developers to program applications interacting with
MYGRID.

<term name="Envelope" extends="Term">
<field type="AgentTerm" name="sender"/>
<field type="AgentTerm" name="receiver"/>
<field type="Time" name="timestamp"/>
<field type="Integer" name="identifier"/>
<field type="Integer" name="reference"/>
<field type="Conversation" name="conversation"/>

</term>

Figure 1. Meta Information of a Message

However, an agent communication language alone does
not provide a generic API to communications, because e.g.
performing a CORBA method call differs substantially from
invoking a service through the Apache Soap implementa-
tion.

Therefore, we have adapted a key concept of the Nexus
communication layer [19] to the world of agents. Nexus has
been shown to be a generic mode of communication, which
is efficient and scalable. It provides programmers with two
key ideas: startpoint/endpoint pairs to refer to remote ob-
jects and a form of method activation to start computations
on remote objects.

Communications between agents take place over a vir-
tual communication link, identified by a startpoint and an
endpoint. An endpoint identifies an agent’s ability to re-
ceive messages using a specific communication protocol.
An endpoint extracts messages from the communication
link and passes them onto the agent. A startpoint is the
other end of the communication link, from which messages
get sent to an endpoint. Communications are initiated by
calling one of the performatives on a startpoint; this results
in the transfer of the data to the remote endpoint, which
passes the message to the agent.

There may be several startpoints for a given agent, each
acting as a representative of the agent at remote locations.
Each startpoint is associated with an endpoint by a virtual
link, and encapsulates a specific communication protocol.

Usually, a startpoint is attached to a single endpoint, and
communication is point-to-point. If a startpoint is attached
to several endpoints, a multicast mode of communication
becomes possible. Such mode of communication is only
permitted for performatives accepting this semantics (typi-
cally those that do not return results).

2.3. Generic API

We now have all the ingredients necessary to build a
generic programming interface to agent communications.
In order to communicate with an agent, one needs to ac-
quire a startpoint that represents the agent and that supports
the communication protocol suitable for the prevailing cir-
cumstances. (How such a startpoint can be acquired is be-

yond the scope of this paper, but may rely on the use of a
lookup service.)

The details of the API are of course dependent on its
embedding in a specific programming language. If we adopt
an object-oriented methodology (specifically the language
Java), we obtain the following.

A same interface defines the client and server side of the
communication act. A startpoint supports a method for each
performative defined in the ACL. A communication is ini-
tiated by performing a method call on a startpoint, passing
as argument the message content and the envelope. Figure 2
contains the interface Agent both supported by a startpoint
and an agent object.

interface Agent {
boolean query_if(Predicate p, Envelope e);
Predicate[] query_ref(Predicate p, Envelope e);
void inform(Predicate p, Envelope e);
void uninform(Predicate p, Envelope e);
Contract register(Action a, Envelope e);
void unregister(Contract c, Envelope e);
Contract subscribe(Predicate p, Envelope e);
void unsubscribe(Contract c, Envelope e);
void request(Action a, Envelope e);

}

Figure 2. Agent Interface

The effect of invoking a performative method on a start-
point is to package the method call up as a message and to
transmit it to the endpoint, which deserialises it and passes
it onto the agent. Startpoints and endpoints have a crucial
role: startpoints define the different components of the com-
munication context, such as time or sender; endpoints re-
construct the communication context and make it available
to the agent.

Performatives such as queries are intended to return a
result. The result is transmitted back to the sender agent
using the communication link that carried the query; it is
then returned as a result of the method invocation on the
startpoint.

2.4. Ontology Support

SoFAR ontologies are defined in an XML syntax, as illus-
trated by Figure 1. Concepts are composed of a number of
fields, and may extend other concepts based on a principle
of single inheritance. The root of the hierarchy is referred
to as a Term. SoFAR also provides primitive concepts cor-
responding to programming languages primitive types such
as Integer, Float, A concept of “polymorphic vec-
tor” is also supported to describe collections of concepts.
An “ontology compiler” takes XML defininitions of ontolo-
gies and generates their representation as Java classes. Ad-
ditionally, it generates a “visitor pattern” [22] for these data

structures, which we use for defining customisable and ex-
tensible pretty printers to text, HTML or XML.

We have also defined notions of equality, matching and
subsumption (i.e. reasoning over hierarchies) on ontologi-
cal terms. These are implemented as Java methods that are
available for use on Java representations of ontology defi-
nitions. Matching and subsumption have turned out to be
a powerful feature of the system, because they provide the
foundation of an ontology-based query language.

We do not anticipate any problem compiling our onto-
logical definitions to CORBA IDL, and we have experi-
mented with their translation into Jini templates [36].

3. Mapping to the XML Protocol

In this Section, we describe how we used the Apache
Soap [1] implementation as a transport layer for SoFAR.
Such an experience enables us to compare the agent model
of communication with the Web services transport layer.

3.1. Architectural Design

Figure 3 presents the architecture of our implementation
of SoFAR over XML protocol. At the top center of the pic-
ture, we find an HTTP server, hosting a Soap servlet able to
handle incoming XML messages as prescribed by XML pro-
tocol. An agent will be seen as a Web service supporting a
method for each performative.

Figure 3 also shows the path taken by an inform mes-
sage sent by an agent to an agent . As explained in
Section 2.2, communications between two agents take place
over a virtual communication link, identified by a startpoint
and an endpoint. Different communication links may be
available between a pair of agents; the figure only shows a
Soap-based communication link.

In order to send an inform message, agent calls
method inform on a Soap startpoint representing agent .
The startpoint contains the URL denoting the HTTP server
acting as a Web-service provider for agent . The start-
point establishes a connection over HTTP, which is handled
by the Soap servlet. As a same HTTP server may be used
to serve several agents, a local naming scheme is used by
the HTTP server to designate the agent . In the picture, id
denotes agent ; such an id is contained in the startpoint
and passed to the HTTP server, where a “demultiplexer” dis-
patches the request to the appropriate receiving agent. To
this end, the demultiplexer makes use of a “Soap-registry”
mapping ids onto agent endpoints. The configuration of the
Soap server is defined in a “deployment.xml” file, which
specifies the Java class (here DeMultiplexer) handling in-
coming requests.

When an agent is created and declares its support of
the Soap protocol, it is assigned a new id, and its presence is

Agent B

HTT
P

RM
I

Agent A

METHOD: Inform
METHOD: Inform

lookup

Soap-Registry

id

http server
soap servlet

deployment.xml

Soap Endpoint for B

sofar provider: DeMultiplexer

Soap Startpoint for B
id

url

Figure 3. Communications of two Agents over SOAP

registered in a “Soap-registry”. The system is configurable
in multiple ways. A same agent may be used as a back-end
for several HTTP-servers, and vice-versa an HTTP-server
may act as the Web-service front-end to several agents. An
agent registered as a Web service can also support other
forms of communication. For instance, outside an enter-
prise the agent may be seen as a Web service, whereas it is
used with RMI inside the enterprise.

3.2. Technical Challenges

Various technical challenges had to be addressed while
porting SoFAR to Apache Soap. Their understanding is use-
ful for grasping the differences between the agent model of
communication and the Soap approach.

Startpoints The envelope of a communication act (cf.
Figure 1) contains a representation of the message sender,
called an AgentTerm, which includes the startpoints the
sender supports. In practice, we use RMI and Soap commu-
nications on a regular basis. An RMI startpoint encapsulates
an RMI stub, which allows communication with a remote
object using RMI. While the package Java RMI is able to
serialise RMI stubs over RMI, it is currently unable to gen-
erate a serialisation of such a stub to XML. Furthermore, we
cannot program their serialisation and deserialisation our-
selves, because constructors for such objects are not public.

We therefore decided that only Soap startpoints would
be serialised over the XML protocol transport layer. Their
serialisation contains the URL representing the HTTP server
and a unique identifier associated with an agent.

<SoapStartpoint url="http://..."
id="..."/>

SoFAR is designed in such a way that constructors for
startpoints and endpoints are not made public. The rationale
is that a communication received from an agent running on
a platform that is both authenticated and trusted to run the
SoFAR system properly will correctly identify the sender.
Such a rationale is no longer valid in the presence of Web
services because the sender may simply open a socket and
send XML data no longer guaranteeing any property. We are
currently investigating the possibility of using digital signa-
tures to authenticate message senders.

Besides the problem of security, transporting stubs over
XML protocol breaks other properties such as liveness and
distributed reference counting, which we discuss in the fol-
lowing paragraph.

Contracts RMI [25] and later Jini [36] have shown how
the idea of a lease can be beneficial to clear registries (or
lookup services). We have adapted this concept to the agent
paradigm as follows.

Registration is the action by which an agent declares to
an agent Registry its ability to handle some messages. If
the registry answers positively to a registration act, it com-
mits itself to advertise the registered capability and to re-
turn it to agents that ask matching queries. As a proof of its
commitment, the registry issues a contract as a result of the
registration act (as shown for performative register in
Figure 2). As long as the contract remains live, the registry
will retain the advertised capability. Conversely, if the agent
that registered the capability desires to stop its advertising,
it just has to terminate the associated contract.

Contracts are similar to leases as they need to be renewed
on a regular basis by “keep-alive” messages to be sent to
the registry. If the agent that registered or its host crash,
“keep-alive” messages will no longer be sent, the lease will
not be renewed, and the registry entry will be cleared. Fur-
thermore, contracts may be shared and communicated by
agents, which means that they need to be reference counted:
a registry entry is cleared if no remote reference of the as-
sociated contract remains live in the system.

The SoFAR implementation of contracts relied on RMI
stubs, for which the Java RMI implementation maintains ref-
erence counters and leases. Porting this aspect of SoFAR to
Soap brings new challenging problems, because Soap (like
Corba) opens the system to clients that may not be run-
ning Java. Hence, there is a burden on a client implementor
to implement the lease and reference counting algorithms.
Therefore, an application making use of these features, and
involving a service not written in Java will have to trust the
implementation of the algorithm supporting these features.
This becomes particularly difficult when services are dy-
namically discovered and orchestrated. We may have to re-
fer to some form of certification authority that certifies the
validity of a given implementation.

In our implementation, a Soap Endpoint converts con-
tracts into a representation that is suitable for XML seriali-
sation. It is also its role to maintain the reference counter
and lease associated with the contract; in addition, the
HTTP server has to be ready to receive messages related
to these. We are currently studying which distributed ref-
erence counting algorithm is the most suitable for a port
over XML protocol. The issues to consider are the number
of messages to be exchanged when contracts are communi-
cated between agents, and the directions of these messages
[32].

Class Loading Java RMI [25] extends Network Objects
[6] by its ability to load code dynamically. Such facility is
used by SoFAR to load the code of ontology terms dynam-
ically, when received by agents. Let us remind the reader
that this code is generated by the “ontology compiler” and
provides important methods for matching terms and for vis-
itor patterns used in a range of pretty printers.

The ability of loading this code dynamically is a funda-
mental property of a long-running multi-agent system. For
instance, a registry agent may run permanently on a well-
known host. As new agents and associated ontologies get
developed, these agents will register their service in the reg-
istry. The registry will not be restarted with a new “class
path”, or recompiled with the new ontology; instead, it will
have to load code dynamically.

On the other hand, XML protocol provides an RPC mech-
anism without a built-in dynamic code loading capability.
It means that our port of SoFAR to XML protocol currently
behaves properly for agents run with the knowledge of the
ontologies supported by the agents they interact with. This
is an unsatisfactory short term solution.

We are currently investigating a mechanism by which
code could be loaded dynamically, based on the URI refer-
ring to the definition of an ontology. Since each ontology
is required to be identified by a URI, the idea is to dele-
gate to a third-party service the task of accessing ontologies
definition from their URI, recompiling them on-the-fly and
caching them. This third-party service could actually be the
one hosting the definition of the ontology as specified by its
URI. This scheme is however centralised and may not scale
well in a Grid environment. Instead, we foresee several of
these services replicated in the Grid, which would ensure
that agents have the ability to load classes dynamically from
a suitably-local and trusted service.

We have developed a very simple benchmark to evaluate
the performance of SoFAR over Web services. An agent
discovers an agent and sends 100 notifications using the
inform performative. The SoFAR framework uses Java
1.3.1; we ran the benchmark with the Java native RMI im-
plementation and with the Apache Soap 1.1 implementa-
tion (using Tomcat 3.2 servlets). We observed that the Soap
communication layer was only 1.7 slower.

This result is positively surprising. Our implementation
over Soap is still under development, and performs a Soap-
registry lookup to find out the Soap endpoint and uses an
RMI communication from the HTTP server to the Soap end-
point (cf. Figure 3). Our implementation could easily be
optimised, for instance, if the Soap-registry was run in the
servlet directly.

4. Related Work

A number of Grid systems make use of Web services as
a communication layer. For instance, in Geodise, a Grid
for engineering optimisation [12], it is shown how Condor
can be offered as a Web service. The notion of agent has of
late become popular in the Grid community, as exemplified
by several workshops and publications on the use of agents
in the Grid. Rana and Walker [38] advocate the use of the

agent paradigm to integrate multiple information sources in
problem solving environments. Busetta et al. [8] describe a
Belief-Desire-Intention BDI agent architecture to simulate
query optimisations in the Data Grid; in the long term, their
goal is to provide advanced and adaptable Grid services (of
which query optimisation is one) based on agent technolo-
gies. Rana and Moreau [37] review how agents techniques
may be used to implement services at the computational
Grid layer.

The DARPA CoABS (Control of Agent Based Systems)
Grid [11] integrates heterogeneous agent-based systems,
mobile agent systems, object-based and legacy systems.
The CoABS Grid is based on Jini [36] for its lookup service
and Java RMI for inter-agent communications. As such, it is
less open than SoFAR, because it supports only one mode of
communication. The CoABS Grid like SoFAR benefits from
Jini leases to clear obsolete entries in registries. Test of scal-
ability of the registration mechanism have been undertaken
in [28].

While not mentioning agents explicitly, Furmento, New-
house and Darlington [21] discuss another Jini-based tech-
nique for federating resources. Their long-term goal is the
building of a computational economy for the Grid. Sev-
eral other projects investigate this idea of a computational
economy, according to which an economics framework reg-
ulates the supply and demand of resources. In particular,
Nimrod/G [9] is a resource broker able of “budget-based”
scheduling, giving users incentive to trade off execution
time for economic cost.

The agent community is very active in devising high-
level interaction protocols able to coordinate the activities
of suppliers and consumers. Agents may interact using co-
operation (cooperative problem solving), which is the pro-
cess by which a group of agents choose to work together
to achieve a common goal [44]. Multi-agent cooperation
techniques are capable of adaptive behaviour. An alterna-
tive approach to this cooperation paradigm is the market-
based model, where agents act as self-interested entities
competing on a market, where goods such as computational
resources are traded. Systems built around this paradigm
have been shown to reach an overall equilibrium, in which
resources are fairly allocated [10, 29, 31]. In particular, the
market-based approach gives particularly good results when
resources are becoming scarce [23]. The market-based ap-
proach is a specific case of a more general type of inter-
action among self-interested agents: negotiation [27]. The
key characteristics of negotiation are: the presence of some
form of conflict that must be resolved in a decentralised
manner, by self-interested rational agents with incomplete
information. Negotiation is the paradigm case of persua-
sion: it is a process by which agents come to a mutually
acceptable decision on some matter. To the best of our
knowledge, none of these techniques have yet been applied

to the context of the Grid, though experience in resource al-
location in communication networks, for instance, may be
a good starting point for studying the techniques in the con-
text of the Grid.

Tomarchio and Vita present a mobile agent architecture
for monitoring services in a Grid environment. Our abstract
communication architecture supports transparent communi-
cation with mobile agents, through the migration of end-
points [34]. We have not tested our Web service communi-
cation layer in this context yet.

The paradigm of agents has been used in the context of
bioinformatics, but without specific concern for Grid envi-
ronments. For instance, both [14] and [7] use agent systems
to federate data sources and tools in bioinformatics applica-
tions.

5. Discussion and Conclusion

Both Web Services and agent-based computing are high-
level models of distributed computing. Our port of SoFAR
to XML protocols shows that: (i) Agents may be seen as
Web services, and (ii) XML protocol is expressive enough to
support an Agent Communication Language. Our port has
also shown that an ACL is more abstract than XML proto-
col and can be mapped onto several concrete transport pro-
tocols. We note that XML protocol also supports different
delivery mechanism (for instance HTTP and mail delivery),
but message contents remains in an XML syntax, which is
not directly in the philosophy of object-oriented systems
such as CORBA. Additionally, a fixed set of performatives
combined with an abstract communication model based on
startpoint/endpoint pairs offers us a uniform API to pro-
gramming communications. Importantly, this allows sev-
eral transport protocols to be used simultaneously according
to the delivery requirements of the application; for instance,
we could conceive our SoFAR framework to be ported to a
reliable group multicast system.

The choice of an ACL is also a move away from stan-
dard RPC because of the existence of the Envelope. From
a service viewpoint, a client is no longer seen as an anony-
mous entity (or at most identified by an IP address), but as
an identifiable agent with which communications are possi-
ble. Identifying service clients is an essential requirement
for applications that need to trace provenance of data, or
for applications required to provide services to entities be-
longing to a specific (virtual) organisation. The idea of a
“current conversation” generalises peer-to-peer sessions to
multiple-agent sessions.

Our integration of the agent paradigm and Web services
will be pursued in different ways. This paper is the first part
of a survey of agents and Web services. In a second pa-
per, we will analyse the differences between agent registra-
tion mechanisms and Web service advertising using UDDI

(Universal Description, Discovery and Integration of Busi-
ness of the Web) [42] and WSDL (Web Service Description
Language) [45].

In the introduction, we discussed several motivations for
using agents. We see two applications of agents’ complex
interactions for the Grid. (i) A computational economy
may be a mechanism able to allocate resources in a fair
and efficient manner in a Grid environment. This requires
building a marketplace where rules enforce such a fairness
property. We are currently designing such a marketplace
approach for the dynamic selection of information in a rec-
ommender system; this system is built on SoFAR and we
hope that some of these results will be applicable to a Grid
context. (ii) The dynamic discovery, creation, manage-
ment and disbanding of virtual organisations [20] require
complex agent-based interactions; new scalable algorithms
need to be devised in order to be applied to the Grid.

6. Acknowledgements

This research is funded in part by EPSRC myGrid
project (reference GR/R67743/01) and QinetiQ and EP-
SRC Magnitude project (reference GR/N35816). The au-
thor thanks Carole Goble and Sean Bechhofer for a useful
discussion on this topic.

References

[1] Apache SOAP. http://xml.appache.org/soap/,
2001.

[2] S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not
enough. In Semantic Web Working Symposium (SWWS-1),
Stanford (CA), July 2001.

[3] BioCORBA project. http://biocorba.org/, 2001.
[4] BioJava. http://biojava.org/, 2001.
[5] Bioperl. http://bioperl.org/, 2001.
[6] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network

Objects. Technical Report 115, Digital Systems Research
Center, Feb. 1994.

[7] K. Bryson, M. Luck, M. Joy, and D. Jones. Agent Interac-
tion for Bioinformatics Data Management. Applied Artificial
Intelligence, 2002.

[8] P. Busetta, M. Carman, L. Serafini, K. Stockinger, and
F. Zini. Grid Query Optimisation in the Data Grid. Technical
Report IRST 0109-01, Istituto Trentino di Cultura, Septem-
ber 2001.

[9] R. Buyya, J. Giddy, and D. Abramson. An economy grid ar-
chitecture for service-oriented grid computing. In 10th IEEE
International Heterogeneous Computing Workshop (HCW
2001), In conjunction with IPDPS 2001, San Francisco,
USA, Apr. 2001.

[10] S. H. Clearwater, editor. Market-Based Control. A Paradigm
for Distributed Resource Allocation. World Scientifid Pub-
lishing, 1996.

[11] The DARPA CoABS Project: “Control of Agent Based
Systems”. http://coabs.globalinfotek.com/,
2000.

[12] S. J. Cox, M. J. Fairman, G. Xue, J. L. Wason, and A. J.
Keane. The Grid: Computational and Data Resource Shar-
ing in Engineering Optimisation and Design Search. In
IEEE Proceedings of the 2001 ICPPWorkshops, pages 207–
212, Valencia, Spain, Sept. 2001.

[13] DAML-S. http://www.daml.org/services/daml-
s/2001/05, 2001.

[14] K. Decker, X. Zheng, and C. Schmidt. A Multi-Agent Sys-
tem for Automated Genetic Annotation. In The fifth ACM
International Conference on Autonomous Agents, Montreal,
Canada, May 2001.

[15] T. Finin, Y. Labrou, and J. Mayfield. Software Agents, J.
Bradshaw, Ed., chapter KQML as an Agent Communication
Language. MIT Press, 1997.

[16] FIPA: Foundation for Intelligent Physical Agents.
http://drogo.cselt.stet.it/fipa/.

[17] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. Intl J. Supercomputer Applications,
11(2):115–128, 1997.

[18] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufman Pub-
lishers, 1998.

[19] I. Foster, C. Kesselman, and S. Tuecke. The Nexus Ap-
proach to Integrating Multithreading and Communication.
Journal of Parallel and Distributed Computing, 37:70–82,
1996.

[20] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid. Enabling Scalable Virtual Organizations. Interna-
tional Journal of Supercomputer Applications, 2001.

[21] N. Furmento, S. Newhouse, and J. Darlington. Building
Computational Communities from Federated Resources. In
Proceedings of the 7th International Euro-Par Conference
(Euro-Par 2001), pages 855–863, Manchester, UK, Aug.
2001.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[23] M. A. Gibney and N. R. Jennings. Dynamic resource allo-
cation by market-based routing in telecommunications net-
works. In 2nd Int. Workshop on Multi-Agent Systems and
Telecommunications, pages 102–117, 1998.

[24] T. R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. Technical Report KSL-93-04,
Knowledge Systems Laboratory, Stanford University, Aug.
1993.

[25] Java Remote Method Invocation Specification, Nov. 1996.
[26] N. R. Jennings. On agent-based software engineering. Arti-

ficial Intelligence, 2000.
[27] N. R. Jennings, K. Sycara, and M. Wooldridge. A

roadmap of agent research and development. Int Journal
of Autonomous Agents and Multi-Agent Systems, 1(1):7–38,
1998.

[28] M. L. Kahn and C. D. T. Cicalese. CoABS Grid Scalability
Experiments. In Second International Workshop on Infras-
tructure for Scalable Multi-Agent systems at Autonomous
Agents, Montreal, Canada, May 2001.

[29] K. Kuwabara, T. Ishida, Y. Nishibe, and T. Suda. An Equi-
libratory Market-Based Approach for Distributed Resource
Allocation and Its Applications to Communication Network
Control. In Market-Based Control. A Paradigm for Dis-
tributed Resource Allocation, pages 53–73. World Scientific,
1996.

[30] F. Leyman. Web Services Flow Language (WSFL). Techni-
cal report, IBM, May 2001.

[31] M. Miller, D. Krieger, N. Hardy, C. Hibbert, and E. Trib-
ble. An Automated Auction in ATM Network Bandwidth.
In Market-Based Control. A Paradigm for Distributed Re-
source Allocation, pages 96–125. World Scientific, 1996.

[32] L. Moreau. Tree Rerooting in Distributed Garbage
Collection: Implementation and Performance Eval-
uation. Higher-Order and Symbolic Computa-
tion, 14(4), 2002. (Coloured figures can be found
in http://www.ecs.soton.ac.uk/ lavm/papers/hosc01-
colour.tar.gz).

[33] L. Moreau, N. Gibbins, D. DeRoure, S. El-Beltagy, W. Hall,
G. Hughes, D. Joyce, S. Kim, D. Michaelides, D. Millard,
S. Reich, R. Tansley, and M. Weal. SoFAR with DIM
Agents: An Agent Framework for Distributed Information
Management. In The Fifth International Conference and Ex-
hibition on The Practical Application of Intelligent Agents
and Multi-Agents, pages 369–388, Manchester, UK, Apr.
2000.

[34] L. Moreau and D. Ribbens. Mobile Objects in Java. Sci-
entific Programming, 2002. Special issue of the Interna-
tional Workshop on Performance-oriented Application De-
velopment for Distributed Architectures (PADDA’2001).

[35] mygrid. http://www.mygrid.org.uk/, 2001.
[36] S. Oaks and H. Wong. Jini In a Nutshell. O’Reilly, 2000.
[37] O. F. Rana and L. Moreau. Issues in Building Agent based

Computational Grids. In Third Workshop of the UK Special
Interest Group on Multi-Agent Systems (UKMAS’2000), Ox-
ford, UK, Dec. 2000.

[38] O. F. Rana and D. W. Walker. ‘The Agent Grid’: Agent-
Based Resource Integration in PSEs. In Proceedings of the
16th IMACS World Congress on Scientific Computation, Ap-
plied Mathematics and Simulation, Lausanne, Switzerland,
July 2000.

[39] J. Searle. Speech Acts: An Essay in the Philosophy of Lan-
guage. Cambridge University Press, 1969.

[40] Y. Shoham. Agent-oriented Programming. Artificial Intelli-
gence, 60:51–92, 1993.

[41] S. Thatte. XLANG: Web Services for Business Process De-
sign Author. Technical report, Microsoft, 2001.

[42] Universal Description, Discovery and Integration of Busi-
ness of the Web. www.uddi.org, 2001.

[43] The UK Research Councils e-Science Core Programme.
http://www.research-councils.ac.uk/escience/, 2001.

[44] M. J. Wooldridge and N. R. Jennings. Cooperative problem
solving. Journal of Logic and Computation, 9(4):563–592,
1999.

[45] Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl, 2001.

[46] XML Protocol Activity.
http://www.w3.org/2000/xp, 2000.

